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Abstract

Domain Adaptation (DA) enables transferring a learning machine from a labeled
source domain to an unlabeled target domain. While remarkable advances have
been made, most of the existing DA methods focus on improving the target accuracy
at inference. How to estimate the predictive uncertainty of DA models is vital for
decision-making in safety-critical scenarios but remains the boundary to explore. In
this paper, we delve into the open problem of Calibration in DA, which is extremely
challenging due to the coexistence of domain shift and the lack of target labels. We
first reveal the dilemma that DA models learn higher accuracy at the expense of well-
calibrated probabilities. Driven by this finding, we propose Transferable Calibration
(TransCal) to tackle this dilemma, achieving accurate calibration with lower bias
and variance in a unified hyperparameter-free optimization framework. As a general
post-hoc calibration method, TransCal can be easily applied to recalibrate existing
DA methods. Its efficacy has been justified both theoretically and empirically.

1 Introduction

Deep neural networks (DNNs) achieve the state of the art predictive accuracy in machine learning tasks
with the benefit of powerful ability to learn discriminative representations [30, 8, 50]. However, in
real-world scenarios, it is hard (intolerably time-consuming and labor-expensive) to collect sufficient
labeled data through manual labeling, causing DNNSs to confront with challenges when generalizing
the pre-trained model to a different domain with unlabeled data. To tackle this challenge, researchers
propose to transfer knowledge from a different but related domain by leveraging the readily-available
labeled data, a.k.a. domain adaptation (DA) [39].

Early domain adaptation methods bridge the source and target domains mainly by learning domain-
invariant representations [32, 12] or instance importances [19, 11]. After breakthrough in deep neural
networks (DNNs) has been achieved, they are widely believed to be able to learn more transferable
features [30, 8, 50, 54], since they disentangle explanatory factors of variations. Recent works in deep
domain adaptation can be mainly grouped into two categories: 1) moment matching. These methods
align representations across domains by minimizing the discrepancy between feature distributions [46,
24, 26, 27, 23]; 2) adversarial training. These methods adversarially learn transferable feature
representations by confusing a domain discriminator in a two-player game [10, 45, 25, 53].

While numerous domain adaptation methods have been proposed, most of them mainly focus on
improving the accuracy in the target domain but fail to estimate the predictive uncertainty, falling short
of a miscalibration problem [16]. The accuracy of a deep adapted model constitutes only one side of
the coin, here we delve into the other side of the coin, i.e. the calibration of accuracy and confidence,
which requires the model to output a probability that reflects the true frequency of an event. For
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Figure 1: Left: A comparison between IID Calibration with TransCal, where ¢ denotes the deep
model; Right: an observation on the accuracy and ECE of various DA methods (12 transfer tasks of
Office-Home [47] with ResNet-50 [18]), indicating that DA models learn higher accuracy than the
SourceOnly ones at the expense of well-calibrated probabilities. See more results in D.1 of Appendix.

example, if an automated diagnosis system says 1,000 patients have lung cancer with probability 0.1,
approximately 100 of them should indeed have lung cancer. Calibration is fundamental to deep neural
models and of great significance for decision-making in safety-critical scenarios. With built-in [9, 21]
or post-hoc [37, 16] recalibration methods, the confidence and accuracy of deep models can be
well-calibrated in the independent and identically distributed (IID) scenarios. However, it remains
unclear how to maintain calibration under dataset shifts, especially when we do not have labels from
the target dataset, as in the general setting of Unsupervised Domain Adaptation (UDA). We identify
two obstacles in the way of applying calibration to UDA:

o The lack of labeled examples in the target domain. We know that the existing successful
post-hoc IID recalibration methods mostly rely on ground-truth labels in the validation set to
select the optimal temperature [37, 16]. However, since ground-truth labels are not available
in the target domain, it is not feasible to directly apply IID calibration methods to UDA.

e Dataset shift entangled with the miscalibration of DNNs. Since DNNs are believed to learn
more transferable features [30, 50], many domain adaptation methods embed DNNs to
implicitly close the domain shift and rely on DNNs to achieve higher classification accuracy.
However, DNNs are prone to over-confidence [16], falling short of a miscalibration problem.

To this end, we study the open problem of Calibration in DA, which is extremely challenging due to
the coexistence of domain gap and the lack of target labels. To figure out the calibration error on the
target domain of domain adaptation models, we first delve into the predictions and confidences of the
target dataset. By calculating the target accuracy and ECE [16] (a calibration error measure defined
in 3.1) with various domain adaptation models before calibration, we found something interesting.
As shown in the right panel of Figure 1, the accuracy increases from the weakest SourceOnly [18]
model to the latest state-of-the-art MDD [53] model, while the ECE becomes larger as well. That is,
after applying domain adaptation methods, miscalibration phenomena become severer compared with
SourceOnly model, indicating that the domain adaptation models learn higher classification accuracy
at the expense of well-calibrated probabilities. This dilemma is unacceptable in safety-critical
scenarios, as we need higher accuracy while maintaining calibration. Worse still, the well-performed
calibration methods in the IID setting cannot be directly applied to DA due to the domain shift.

To tackle the dilemma between accuracy and calibration, we propose a new Transferable Calibration
(TransCal) method in DA, achieving accurate calibration with lower bias and variance in a unified
hyperparameter-free optimization framework, while a comparison with IID calibration is shown
in the left panel of Figure 1. Specifically, we first define a new calibration measure, Importance
Weighted Expected Calibration Error IWECE) to estimate the calibration error in the target domain
in a transferable calibration framework. Next, we propose a learnable meta parameter to further
reduce the estimation bias from the perspective of theoretical analysis. Meanwhile, we develop a
serial control variate method to further reduce the variance of the estimated calibration error. As
a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA
methods. This paper has the following contributions:

e We uncover a dilemma in the open problem of Calibration in DA: existing domain adaptation
models learn higher classification accuracy at the expense of well-calibrated probabilities.

e We propose a Transferable Calibration (TransCal) method, achieving accurate calibration
with lower bias and variance in a unified hyperparameter-free optimization framework.



e We conduct extensive experiments on various DA methods, datasets, and calibration metrics,
while the effectiveness of our method has been justified both theoretically and empirically.

2 Related Work

2.1 Domain Adaptation

Existing domain adaptation methods can be mainly grouped into two categories: moment matching
and adversarial training. Moment matching methods align feature distributions across domains by
minimizing the distribution discrepancy, in which Maximum Mean Discrepancy [15] is adopted by
DAN [24] and DDC [46], and Joint Maximum Mean Discrepancy is utilized by JAN [27]. Motivated
by Generative Adversarial Networks (GAN) [13], DANN [10] introduces a domain discriminator to
distinguish the source features from the target ones, which are generated by the feature extractor; the
domain discriminator and feature extractor are competed in a two-player minimax game. Further,
CDAN [25] conditions the adversarial domain adaptation models on discriminative information
conveyed in the classifier predictions. MADA [34] uses multiple domain discriminators to capture
multimodal structures for fine-grained domain alignment. ADDA [45] adopts asymmetric feature
extractors while MCD [42] employs two classifiers consistent across domains. MDD [53] proposes a
new domain adaptation margin theory and achieves an impressive performance. Though numerous
DA methods have been proposed, most of them focus on improving target accuracy and rare attention
has been paid to the predictive uncertainty, causing a miscalibration between accuracy and confidence.

Table 1: Comparisons among calibration methods for unsupervised domain adaptation (UDA).

Method works with  works without | Bias Variance
domain shift target label Reduction  Reduction

Platt Scaling [37] X X X X

Temp. Scaling [16] X X X X

CPCS [33] v v X X

TransCal (proposed) v v v v

2.2 Calibration

Among binary calibration methods, Histogram Binning [51] is a simple non-parametric one with
either equal-width or equal-frequency bins; Isotonic Regression [52] is a strict generalization of
histogram binning by jointly optimizing the bin boundaries and bin predictions; Differently, Platt
Scaling [37] is a parametric one that transforms the logits of a classifier to probabilities. When
extended to multiclass, there are two types of methods. 1) built-in methods: Monte Carlo dropout
(MC-dropout) [9] is popular as it simply uses Dropout [43] during testing phase to estimate predictive
uncertainty. Later, [21] finds out that the ensembles of neural networks can work. Further, Stochastic
Variational Bayesian Inference (SVI) methods for deep learning [2, 28, 49] are shown effective.
However, built-in methods require to modify the classifier learning algorithm or training procedure,
which are complex to apply in DA. Thus, we prefer 2) post-hoc approaches, including various multi-
class extensions of Platt scaling [37]: matrix scaling, vector scaling and temperature scaling [16].
Though remarkable advances of IID calibration are witnessed, it remains unclear how to maintain
calibration under dataset shifts [20], especially when the target labels are unavailable in UDA case.
Recently, [31] finds that traditional post-hoc IID recalibration methods such as temperature scaling
fail to maintain calibration under distributional shift. A recent paper (CPCS) [33] considers calibration
under dataset shift using domain adaptation as a base tool for alignment, while we focus on how to
maintain calibration in DA. A detailed comparison of typical calibration methods is shown in Table 1.

3 Approach

This paper aims at designing a transferable calibration method with lower bias and variance in DA.
Let x denote the input of the network, y be the label and d be the Bernoulli variable indicating
to which domain x belongs. In our terminology, the source domain distribution is p(x) and the

target domain distribution is ¢(x). We are given a labeled source domain Dy = { (xi, yﬁ) }:L:l with



ns samples (d = 1), and an unlabeled target domain Dy = {(x}) }?:tl with n; samples (d = 0).
Following the logistics of transferable calibration framework, bias reduction, and variance reduction,
we show the design philosophy of transferable calibration step by step based on theoretical analysis.

3.1 IID Calibration

Calibration Metrics. Given a deep neural model ¢ (parameterized by 6) Wthh transforms the
random variable input X into the class predlctlon Y and its associated confidence P, we can define
the perfect calibration [16]as P(Y = Y|P =¢) = ¢, Vc € [0, 1] where Y is the ground truth label.
There are some typical metrics to measure calibration error: /) Negative Log-Likelihood (NLL) [14],
also known as the cross-entropy loss in the field of deep learning, serves as a proper scoring rule to
measure a probabilistic model’s quality [17]. 2) Brier Score (BS) [3], defined as the squared error
between p(y|x, @) and y, is also a proper scoring rule. 3) Expected Calibration Error (ECE) [29, 16]
first partitions the interval of probability predictions into B bins where B,, is the indices of samples
falling into the m-th bin, and then computes the weighted absolute difference between accuracy and
confidence across bins:

B
| B
Lece = — -
poe = D = |A(Bu) — C(Bp)), )
m=1
where for each bin m, the accuracy is A(B,,) = |Bn|™" X,cp 1(¥: = y:) and its confidence is
C(Bm) = |Bm| ™" Xicp,, P(Pilx:,0). ECE is easier to interpret and thereby more popular.

Temperature Scaling Calibration. Temperature scaling is one of the simplest, fastest, and effec-
tive IID Calibration methods [16]. Fixing the neural model trained on the training set D;,., temperate
scaling first attains the optimal temperature 7" by minimizing the cross-entropy loss between the
logit vectors z,, scaled by temperatrue 71" and the ground truth label y, on the validation set D, as

T* = argmin E(x, v, yep, LNLL (0(20/T),¥0), 2
T

where o is the sofmax function formalized as j; = exp (z;)/3 1 w1 €xp (21, for K classes. After that,
we transform the logit vector z;. on the test set D;, into cahbrated probabilities by p. = o (2 /T™).

3.2 Transferable Calibration Framework

As mentioned above, the main challenge of extending temperature scaling method into domain adap-
tation (DA) setup is that the target calibration error E; = Exq [£()(¢(x), y)] is defined over the
target distribution g where labels are inaccessible. However, if density ratio (a.k.a. importance weight)
w(x) = q(x)/p(x) is known, we can estimate target calibration error by the source distribution p:

Eaea (L0000, 9] = [ £0)(609, VIaGo)dx

/ Ei H(6(x), ¥)p(x)dx = Exp [w(x) L1y (6(x), ¥)]

which means Ex,, [w(x)L(.)(¢(x), y)] is an unbiased estimator of the target calibration error E,.
By simply replacing the NLL loss in Eq. (2) with the importance weighted ECE in Eq. (3), we can
attain an optimal temperature suitable in the target domain. Since this kind of calibration is trained
on the source data but can transfer to the target domain, we call it transferable calibration.

3)

As for the specific type of calibration metric L.y, the calibration method under covariate shift (CPCS)
[33] uses the Brier Score Lps. However, Brier Score conflates accuracy with calibration since it can
be decomposed into two components: calibration error and refinement [7], making it insensitive to
predicted probabilities associated with infrequent events [31]. Meanwhile, NLL is minimized if and
only if the prediction recovers ground truth y, however, it may over-emphasize tail probabilities [4].
Hence, we adopt ECE Lgcg, an intuitive and informative calibration metric directly quantifying the
goodness of calibration. One may concern that ECE is not a proper scoring rule since the optimum
score may not correspond to a perfect prediction, however, as a non-invasive post-hoc recalibration
method, the temperature scaling we utilize will not degrade the neural model’s prediction accuracy
while maintaining calibration.



Previously, we assume that density ratio is known, however, it is not readily accessible in real-world
applications. In this paper, we adopt a mainstream discriminative density ratio estimation method:
LogReg [38, 1, 5], which uses Bayesian formula to derive the estimated density ratio from a logistic
regression classifier that separates examples from the source and the target domains as

(%) _v(x[d=0) _P(d=1)P(d=0[)

o) = p(x)  vixld=1)  P(d=0)P(d=1}x)’ v

where v is a distribution over (x,d) € X x {0,1} and d ~ Bernoulli(0.5) is a Bernoulli variable
indicating to which domain x belongs. With Eq. (4), the estimated density ratio w(x) can be
decomposed into two parts, in which the first part P(d = 1)/P(d = 0) is a constant weight factor
that can be estimated with the sample sizes of source and target domains as 14 /n;, and the second part
P(d = 0|x)/P(d = 1]x) is the ratio of target probability to source probability that can be directly
estimated with the probabilistic predictions of the logistic regression classifier.

3.3 Bias Reduction by Learnable Meta Parameter

Through above analysis, we can reach the target calibration error by the estimated importance weights.
As long as the true importance weight w(x) is known, an unbiased estimation of the target calibration
error is feasible. However, the gap between the estimated importance weights and ground-truth
ones cannot be ignored, causing a bias between the estimated calibration error and the ground-truth
calibration error in the target domain. We formalize this bias of calibration as

Ex |Licr] — Exva | L500] | = Exp [00) Loor(6(x), ¥)] — Exy [0(X) Lecr(@(x), ¥)]|
= [Exep [(w(x) = B(x)) Lrcr(6(2), ¥

)
Note that the bias of estimated calibration error in the target domain is highly related to the estimation
error of importance weights. Hence, we focus on the bias of importance weights and show that after
applying some basic mathematical inequalities, the estimation bias can be bounded by

|Exp [(w(x) — @(x)) Lucr(6(x), y)l

S\/EXN,J [(w(x) — @(X))2] Ex~p [(Lror(o(x), y))2] (Cachy — Schwarz Ineqaulity)
g% (Epr [(w(x) — @(x))Q] + Ex~p [(ﬁECE(Cf’(X), y))Q]) (AM/GM Inequality) ©)
S% (Ex~p [(w(x) = @(x))*] + Exnp [Lrcr(¢(x), ¥)]) (Lrcr(o(x), y) < 1),

where AM/GM denotes the inequality of arithmetic and geometric means. It is noteworthy that the
domain adaptation model ¢ is fixed since we consider transferable calibration as a post-hoc method.
Therefore, we can safely bypass the second term of Eq. (6) and focus our attention on the first term.
According to the standard bounded importance weight assumption [6], for some bound M > 0 we
have w(x) < M. Then for any x s.t. p(x) # 0, the following inequality holds:
1 , gx) 1-pkx) 1
< < — = - 1
Ml s p(x) <1, since w(x) o) o) pra 1 @)

Thus the first term in Eq. (6) can be further bounded by

N 2
Ex~ {wx—@x 2}:Exw <M) < (M 4 1)*Exn x) — p(x))*] .
p | (w(x) — (%)) p[ PP (M + 1) Exnp | (p(x) = P(%))

®)
Plugging Eq. (8) into Eq. (6), we conclude that a smaller M can ensure a lower bias for the estimated
weight w(x), leading to a smaller bias of the estimated target calibration error, which is also supported
by the generalization bound for importance weighted domain adaptation (Theorem 1, [6]). To this
end, what we should do is to find some techniques to control the upper bound M of importance
weights. It seems that we can normalize each weight by the sum of all weights, leading to a smaller
M. Still, only with self-normalization, a few bad samples with very large weights will dominate the
estimation, and drastically explode the estimator. Further, can we clip those samples with very large
weights by a given threshold? It seems feasible, but the threshold is task-specific and hard to preset,
which is not an elegant solution that we pursue. Based on the above theoretical analysis, we propose



to introduce a learnable meta parameter A (0 < A < 1) to adatively downscale the extremely large
weights, which can derease M and attain a bias-reduced target calibration error. Formally,

T* = argmin Exey [0) Lece(6(x). Y], (%) = (@(x))* /Y (@) ©)
; i=1

By jointly optimizing the calibration objective in Eq. (9), we can attain an optimal temperature 7™ for

transferable calibration, along with a task-specific optimal A\* for bias reduction. [44] also introduced

a control value to importance weighting for model selection, but it was used as a hyperparameter.

This work further makes itself learnable in a unified hyperparameter-free optimization framework.

3.4 Variance Reduction by Serial Control Variate

Through the above analysis, we enable transferable calibration and further reduce its bias. However,
another main drawback of importance weighting is uncontrolled variance as the importance weighted
estimator can be drastically exploded by a few bad samples with large weights. For simplicity, denote

E, = Exp [0(x)Lucr(4(X), ¥)] as ExpLEp hereafter. Replacing the target loss from Lemma 2
of [6] with the weighted calibration error, we can conclude that the variance of transferable calibration
error can be bounded by Rényi divergence between p and g (A proof is provided in B.1 of Appendix):

Varxw[ﬁgcﬂ = Expl( gCE)2] - (EXNP[EENCE])2
< das1(qlp) (ExmpLicr)' ™ — (Ex~pLicr)?,  Va > 0.

Apparently, lowering the variance of E, results in more accurate estimation. First, Rényi diver-
gence [40] between p and g can be reduced by deep domain adaptation methods [25, 10, 53]. Second,
we further reduce the variance by the control variate method [22]. It introduces a related unbiased
estimator ¢ to the estimator u that we concern, achieving a new estimator u* = u + n(t — 7) while
E[t] = 7. As proved in A.2 of Appendix, Var[u*] < Var[u] and «* has an optimal solution when

7 = —Cov(u, t)/Var[t]. To reduce Varx~,|[Licg), we first adopt the importance weight w(x) as the
control variate since the expectation of w(x) is fixed: Ex~, [w(x)] = 1. Here, regard Ex,[L¥g]
and w(x) as u and ¢ respectively, and we can attain a new unbiased estimator E;. When 7 achieves

the optimal solution, the estimation of target calibration error with control variate is

(10)

EZ = E — iCOV(£ECE7ﬁ;(X)) 2 [@v(xi) _ 1]. an

" ng  Var[w(x)] 5

i=1
Further, we can add the prediction on the source domain 7(x) = 1(y = y) as another control variate
because its expectation is also fixed: Ex~, [r(x)] = ¢, since the accuracy should be equal to the
confidence c on a perfect calibrated source model as defined in Section 3.1. In this way, control
variate method can be easily extended into the serial version in which there is a collection of control
variables: t1,to whose corresponding expectations are 7, T respectively. Formally,

u=u+n(t; — ),

u* = u* 4 na(te — ).

Plugging r(x) as the second control variate into the bottom line of Eq. (12), we can further reduce
the variance of target calibration error by the serial control variate method as

ok Tmk iCOV(EgéE,T(X)) - AN
Ey =Ej e Varlr(x)] ;[r(x) d, (13)

(12)

where E%éE is the estimated target calibration error after applying the control variate to weight w(x).
As a summary, the transferable calibration framework (3)—(4) is improved through: 1) lowering bias
as (9); 2) lowering variance by deep adaptation as (10) and by serial control variate as (11) and (13).

4 Experiments

4.1 Setup

We fully verify our methods on five DA datasets: (1) Office-Home [47]: a dataset with 65 categories,
consisting of 4 domains: Artistic (A), Clipart (C), Product (P) and Real-World (R). (2) VisDA-
2017 [36], a Simulation-to-Real dataset with 12 categories. (3) Skerch [48], a large-scale dataset



transferring from ImageNet (I) to Sketch (S) with 1000 categories. (4) DomainNet [35]: a dataset
with 345 categories, including 6 domains: Infograph (1), Quickdraw (Q), Real (R), Sketch (S), Clipart
(C) and Painting (P). (5) Office-31 [41] contains 31 categories from 3 domains: Amazon (A), Webcam
(W), DSLR (D). For each dataset, we randomly split it and use the first 80 percent for training and the
remaining 20 percent data for validation. We run each experiment for 10 times. We denote Vanilla as
the standard softmax method before calibration, Oracle as the temperature scaling method while the
target labels are available. Detailed descriptions are included in C.1, C.2 and C.3 of Appendix .

Table 2: ECE (%) before and after various calibration methods on several DA methods and datasets.
Method | Dataset \ Office-Home | Sketch | VisDA
| Transfer Task |A—-C A—P A—R C—A C—P C—R Avg| I=S | S=R

Before Cal. (Vanilla) 33.6 187 13.0 28.9 229 19.0 22.77| 19.7 | 305
IID Cal. (Temp. Scaling)| 28.7 164 93 21.8 165 12.1 17.5| 147 | 29.1

CPCS [33] 295 173 9.6 229 167 11.8 18.0| 142 | 304
MDD |TransCal (w/o Bias) 228 142 90 234 140 128 16.1] 10.2 | 23.5
TransCal (w/o Variance) | 20.9 12.1 6.8 21.6 10.2 12.1 13.9| 9.7 17.2
TransCal (ours) 135 114 48 21.8 7.0 11.1 11.6] 8.1 16.1
\ Oracle \ 68 85 47 70 58 40 6.1 \ 4.7 \ 74

Before Cal. (Vanilla) 394 288 205 339 279 20.1 284| 183 | 25.7
IID Cal. (Temp. Scaling) | 21.8 22.0 15.1 225 205 9.1 185| 13.0 | 23.2

CPCS [33] 23.1 223 154 206 200 9.0 18.4| 129 | 229
MCD | TransCal (w/o Bias) 185 263 157 192 17.1 85 17.6| 125 | 10.2
TransCal (w/o Variance) | 16.3 193 3.6 217 9.1 9.1 13.2| 113 9.8
TransCal (ours) 131 202 5.1 155 93 9.1 12.0] 102 | 7.8
\Oracle \ 56 94 23 71 74 25 57 \ 3.6 \ 1.8

Before Cal. (Vanilla) 40.2 264 17.8 358 235 219 27.6| 21.8 | 29.5
IID Cal. (Temp. Scaling)| 28.3 17.6 10.1 21.2 132 82 16.4| 9.0 | 26.6

CPCS [33] 240 17.8 7.1 226 11.8 89 154| 6.9 26.4
CDAN | TransCal (w/o Bias) 20.3 103 53 20.7 132 53 125 6.1 24.3
TransCal (w/o Variance) | 25.6 16.6 55 212 82 56 13.8| 5.6 | 23.9
TransCal (ours) 132 99 52 212 81 64 10.7| 49 21.2
‘Oracle ‘ 5.8 8.1 48 100 77 42 68 ‘ 2.5 ‘ 2.0

(a) Before Calibration (b) IID Calibration (c) TransCal (d) Oracle

Figure 2: Reliability diagrams from Clipart to Product with CDAN [25] before and after calibration.
4.2 Results

Quantitative Results. As reported in Table 2, TransCal achieves much lower ECE than competitors
(dereases about 30% or more, e.g. when TransCal is used to calibrate MCD on VisDA, the target
ECE is reduced from 22.9 to 7.8) on various datasets and domain adaptation methods. Some results
of TransCal are even approaching the Oracle ones. Further, the ablation studies on TransCal (w/o
Bias) and TransCal (w/o Variance) verify that both bias reduction term and variance reduction term
are effective. TransCal can be generalized to other tasks of Office-Home (D.2.1), to DomainNet
and Office-31 (D.2.2), and to more DA methods (D.2.3), all shown in Appendix. Further, the results
evaluated by NLL and BS metrics are included in D.2.4 and D.2.5 of Appendix respectively.



Qualitative Results. As shown in Figure 2, the blue lines indicate the distributions for perfectly
reliable forecasts with standard deviation, and the red lines denote the conditional distributions of the
observations. Obviously, If the model is perfectly calibrated, these two lines should be matched. We
can see that TransCal is much better and approaches the Oracle one on the task: Clipart — Product.
More reliability diagrams of other tasks to back up this conclusion are shown in D.3 of Appendix .

(a) Art — Clipart (b) Art — Product (c) Art — Real-World (d) Clipart — Art

Figure 3: The estimated calibration error with respect to different values of temperature 7" and meta
parameter A (both are learnable), showing that different models achieve optimal values at different \.

| TP P L . N '
LR T o

(a) A= R (b) A— R (A" =0.67) (c) P—A (d) PA (A" =0.53)

Figure 4: Importance Weight distribution of two DA tasks after transferable calibration with (4(b),
4(d)) and without (4(a), 4(c)) applying the learnable meta parameter, which lowers the value of M.

Table 3: ECE (%) of TransCal with different control variate (CV) methods on MDD [53].

Dataset Office-Home Sketch VisDA
Transfer Task A—C A—P A—R I-S S—R
TransCal (w/o Control Variate) 20.9+4.68 12.1£2.46 6.8+2.22 9.743.17 17.2+5.74
TransCal (CV via only w(x)) 13.9+4.45 9.6 +1.52 59+1.91 9.3+1.68 16.4+5.68
TransCal (CV via only r(x)) 13.84+4.32 10.2+£0.97 5.2+1.08 8.6+1.37 16.3+£3.32

TransCal (Parallel Control Variate) 13.6+4.43 10.6+1.46 5.24+1.45 8.7+1.54 16.3+3.45
TransCal (Serial Control Variate) 13.54+3.51 11.4+0.81 4.8+0.76 8.1+1.09 16.1+£1.20

4.3 Insight Analyses

Why Bias Reduction Term Works. From the perspective of optimization, we explore the estimated
calibration error with respect to different values of temperature (7') and lambda () in Figure 3,
showing that different models achieve optimal values at different A. Therefore, it impossible to attain
optimal estimated calibration error by presetting a fixed A. However, with our unified meta-parameter
optimization framework, we can adaptively find an optimal A for each task. From the perspective of
importance weight distribution as shown in Figure 4, after applying learnable meta parameter A, the
highest values (M in Section 3.3) of importance weight decrease, leading to a smaller bias in Eq. (5).

Why Serial Control Variate Works. As the theoretical analysis in B.2 of Appendix shows, the
variance of [E7* can be further reduced since Var[E;*] < Var[E}] < Var[E,], but other variants of
control variate (CV) method such as Parallel CV may not hold this property. Meanwhile, as shown in
Table 3, TransCal (Serial CV) not only achieves better calibration performance but also attains lower
calibration variance than other variants of control variate methods.

5 Conclusion

In this paper, we delve into an open and important problem of Calibration in DA. We first reveal
that domain adaptation models learn higher accuracy at the expense of well-calibrated probabilities.
Further, we propose a novel transferable calibration (TransCal) approach, achieving more accurate
calibration with lower bias and variance in a unified hyperparameter-free optimization framework.



Broader Impact

The open problem of Calibration in DA that we delve into is a very promising research direction and
important for decision making in safety-critical applications, such as automated diagnosis system
for lung cancer. Since our method can be easily applied to recalibrate the existing DA methods and
generate more reliable predictions, it will benefit the transfer learning community. If the method
fails in some extreme circumstances, it will confuse researchers or engineers who apply our method
but it will not bring about any negative ethical or societal consequences. Meanwhile, our method
did not leverage biases in the data such as racial discrimination and gender discrimination since we
conduct experiments on standard domain adaptation datasets that are more about animals or pieces of
equipment in the office. In summary, we hold a positive view of the broader impact on this paper.
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