Error Bounds of Imitating Polices and Environments

Background

* Reinforcement learning (RL) learns from delayed feedback and may
be not sample-efficient.

 Imitation learning (IL) learns from expert demonstrations and
enjoys a good sample efficiency.
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In IL, there are two famous methods: behaviorial cloning (BC) [1] and
generative adversarial imitation learning (GAIL) [2].

« BC reduces IL to supervised learning and suffers from the issue
of compounding errors.

« GAIL achieves better empirical performance than BC, but its
theoretical understanding needs further studies.

Setup and IL algorithms:

Infinite-horizon discounted MDP M = (S, A, M*, R, ~, dy)

S and A are finite state and finite action space

M* is the transition function

R is the reward function bounded by R,

y is the discounted factor and d is initial state distribution

Policy : S — A(A), policy value Ve =KD —gv'r(se, ar)ldo, m, M*]

Effective planning horizon: —y

State distribution d,; and state-action distribution p,,
The focus of IL: policy value gap ;. — };

BC: minimize the divergence between policy distributions

MIN,;c1j ‘ESNdWE [DKL (WE(‘S)a 7T(' |S))]

GAIL: minimize the divergence between state-action distributions

minﬂ'EH DJS (107TE ; /07'(')
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Error Bounds of Imitating Polices

Behavioral Cloning:

Theorem 1: Given an expert policy mz and an imitated policy mz, with

EswdwE DxL(me(]s), mBc(+|s))] < €(which can be achieved BC), we have

that V,, — Vi, < 2¥2max /g
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» The error bound of BC has a quadratic dependency on the effective horizon,

verifying the issue of compounding errors from theoretical view.
» The proof is based on the following coherent error-propagation analysis:
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Corollary 1: Suppose that m; and ng. are deterministic and the provided
function class I1 satisfies realizability. V6 € (0,1), w.p. 21— 6§, we have

that
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The following example shows that the quadratic dependency of BC is
unavoidable in the worst case.
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A ““hard” deterministic MDP for BC. Digits on arrows are corresponding
rewards. Initial state is sy while s; and s, are two absorbing states.

Generative Adversarial Imitation Learning:
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Theorem 2: Given an expert policy m; and an imitated policy m;, with
Adp(Prgs Pras) — i rern dp(Pry, Pr) < € (Which can be achieved GAIL),
> 1 — 6, we have that
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« Compared to BC, GAIL enjoys a linear dependency on the effective horizon.
» Moreover, theorem 2 suggests seeking a trade-off on the complexity of
discriminator class D

Experiments:
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As y — 1, the effective planning horizon increases, BC is worse than GAIL, and
other adversarial-based methods.

Error Bounds of Imitating Environments

?
By treating environment transition model as
dual agent, learning the transition function can a

also be treated by imitation learning.
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Imitate Environments via BC: m(als) (s,a,5") ~ M*(-|s,a)

ming B, )~ par Dy, (M*(+|s,a), Mg(-|s,a))]

Lemma 3: Given a learned transition model My by BC with
E(s,0)~pit? « | Dk, (M*(-]s,a), Mp(-|s,a))] < em, for an arbitrary bounded
dlvergence policy m with maxs Dkr, (WHS), 7TD(°\8)) < €r , we have
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Imitate Environments via GAIL:
3 D M@ M*
ming Djg(pu™, u™ )

Lemma 4: Given a learned transition model My by GAIL with
DJS(MMG,MM*) < ¢,,, Under the same assumption of lemma 3, we have

* 2v/2Rmax 2V 2Ry ax
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Learning the environment transition with GAIL-style learner can
mitigate the model-bias when evaluating policies.

Experiments:
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