Error Bounds of Imitating Polices and Environments

Tian Xu, Nanjing University
Ziniu Li, The Chinese University of Hong Kong, Shenzhen & Polixir
Technologies

Yang Yu, Nanjing University & Polixir Technologies

Background

- Reinforcement learning (RL) learns from **delayed feedback** and may be not sample-efficient.
- Imitation learning (IL) learns from **expert demonstrations** and enjoys a good sample efficiency.

Learn from reward

Learn from expert

In IL, there are two famous methods: behaviorial cloning (BC) [1] and generative adversarial imitation learning (GAIL) [2].

- BC reduces IL to supervised learning and suffers from the **issue** of compounding errors.
- GAIL achieves better empirical performance than BC, but its theoretical understanding needs further studies.

Setup and IL algorithms:

- Infinite-horizon discounted MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, M^*, R, \gamma, d_0)$
- *S* and *A* are finite state and finite action space
- *M** is the transition function
- R is the reward function bounded by R_{max}
- γ is the discounted factor and d_0 is initial state distribution
- Policy $\pi: S \to \Delta(A)$, policy value: $V_{\pi} = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | d_0, \pi, M^*]$
- Effective planning horizon: $\frac{1}{1-\nu}$
- State distribution d_{π} and state-action distribution ρ_{π}
- The focus of IL: **policy value gap** $V_{\pi_E} V_{\pi}$

BC: minimize the divergence between policy distributions

$$\min_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi_E}} [D_{\mathrm{KL}}(\pi_E(\cdot|s), \pi(\cdot|s))]$$

GAIL: minimize the divergence between state-action distributions

$$\min_{\pi \in \Pi} D_{\mathrm{JS}}(\rho_{\pi_E}, \rho_{\pi})$$

Error Bounds of Imitating Polices

Behavioral Cloning:

Theorem 1: Given an expert policy π_E and an imitated policy π_{BC} with $\mathbb{E}_{s \sim d_{\pi_E}}[D_{\mathrm{KL}}(\pi_E(\cdot|s), \pi_{BC}(\cdot|s))] \leq \epsilon$ (which can be achieved BC), we have that $V_{\pi_E} - V_{\pi_{BC}} \leq \frac{2\sqrt{2}R_{\mathrm{max}}}{(1-\gamma)^2}\sqrt{\epsilon}$

- The error bound of BC has a **quadratic** dependency on the effective horizon, verifying the issue of compounding errors from theoretical view.
- The proof is based on the following coherent error-propagation analysis:

Corollary 1: Suppose that π_E and π_{BC} are deterministic and the provided function class Π satisfies realizability. $\forall \ \delta \in (0,1), \ \text{w.p.} \ge 1-\delta$, we have that

$$V_{\pi_E} - V_{\pi_{BC}} \leq \frac{2\sqrt{2}R_{\max}}{(1-\gamma)^2} \left(\frac{1}{m} \log(|\Pi|) + \frac{1}{m} \log(\frac{1}{\delta}) \right)$$

The following example shows that the quadratic dependency of BC is unavoidable in the worst case.

A `hard' deterministic MDP for BC. Digits on arrows are corresponding rewards. Initial state is s_0 while s_1 and s_2 are two absorbing states.

Generative Adversarial Imitation Learning:

Theorem 2: Given an expert policy π_E and an imitated policy π_{GA} with $d_{\mathcal{D}}(\hat{\rho}_{\pi_E},\hat{\rho}_{\pi_{GA}}) - \inf_{\pi \in \Pi} d_{\mathcal{D}}(\hat{\rho}_{\pi_E},\hat{\rho}_{\pi}) \leq \hat{\epsilon}$ (which can be achieved GAIL), w.p. $\geq 1 - \delta$, we have that

$$V_{\pi_{\mathrm{E}}} - V_{\pi_{\mathrm{GA}}} \leq \frac{\|r\|_{\mathcal{D}}}{1 - \gamma} \left(\underbrace{\inf_{\pi \in \Pi} d_{\mathcal{D}}(\hat{\rho}_{\pi_{E}}, \hat{\rho}_{\pi})}_{\text{Appr}(\Pi)} + \underbrace{2\hat{\mathcal{R}}_{\rho_{\pi_{E}}}^{(m)}(\mathcal{D}) + 2\hat{\mathcal{R}}_{\rho_{\pi_{GA}}}^{(m)}(\mathcal{D}) + 12\Delta\sqrt{\frac{\log(2/\delta)}{m}}}_{\text{Estm}(\mathcal{D}, m, \delta)} + \hat{\epsilon} \right),$$

- Compared to BC, GAIL enjoys a linear dependency on the effective horizon.
- Moreover, theorem 2 suggests seeking a trade-off on the complexity of discriminator class \mathcal{D}

Experiments:

As $\gamma \to 1$, the effective planning horizon increases, BC is worse than GAIL, and other adversarial-based methods.

Error Bounds of Imitating Environments

By treating environment transition model as dual agent, learning the transition function can also be treated by imitation learning.

Imitate Environments via BC:

 $\min_{\theta} \mathbb{E}_{(s,a) \sim \rho_{\pi_D}^{M^*}} \left[D_{\mathrm{KL}} \left(M^*(\cdot|s,a), M_{\theta}(\cdot|s,a) \right) \right]$

Lemma 3: Given a learned transition model M_{θ} by BC with $\mathbb{E}_{(s,a)\sim \rho_{\pi_D}^{M^*}}\left[D_{\mathrm{KL}}\left(M^*(\cdot|s,a),M_{\theta}(\cdot|s,a)\right)\right] \leq \epsilon_m$, for an arbitrary bounded divergence policy π with $\max_s D_{\mathrm{KL}}\left(\pi(\cdot|s),\pi_D(\cdot|s)\right) \leq \epsilon_\pi$, we have $|V_{\pi}^{M^*}-V_{\pi}^{M_{\theta}}| \leq \frac{\sqrt{2}R_{\mathrm{max}}\gamma}{(1-\gamma)^2}\sqrt{\epsilon_m} + \frac{2\sqrt{2}R_{\mathrm{max}}}{(1-\gamma)^2}\sqrt{\epsilon_\pi}$

Imitate Environments via GAIL:

$$\min_{\theta} D_{\mathrm{JS}}(\mu^{M_{\theta}}, \mu^{M^*})$$

Lemma 4: Given a learned transition model M_{θ} by GAIL with $D_{\mathrm{JS}}(\mu^{M_{\theta}},\mu^{M^*}) \leq \epsilon_m$, under the same assumption of lemma 3, we have $|V_{\pi}^{M_{\theta}}-V_{\pi}^{M^*}| \leq \frac{2\sqrt{2}R_{\mathrm{max}}}{1-\gamma}\sqrt{\epsilon_m} + \frac{2\sqrt{2}R_{\mathrm{max}}}{(1-\gamma)^2}\sqrt{\epsilon_\pi}$

Learning the environment transition with GAIL-style learner can mitigate the model-bias when evaluating policies.

Experiments:

References

[1] Dean Pomerleau. Efficient training of artificial neural networks for autonomous

[2] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NeurlPS'16, 2016.

