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a b s t r a c t 

In multi-dimensional classification (MDC), each training example is represented by a single instance (fea- 

ture vector) while associated with multiple class variables, each of which specifies its class membership 

w.r.t. one specific class space. Most existing MDC approaches try to model dependencies among class vari- 

ables in output space when inducing predictive functions, while the potential usefulness of manipulating 

feature space hasn’t been investigated. As a first attempt towards feature manipulation in input space 

for MDC, a simple yet effective approach named Kram is proposed which enriches the original feature 

space with augmented features based on k NN techniques. Specifically, simple counting statistics on the 

class membership of neighboring MDC examples as well as distance information between MDC examples 

and their k nearest neighbors are used to generate augmented feature vector. In this way, discriminative 

information from class space is expected to be brought into the feature space which would be helpful 

to the following MDC predictive model induction. To validate the effectiveness of the proposed feature 

augmentation techniques, comprehensive comparative studies are conducted over fifteen benchmark data 

sets. Compared to the original feature space, it is clearly shown that the k NN-augmented features gen- 

erated by the proposed Kram approach can significantly improve generalization abilities of existing MDC 

approaches. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-dimensional classification (MDC) aims to build learning

odels for real-world objects with a wealth of semantics, which

ssumes several class spaces to characterize the semantics of ob-

ects along different dimensions. Here, each example in MDC train-

ng set is represented by a single instance while associated with

 number of class variables, and all these class variables respec-

ively specify their class membership with regard to one spe-

ific class space. Specifically, there are many scenarios where we

eed to learn from MDC examples. For example, in image clas-

ification, the semantics of a natural scene image can be classi-

ed along the landscape dimension (with possible class labels

ake, grassland, mountain , etc.), along the time dimension (with

ossible class labels morning, afternoon, evening , etc.), and along

he weather dimension (with possible class labels sunny, rainy,

nowy , etc.). For another example, in music classification, the se-

antics of a piece of song can be classified along the language
∗ Corresponding author at: School of Computer Science and Engineering, South- 

ast University, Nanjing 210096, China. 
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imension (with possible class labels Chinese, English, Spanish , etc.),

long the genre dimension (with possible class labels classical,

opular, rock , etc.), and along the instrument dimension (with

ossible class labels guitar, violin, piano , etc.). More applications of

DC techniques also include text classification [1,2] , bioinformatics

3,4] , web mining [5] , etc. 

Formally speaking, let X = R 

d be the d -dimensional input (fea-

ure) space and Y = C 1 × C 2 × · · · × C q be the output space which

orresponds to the Cartesian product of q heterogeneous class

paces. Here, each class space C j (1 ≤ j ≤ q ) consists of K j pos-

ible class labels, i.e., C j = { c j 
1 
, c 

j 
2 
, . . . , c 

j 
K j 

} . Furthermore, let D =
 (x i , y i ) | 1 ≤ i ≤ m } be the MDC training set with m training exam-

les, where x i = [ x i 1 , x i 2 , . . . , x id ] 
� ∈ X is a d -dimensional feature

ector and y i = [ y i 1 , y i 2 , . . . , y iq ] 
� ∈ Y is the associated class vector,

ach of which is one possible value in j th class space, i.e., y ij ∈ C j .

hen, the learning task of multi-dimensional classification is to in-

uce a mapping function f : X �→ Y from D which can predict a

roper class vector f (x ) ∈ Y for the unseen instance x . 

To accomplish MDC learning tasks, there are two intuitive solu-

ions. The first one is to train multiple multi-class classifiers inde-

endently, one per class space. The second one is to train a single

ulti-class classifier by treating each distinct class combination in

https://doi.org/10.1016/j.patcog.2020.107423
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107423&domain=pdf
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Fig. 1. An intuitive comparison among multi-dimensional classification, multi-label 

classification, and multi-class classification. 
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training set as a new class label, i.e., powerset method. These two

intuitive strategies are simple and sometimes effective, but both

of them also have obvious disadvantages. As all class spaces share

the same feature space, there must be some relationships among

them. However, due to the limited training examples, not all pos-

sible combination of class variables will appear in training set. The

first intuitive strategy above ignores all dependencies among class

spaces which would impact the generalization abilities of the in-

duced MDC model, while the second strategy cannot make pre-

diction for class combinations not appearing in the training set

and also usually has prohibitively large number of combinations.

In other words, both ignoring and overfitting class dependencies

should be avoided. Therefore, most existing MDC approaches try

to model dependencies among class variables from different di-

mensions in the output space in different ways, such as captur-

ing dependencies between each pair of class spaces [6] , specifying

chaining order over class spaces [7,8] , assuming directed acyclic

graph (DAG) structure over class spaces [9,10] , and partitioning

class spaces into groups [11] , etc. 

Different from most existing works which directly model de-

pendencies among different class variables in the output space, in

this paper, we show the potential usefulness of manipulating input

(feature) space for inducing MDC predictive models. Accordingly,

a simple yet effective MDC approach named Kram , i.e., kNN fea-

tuRe Augmentation for Multi-dimensional classification , is proposed.

Specifically, the main contributions of this paper correspond to: 1 

• We propose a first attempt towards manipulating feature space

for MDC, where the proposed Kram approach works by en-

riching the original features of MDC examples with their k NN-

augmented features. In this way, discriminative information

from output space can be brought into the input (feature) space

to facilitate MDC predictive model induction. 
• We design two versions of k NN-augmented features, i.e., dis-

crete version and continuous version. For the discrete version,

it is based on standard k NN techniques which employs simple

counting statistics according to the class membership of k near-

est neighbors in training set. For the continous version, it is

based on weighted k NN techniques which combines the count-

ing statistics with extra bias terms by considering the distance

between current instance and its nearest neighbors. 
• We conduct comprehensive comparative studies over fifteen

benchmark data sets to validate the effectiveness of Kram in

improving the generalization performance of MDC approaches.

Accordingly, properties of the proposed k NN augmented fea-

tures have been analyzed based on the empirical results. 

The rest of the paper is structured as follows. Section 2 briefly

discusses existing works related to multi-dimensional classifica-

tion. Section 3 presents technical details of the proposed Kram

approach. Section 4 reports comprehensive experimental results of

comparative studies over a wide range of benchmark data sets. Fi-

nally, Section 5 concludes this paper. 

2. Related work 

The most related learning frameworks to multi-dimensional

classification include the traditional multi-class classification

(MCC) and the popular multi-label classification (MLC) [14–16] . As

shown in Fig. 1 , the MDC problem corresponds to several cou-
1 This paper is an extension of our preliminary work [12] . The main differences 

include: (1) The introduction and conclusion parts have been updated with fur- 

ther discussions on the proposed approaches; (2) Another strategy for generating 

k NN-augmented features (i.e. the continuous version) has been developed based on 

weighted k NN techniques; (3) More comprehensive comparative studies have been 

conducted in terms of newly added benchmark data sets, enriched parameter sen- 

sitivity analyses, and one recently proposed compared approach [13] . 

f  

c  

i  

M  

fi  

s  

t  

t

led MCC problems while the MLC problem corresponds to sev-

ral coupled binary classification problems, i.e., both MDC and

LC can be regarded as one possible instantiation of multi-output

earning [17] where each object is associated with multiple out-

ut variables. However, it is worth emphasizing that we should

ot simply consider that the difference between these two learn-

ng frameworks is whether the type of output variables is multi-

lass or binary class. Specifically, the key difference between MDC

nd MLC is whether semantic spaces are heterogenous or homo-

eneous , where each class variable in MDC corresponds to one

pecific class space, while each label in MLC specifies whether

ne concept is relevant or not in the only class space. Therefore,

t is unreasonable and will get suboptimal solutions to directly

lign class labels from different dimensions when trying to de-

ign MDC approaches. Anyway, the MLC problem can be regarded

s a degenerated case of MDC by restricting all class variables to

e binary-valued ones [11,18,19] . Additionally, recently proposed

earning frameworks, such as duel set multi-label learning [20] and

ultiple ordinal output classification [21] , can also be regarded as

pecial cases of MDC when the number of dimensions equals two

r class labels in each class space have ordinal relationship. 

Intuitively, MDC can be solved by decomposing the original

roblem into a number of MCC problems, i.e., training a multi-class

lassifier independently according to each class variable. However,

his natural strategy neglects the dependencies among class vari-

bles which may exist in real-world MDC tasks, and thus leads

o suboptimal MDC model. Therefore, when trying to induce bet-

er MDC models, one of the core ways is to model dependencies

mong class spaces. 

Dependencies between each pair of class spaces could be mod-

led by a set of base classifiers, and the final multi-dimensional in-

erence is accomplished by combining predictive outputs from base

lassifiers via Markov random field [6] . Similar to classifier chains

n MLC [22] , the MDC problem can be converted into a chain of

CC problems, where the outputs of preceding multi-class classi-

ers in the chain are treated as extra input features when building

ubsequent ones. Obviously, its effectiveness is largely affected by

he chaining order over class spaces which can be specified in de-

erministic manner [7] or random manner [8] . 
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In addition, lots of existing works explicitly model depen-

encies among class variables with different families of directed

cyclic graph (DAG) structures [9,10] , which form a family of

robabilistic graphical models for MDC called multi-dimensional

ayesian network classifiers. Recent works focus on more effi-

ient structure learning strategies which is still challenging [23–

5] . Class powerset (CP) approach models class dependencies by

onverting the original MDC problem into only one MCC problem,

here each distinct class combination existing in training set is re-

arded as a new class label in the new MCC problem. Considering

he possible huge number of class labels (with at most 
∏ q 

j=1 
K j 

lass labels after powerset transformation), it will be helpful to

roup MDC class spaces into super-classes so as to facilitate the

ubsequent model induction for MDC [11] . 

. The KRAM approach 

It has been widely acknowledged that modeling class depen-

encies in output space plays a crucial role when attempting to

nduce better MDC models, the importance of manipulating input

feature) space, however, hasn’t been well investigated for MDC

tudies. In this section, we will present the technical details of our

roposed Kram approach, which aims at improving the generaliza-

ion performance of existing MDC approaches via augmenting MDC

xamples’ original features with the help of k NN techniques. 

Following the same notations as used in previous sections,

et D = { (x i , y i ) | 1 ≤ i ≤ m } be the MDC training set where y i =
 y i 1 , y i 2 , . . . , y iq ] 

� ∈ Y is the corresponding class vector associated

ith x i . For each instance x , let N (x ) = { i r | 1 ≤ r ≤ k } be the set

f indices for x ’s k nearest neighbors which are identified in D.

ere, Euclidean distance is utilized to measure the similarities be-

ween two instances, and for convenience, we assume that dis-

ance between x and x i r is in ascending order, which means that

he smaller the value of r , the closer the distance between x and

 i r . Then, an indicating vector v x 
ja 

= [ v x 
ja 
(1) , v x 

ja 
(2) , . . . , v x 

ja 
(k )] � ∈

 0 , 1 } k is defined as follows: 

 

x 
ja (r) = � y i r j = c j a � (1 ≤ r ≤ k, i r ∈ N (x )) (1)

ere, 1 ≤ a ≤ K j , 1 ≤ j ≤ q . y i r = [ y i r 1 , y i r 2 , . . . , y i r q ] 
� is the corre-

ponding class vector associated with x i r . The predicate � π� returns

 if π holds and 0 otherwise. Therefore, v x 
ja 
(r) records whether the

 ’s r th nearest neighbor x i r has class label c 
j 
a in the j th class space

r not. 

Based on v x 
ja 

, the following discrete version of statistics δx 
j 
=

 δx 
j1 

, δx 
j2 

, . . . , δx 
jK j 

] � can be defined w.r.t. the j th class space: 

x 
ja = 〈 1 k , v x ja 〉 (1 ≤ a ≤ K j ) (2)

ere, 1 k is a column vector of all ones with length k , and 〈 · ,

〉 returns inner product of two vectors. Therefore, δx 
ja 

records the

umber of examples in x ’s k nearest neighbors whose class la-

el equals c 
j 
a in the j th class space. According to the definition in

q. (2) , it is easy to know that 
∑ K j 

a =1 
δx 

ja 
= k holds. 

After traversing each class space one by one, a total of q dif-

erent counting statistics δx 
j 

(1 ≤ j ≤ q ) , each of which contains K j 

lements, can be generated. By concatenating all these q counting

tatistics, we can define the following augmented feature vector

x for x : 

x = 

[
δx 

1 , δ
x 
2 , . . . , δ

x 
q 

]
(3) 

ased on the above feature vector, the original MDC training set D
an be transformed into: 

˜ 

 = { ( ̃  x i , y i ) | 1 ≤ i ≤ m } (4) 

ere, ˜ x i = 

[
x i , �x i 

]
∈ 

˜ X which means ˜ x i is comprised of a concate-

ation of x i and �x . ˜ X represents a synthetic feature space which

i 
orresponds to the Cartesian product between the original feature

pace (i.e., X ) and a ( 
∑ q 

j=1 
K j ) -dimensional augmented one. There-

fter, an MDC predictive model f : ˜ X �→ Y can be trained over the

ew constructed data set ˜ D by applying any off-the-shelf MDC

raining algorithm L , i.e., f ← � L ( ̃  D ) . Given an unseen instance x ∗,

ts predicted class vector y ∗ can be assigned by feeding its corre-

ponding augmented instance ˜ x ∗ into f . 

Obviously, discrete version of statistics in Eq. (2) utilizes stan-

ard k NN techniques. Standard k NN approach simply assigns a test

nstance the class of the majority of its k nearest neighbors, i.e., the

lass of test instance is voted uniformly by its k nearest neighbors.

s a popular variation, weighted k NN predicts the class of a test

nstance via non-uniformly voting by its k nearest neighbors. The

loser distance between test instance and neighbor is, the greater

eight the neighbor has. Following the idea of weighted k NN, an-

ther continuous version of augmented feature vector is designed

ased on the discrete one defined in Eqs. (1) ~ (3) . 

According to the motivation of weighted k NN, in this paper,

he weight vector for k nearest neighbors is simply set as w =
1 , 1 / 

√ 

2 , · · · , 1 / 
√ 

k ] � . Then, a bias ζ x 
ja 

for δx 
ja 

in Eq. (2) is defined

ccording to v x 
ja 

in Eq. (1) as follows: 

x 
ja = 

〈 w, v x 
ja 
〉 − min ( v x 

ja 
) 

max ( v x 
ja 
) − min ( v x 

ja 
) 
(ζmax − ζmin ) + ζmin (5) 

ere, max ( v x 
ja 
) = 

∑ 

〈 1 k , v x ja 〉 
r=1 

w (r) , min ( v x 
ja 
) = 

∑ k 
r= k −〈 1 k , v x ja 〉 +1 w (r)

epresent the possible maximum and minimum of 〈 w, v x 
ja 
〉 re-

pectively, where w ( r ) denotes the r th element of weight vector

 . ζmax and ζmin are two hyper-parameters, and ζmax − ζmin < 1

olds. In this paper, we set ζmax as 0.5 and ζmin as 0. We can

asily know that ζmin ≤ ζ x 
ja 

≤ ζmax . 

Then, compared with the discrete version of statistics defined

n Eq. (2) , we can define another continuous version of statistics
x 
j 
= [ δx 

j1 
, δx 

j2 
, . . . , δx 

jK j 
] � as follows: 

x 
ja = 〈 1 k , v x ja 〉 + ζ x 

ja (1 ≤ a ≤ K j ) (6)

ased on Eq. (6) , we can have the continuous version of �x in

q. (3) and then transformed data set ˜ D in Eq. (4) . 

Algorithm 1 summarizes the complete procedure of the pro-

osed Kram approach. Firstly, the original feature vector of each

raining example is enriched by two different k NN-augmented fea-

ures: for discrete type, simple counting statistics derived from

eighboring MDC examples is used, and for continuous type, ex-

ra bias is added into the simple counting statistics, and then a

ransformed MDC training set is gradually constructed (steps 1–

7). After that, a MDC model is trained over the transformed MDC

raining set ˜ D (step 18). Finally, for unseen instance, its class vec-

or can be predicted based on the original features combined with

ugmented features (steps 19–21). In the remaining parts of this

aper, we denote the discrete version as Kram d and the continu-

us version as Kram c respectively. 

As shown in Algorithm 1 , the k NN-augmented features gener-

tion procedure (steps 1–17) and the MDC predictive model in-

uction procedure (step 18) are detached. In other words, the pro-

osed Kram approach is actually a meta-strategy for MDC model

nduction, where any existing MDC training algorithm (i.e., L in

tep 18) can be employed to instantiate Kram . Besides, both the

wo versions of k NN-augmented features designed in this paper

hould only be considered as a first attempt towards feature ma-

ipulation techniques for MDC and are not meant to be the best

ossible implementation among other feasible choices in future. 

Generally speaking, Kram embodies two major merits: 1) Sim-

licity : As shown in Algorithm 1 , the Kram is very succinct and

an be implemented easily. Specifically, the most time-consuming

peration of Kram is the k nearest neighbors identification process
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Algorithm 1 The proposed Kram approach. 

Input: D: MDC training set { (x i , y i ) | 1 ≤ i ≤ m } 
k : number of nearest neighbors considered 

L : MDC training algorithm 

x ∗: unseen instance 

Output: y ∗: predicted class vector for x ∗

1: ˜ D = ∅ ; 

2: for i = 1 to m do 

3: Identify k nearest neighbors of x i in D and store their indices 

in N (x i ) ; 

4: for j = 1 to q do 

5: for a = 1 to K j do 

6: switch type do 

7: case discrete : 
8: Calculate δ

x i 
ja 

according to Eq. (2); 

9: case continuous : 
10: Calculate δ

x i 
ja 

according to Eq. (6); 

11: end switch 

12: end for 

13: Set δ
x i 
j 

= [ δ
x i 
j1 

, δ
x i 
j2 

, . . . , δ
x i 
jK j 

] � ; 

14: end for 

15: Set �x i = 

[
δ

x i 
1 

, δ
x i 
2 

, . . . , δ
x i 
q 

]
; 

16: ˜ D = 

˜ D ∪ ( ̃  x i , y i ) , where ˜ x i = 

[
x i , �x i 

]
; 

17: end for 

18: Train MDC model f over ˜ D , i.e., f ← � L ( ̃  D ) ; 

19: Identify k nearest neighbors of x ∗ in D and store their indices 

in N (x ∗) ; 
20: Augment x ∗ with �x ∗ being calculated the same as training set, 

i.e., ˜ x ∗ = [ x ∗, �x ∗ ] ; 

21: Return y ∗ = f ( ̃  x ∗) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The characteristics of the employed benchmark data sets. 

Data Set #Exam. #Dim. #Labels/Dim. #Features a 

Edm 154 2 3 16 n 

Flare1 323 3 3,4,2 10 x 

Song 785 3 3 98 n 

WQplants 1060 7 4 16 n 

WQanimals 1060 7 4 16 n 

WaterQuality 1060 14 4 16 n 

Voice 3136 2 4,2 19 n 

Thyroid 9172 7 5,5,3,2,4,4,3 7 n , 20 b , 2 x 

Flickr 12198 5 3,4,3,4,4 1536 n 

Music 591 6 2 71 n 

Enron 1677 10 2 1001 b 

Image 2000 5 2 294 n 

Scene 2407 6 2 294 n 

Yeast 2417 14 2 103 n 

Mediamill 41583 11 2 120 n 

a n, x and b denote numeric, nominal and binary features respec- 

tively. 
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3 http://www.primaryobjects.com/2016/06/22/identifying- the- gender- of- a- voice- 
which has been well studied in k NN researches. The number of

augmented features’ dimension equals 
∑ q 

j=1 
K j which is not large

usually, so there will not be too much extra computation. 2) Effec-

tiveness : experimental studies reported in Section 4 clearly validate

the fact that Kram can improve the generalization abilities of any

off-the-shelf MDC approaches. 

4. Experiments 

4.1. Experimental setup 

4.1.1. Benchmark data sets 

To validate the effectiveness of our proposed Kram approach

in improving the predictive abilities of existing MDC approaches,

a total of 15 data sets have been used for performance compari-

son. Table 1 summarizes the characteristics of all benchmark data

sets, including the number of examples (#Exam.), the number of

class spaces (#Dim.), the number of class labels per class space (#La-

bels/Dim.), 2 and the number of features (#Features). 

The first nine benchmark data sets in Table 1 are collected from

different MDC tasks in real world: 

• Edm aims at predicting control operations during electrical dis-

charge machining process [26] . This data set includes totally 2

class spaces which correspond to two parameters of controlling

gap and flow respectively. 
• Flare1 aims at predicting the number of times certain types

of solar flare occurred within 24 h period [27] . This data set
2 If all class spaces have the same number of class labels, then only this num- 

ber is recorded; If different class spaces have different number of class labels, the 

number of class labels for each class space is recorded in turn. 

u

w

includes totally 3 class spaces which correspond to common,

moderate, and severe solar flares respectively. 
• Song aims at predicting different characteristics of songs. This

data set includes totally 3 class spaces which correspond to the

scenarios, genre and emotion of one song respectively. Besides,

all songs are collected and annotated by ourselves. 
• Water Quality aims at predicting the amount of different

species in Slovenian rivers [28] . This data set includes totally

14 class spaces which correspond to 7 plants and 7 animals

species respectively. By focusing on 7 plants species or the

7 animals species, then we have data sets WQplants and

WQanimals [29] . 
• Voice aims at predicting some characteristics of a piece of hu-

man voice. 3 This data set includes totally 2 class spaces which

correspond to mean frequency range and speaker’s gender re-

spectively [20] . 
• Thyroid aims at estimating types of thyroid problems based

on personal information of patients [27] . This data set includes

totally 7 class spaces which correspond to seven different diag-

nosis respectively. 
• Flickr aims at predicting objects in MIRFLICKR250 0 0

[30] which are re-annotated by ourselves according to MDC

framework and just part of pictures are reserved. This data set

includes totally 5 class spaces which correspond to sky, people,

night, plant, indoor respectively. 

The last six data sets in Table 1 are selected from multi-label

lassification tasks including audio classification: Music [11] , text

lassification: Enron , 4 image classification: Image [31] , Scene
32] , gene functional analysis: Yeast [33] , and video classification:

ediamill [34] . For these data sets, each class variable is binary-

alued which is widely known as label . 5 

To the best of our knowledge, this paper employs more real-

orld MDC data sets than most state-of-the-art works on multi-

imensional classification [9,11,13] . Moreover, as shown in Table 1 ,

he characteristics of all benchmark data sets are very diversified,

.g., the number of examples ranges from 154 to 41583, the num-

er of features ranges from 10 to 1536, and the ratio of sum of all

he numbers of class labels in each class space to the number of
sing- machine- learning 
4 http://mulan.sourceforge.net/datasets-mlc.html 
5 For Enron, we just use 10 out of all 53 labels with most positive instances. 

For Mediamill, we just use 11 out of all 120 labels similar to Enron. And instances 

ithout relevant labels are removed. 

http://www.primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning
http://mulan.sourceforge.net/datasets-mlc.html
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Table 2 

Predictive performance of BR and its two version Kram counterparts (mean ± std. deviation) in terms of all three evaluation metrics. In addition, •/ ◦ indicates whether 

Kram d -BR or Kram c -BR is statistically superior/inferior to BR on each data set, and results in bold face of Kram d -BR or Kram c -BR indicate that current Kram version is 

statistically superior to the other version on each data set (pairwise t -test at 0.05 significance level). 

(a) Multi-class classifier: SVM 

Hamming Score Exact Match Sub-Exact Match 

Data Set BR Kram d -BR Kram c -BR BR Kram d -BR Kram c -BR BR Kram d -BR Kram c -BR 

Edm 0.689 ± .070 0.734 ± .083 • .760 ± .095 • 0.442 ± .125 0.521 ± .141 • .560 ± .150 • 0.935 ± .061 0.947 ± .076 0.960 ± .072 

Flare1 0.922 ± .034 0.922 ± .033 0.921 ± .034 0.821 ± .073 0.818 ± .072 0.814 ± .077 0.947 ± .039 0.951 ± .036 0.951 ± .036 

Song 0.793 ± .023 0.787 ± .023 ◦ 0.786 ± .024 0.479 ± .059 0.476 ± .050 0.476 ± .049 0.903 ± .033 0.888 ± .046 0.885 ± .054 

WQpla. 0.657 ± .016 0.664 ± .013 0.667 ± .014 • 0.097 ± .033 0.099 ± .034 .104 ± .032 0.287 ± .055 0.300 ± .042 0.299 ± .045 

WQani. 0.630 ± .014 0.635 ± .012 • 0.637 ± .012 • 0.058 ± .022 0.063 ± .014 0.065 ± .016 0.229 ± .034 0.232 ± .030 0.233 ± .031 

WQ 0.644 ± .013 0.646 ± .010 0.648 ± .011 0.007 ± .008 0.008 ± .007 0.008 ± .007 0.051 ± .024 0.053 ± .017 0.058 ± .020 

Voice 0.964 ± .007 0.957 ± .008 ◦ 0.957 ± .007 ◦ 0.929 ± .014 0.915 ± .016 ◦ 0.915 ± .014 ◦ 0.999 ± .002 0.999 ± .002 0.998 ± .002 

Thyroid 0.965 ± .002 0.969 ± .003 • 0.969 ± .003 • 0.773 ± .015 0.800 ± .018 • 0.801 ± .016 • 0.982 ± .004 0.983 ± .004 0.983 ± .004 

Flickr 0.791 ± .005 0.790 ± .006 0.790 ± .006 0.313 ± .014 0.310 ± .018 0.310 ± .020 0.720 ± .014 0.719 ± .014 0.718 ± .015 

Music 0.808 ± .023 0.818 ± .022 • 0.818 ± .023 0.272 ± .075 0.331 ± .082 • 0.321 ± .079 • 0.674 ± .067 0.682 ± .054 0.686 ± .061 

Enron 0.808 ± .010 0.807 ± .010 0.805 ± .010 0.179 ± .036 0.182 ± .031 0.181 ± .030 0.416 ± .034 0.397 ± .041 0.398 ± .032 ◦
Image 0.828 ± .010 0.841 ± .011 • 0.842 ± .012 • 0.394 ± .028 0.459 ± .033 • 0.464 ± .039 • 0.782 ± .031 0.783 ± .027 0.785 ± .029 

Scene 0.895 ± .009 0.918 ± .008 • 0.918 ± .008 • 0.530 ± .035 0.651 ± .038 • 0.649 ± .035 • 0.855 ± .018 0.867 ± .020 0.867 ± .018 

Yeast 0.801 ± .006 0.811 ± .007 • 0.812 ± .006 • 0.151 ± .017 0.199 ± .015 • 0.199 ± .015 • 0.269 ± .029 0.307 ± .020 • 0.310 ± .011 •
Mediamill 0.830 ± .001 0.850 ± .001 • .851 ± .001 • 0.148 ± .005 0.239 ± .009 • .247 ± .007 • 0.411 ± .008 0.500 ± .006 • .507 ± .006 •

(b) Multi-class classifier: NB 

Hamming Score Exact Match Sub-Exact Match 

Data Set BR Kram d -BR Kram c -BR BR Kram d -BR Kram c -BR BR Kram d -BR Kram c -BR 

Edm 0.677 ± .096 0.680 ± .088 0.693 ± .073 0.432 ± .166 0.445 ± .153 0.444 ± .151 0.922 ± .074 0.916 ± .060 0.941 ± .038 

Flare1 0.886 ± .061 .872 ± .051 0.838 ± .059 ◦ 0.774 ± .099 .756 ± .095 0.722 ± .093 ◦ 0.910 ± .066 .895 ± .055 0.858 ± .068 ◦
Song 0.626 ± .038 0.629 ± .034 0.623 ± .033 0.238 ± .054 0.224 ± .050 0.213 ± .050 ◦ 0.678 ± .071 0.695 ± .068 0.689 ± .065 

WQpla. 0.397 ± .028 .506 ± .033 • 0.475 ± .037 • 0.001 ± .003 .036 ± .026 • 0.016 ± .018 • 0.018 ± .012 .113 ± .040 • 0.082 ± .035 •
WQani. 0.381 ± .021 .419 ± .019 • 0.400 ± .022 • 0.004 ± .009 .008 ± .010 0.003 ± .006 0.041 ± .016 0.049 ± .019 0.040 ± .020 

WQ 0.389 ± .017 .488 ± .022 • 0.443 ± .016 • 0.000 ± .000 0.000 ± .000 0.000 ± .000 0.000 ± .000 0.003 ± .005 0.001 ± .003 

Voice 0.882 ± .008 0.921 ± .008 • .939 ± .010 • 0.782 ± .015 0.847 ± .016 • .880 ± .020 • 0.982 ± .006 0.996 ± .003 • .998 ± .003 •
Thyroid 0.926 ± .005 .925 ± .003 0.704 ± .030 ◦ 0.580 ± .027 .575 ± .015 0.047 ± .013 ◦ 0.916 ± .011 .912 ± .009 0.307 ± .053 ◦
Flickr 0.648 ± .007 0.654 ± .007 • .659 ± .007 • 0.139 ± .011 0.143 ± .011 • .147 ± .011 • 0.436 ± .013 0.444 ± .012 • .453 ± .014 •
Music 0.743 ± .018 0.761 ± .023 • 0.760 ± .027 • 0.206 ± .043 0.218 ± .058 0.208 ± .060 0.552 ± .057 0.591 ± .050 • 0.601 ± .057 •
Enron 0.551 ± .012 0.576 ± .015 • 0.574 ± .014 • 0.025 ± .017 0.027 ± .017 0.029 ± .017 0.109 ± .022 0.119 ± .026 0.114 ± .029 

Image 0.573 ± .016 0.586 ± .018 • .595 ± .016 • 0.069 ± .016 0.074 ± .021 • .080 ± .019 • 0.255 ± .028 0.279 ± .034 • .297 ± .035 •
Scene 0.763 ± .009 0.777 ± .009 • .791 ± .011 • 0.177 ± .023 0.198 ± .022 • .238 ± .034 • 0.561 ± .021 0.591 ± .026 • .605 ± .024 •
Yeast 0.699 ± .010 0.695 ± .014 .704 ± .013 • 0.095 ± .018 0.115 ± .018 • 0.115 ± .022 • 0.149 ± .020 0.182 ± .027 • 0.175 ± .014 •
Mediamill 0.620 ± .001 0.659 ± .002 • .673 ± .001 • 0.012 ± .001 0.048 ± .003 • .067 ± .005 • 0.086 ± .005 0.135 ± .005 • .161 ± .007 •
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eatures ranges from 0.01 to 3.50 (i.e., the ratio of the number of

ugmented features to the number of original features). Therefore,

he reported experimental results in this paper are quite compre-

ensive which can validate the effectiveness of Kram more thor-

ughly. 

.1.2. Evaluation metrics 

Given the test data set S = { (x i , y i ) | 1 ≤ i ≤ p} with p MDC ex-

mples, where y i = [ y i 1 , y i 2 , . . . , y iq ] 
� ∈ Y is the ground-truth class

ector of x i . Moreover, let f : X �→ Y denote the induced MDC

redictive model which is to be evaluated, and let ˆ y i = f (x i ) =
 ̂  y i 1 , ̂  y i 2 , . . . , ̂  y iq ] 

� be the predicted class vector for x i by function f .

hen, r (i ) = 

∑ q 
j=1 

� y i j = ˆ y i j � denotes the number of class labels cor-

ectly classified by f . Based on these notations, the definitions of

he three metrics employed in this paper are given as follows: 

• Hamming Score : 

HScore S ( f ) = 

1 

p 

p ∑ 

i =1 

1 

q 
· r (i ) 

The value of this metric can be regarded as the probability of

that any class label of one test example is correctly predicted

by the induced MDC model. 
• Exact Match : 

EMatch S ( f ) = 

1 

p 

p ∑ 

i =1 

� r (i ) = q � 
The value of this metric can be regarded as the probability of

that all q class labels of one test example are correctly pre-

dicted simultaneously by the induced MDC model. Generally,

the value of exact match might be rather low when the num-

ber of class spaces is large. 
• Sub-Exact Match : 

SEMatch S ( f ) = 

1 

p 

p ∑ 

i =1 

� r (i ) ≥ q − 1 � 

The value of this metric can be regarded as the probability of

that at least q − 1 class labels of one test example are correctly

predicted simultaneously by the induced MDC model. Obvi-

ously, it is a relaxed version of exact match . 

.1.3. Compared approaches 

As stated before, the proposed Kram approach is a meta-

trategy to induce MDC predictive models. This means that any off-

he-shelf MDC approaches can be employed to instantiate Kram to

urther improve their generalization performance. Here, a total of

our well-established MDC approaches [11] serve this purpose: 

• Binary Relevance (BR): This approach solves the MDC problem

by training a number of multi-class classifiers independently,

one per class space. In other words, BR completely ignores class

dependencies. 
• Ensembles of Classifier Chains (ECC): This approach solves the

MDC problem by training a chain of multi-class classifiers,

one per class space. Specifically, the subsequent multi-class
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Table 3 

Predictive performance of ECC and its two version Kram counterparts (mean ± std. deviation) in terms of all three evaluation metrics. In addition, •/ ◦ indicates whether 

Kram d -ECC or Kram c -ECC is statistically superior/inferior to ECC on each data set, and results in bold face of Kram d -ECC or Kram c -ECC indicate that current Kram version 

is statistically superior to the other version on each data set (pairwise t -test at 0.05 significance level). 

(a) Multi-class classifier: SVM 

Hamming Score Exact Match Sub-Exact Match 

Data Set ECC Kram d -ECC Kram c -ECC ECC Kram d -ECC Kram c -ECC ECC Kram d -ECC Kram c -ECC 

Edm 0.695 ± .065 0.769 ± .087 • 0.756 ± .090 • 0.454 ± .123 0.598 ± .169 • 0.585 ± .147 • 0.935 ± .069 0.940 ± .058 0.928 ± .066 

Flare1 0.922 ± .034 0.922 ± .034 0.922 ± .035 0.817 ± .078 0.818 ± .073 0.818 ± .078 0.951 ± .036 0.951 ± .036 0.951 ± .036 

Song 0.790 ± .024 0.788 ± .026 0.788 ± .027 0.481 ± .057 0.476 ± .051 0.479 ± .048 0.891 ± .036 0.891 ± .047 0.888 ± .051 

WQpla. 0.654 ± .016 0.663 ± .014 • .666 ± .014 • 0.093 ± .037 0.105 ± .037 0.105 ± .038 0.283 ± .049 0.295 ± .044 0.297 ± .043 

WQani. 0.630 ± .014 0.637 ± .014 • 0.637 ± .012 • 0.061 ± .023 0.064 ± .010 0.067 ± .015 0.229 ± .032 0.241 ± .040 0.238 ± .037 

WQ 0.643 ± .013 0.644 ± .013 0.646 ± .013 0.006 ± .008 0.009 ± .006 0.009 ± .004 0.050 ± .023 0.048 ± .018 0.050 ± .023 

Voice 0.961 ± .008 0.953 ± .009 ◦ 0.953 ± .009 ◦ 0.923 ± .016 0.908 ± .017 ◦ 0.908 ± .019 0.998 ± .002 0.998 ± .003 0.998 ± .003 

Thyroid 0.965 ± .002 0.969 ± .003 • .969 ± .003 • 0.772 ± .014 0.800 ± .016 • 0.802 ± .017 • 0.981 ± .004 0.982 ± .004 0.983 ± .004 

Flickr 0.797 ± .004 0.797 ± .005 0.797 ± .005 0.328 ± .013 0.325 ± .014 0.325 ± .017 0.730 ± .015 0.732 ± .014 0.732 ± .015 

Music 0.814 ± .025 0.810 ± .022 0.813 ± .021 0.346 ± .079 0.343 ± .078 0.352 ± .086 0.676 ± .064 0.677 ± .051 0.676 ± .053 

Enron 0.824 ± .010 .822 ± .011 0.819 ± .012 ◦ 0.215 ± .030 0.203 ± .037 0.199 ± .027 ◦ 0.461 ± .037 0.455 ± .037 0.443 ± .040 

Image 0.831 ± .012 0.844 ± .012 • 0.846 ± .012 • 0.479 ± .033 0.522 ± .036 • 0.525 ± .036 • 0.730 ± .033 0.745 ± .031 0.749 ± .036 

Scene 0.905 ± .011 0.921 ± .008 • 0.921 ± .007 • 0.649 ± .035 0.708 ± .026 • 0.710 ± .025 • 0.796 ± .030 0.825 ± .020 • 0.825 ± .018 •
Yeast 0.797 ± .007 0.808 ± .007 • 0.808 ± .008 • 0.207 ± .014 0.252 ± .014 • 0.253 ± .018 • 0.288 ± .023 0.316 ± .022 • 0.319 ± .025 •
Mediamill 0.830 ± .002 0.849 ± .001 • .851 ± .001 • 0.188 ± .008 0.267 ± .006 • .276 ± .006 • 0.434 ± .006 0.513 ± .005 • .521 ± .005 •

(b) Multi-class classifier: NB 

Hamming Score Exact Match Sub-Exact Match 

Data Set ECC Kram d -ECC Kram c -ECC ECC Kram d -ECC Kram c -ECC ECC Kram d -ECC Kram c -ECC 

Edm 0.690 ± .084 0.674 ± .097 0.689 ± .070 0.451 ± .145 0.438 ± .162 0.444 ± .148 0.929 ± .064 0.909 ± .062 0.935 ± .044 

Flare1 0.883 ± .059 .875 ± .053 0.838 ± .062 ◦ 0.774 ± .087 .771 ± .088 0.737 ± .095 0.904 ± .073 .889 ± .060 0.852 ± .064 ◦
Song 0.621 ± .036 .623 ± .034 0.613 ± .037 0.228 ± .036 .219 ± .043 0.191 ± .047 ◦ 0.671 ± .068 0.683 ± .066 0.680 ± .069 

WQpla. 0.353 ± .033 .494 ± .038 • 0.444 ± .038 • 0.001 ± .003 .035 ± .018 • 0.024 ± .019 • 0.013 ± .010 .123 ± .037 • 0.073 ± .030 •
WQani. 0.377 ± .024 .416 ± .020 • 0.395 ± .021 • 0.007 ± .008 0.006 ± .007 0.004 ± .007 0.039 ± .016 0.049 ± .015 • 0.042 ± .018 

WQ 0.360 ± .020 .487 ± .021 • 0.431 ± .018 • 0.000 ± .000 0.000 ± .000 0.000 ± .000 0.000 ± .000 0.001 ± .003 0.000 ± .000 

Voice 0.880 ± .009 0.921 ± .008 • .939 ± .010 • 0.780 ± .015 0.847 ± .015 • .879 ± .020 • 0.980 ± .007 0.996 ± .003 • .998 ± .003 •
Thyroid 0.926 ± .007 .929 ± .004 0.758 ± .016 ◦ 0.593 ± .026 .592 ± .022 0.058 ± .013 ◦ 0.906 ± .020 .922 ± .008 • 0.392 ± .063 ◦
Flickr 0.649 ± .007 0.655 ± .007 • .660 ± .007 • 0.140 ± .012 0.143 ± .011 • .147 ± .011 • 0.438 ± .014 0.447 ± .014 • .455 ± .015 •
Music 0.745 ± .020 0.761 ± .023 • 0.763 ± .026 • 0.230 ± .058 0.221 ± .065 0.221 ± .064 0.557 ± .051 0.603 ± .048 • 0.608 ± .049 •
Enron 0.551 ± .011 0.573 ± .015 • 0.573 ± .013 • 0.027 ± .016 0.029 ± .016 0.029 ± .017 0.105 ± .026 0.115 ± .029 0.115 ± .027 •
Image 0.576 ± .014 0.587 ± .014 • .596 ± .017 • 0.069 ± .019 0.074 ± .020 • .078 ± .021 • 0.261 ± .028 0.283 ± .033 • .296 ± .036 •
Scene 0.767 ± .010 0.780 ± .010 • .793 ± .010 • 0.181 ± .024 0.200 ± .021 • .238 ± .030 • 0.569 ± .027 0.595 ± .031 • .612 ± .023 •
Yeast 0.696 ± .009 0.698 ± .013 .704 ± .013 • 0.102 ± .016 0.125 ± .024 • 0.124 ± .022 • 0.163 ± .020 0.193 ± .027 • 0.188 ± .016 •
Mediamill 0.628 ± .001 0.667 ± .002 • .679 ± .002 • 0.013 ± .001 0.050 ± .003 • .069 ± .005 • 0.095 ± .004 0.142 ± .005 • .167 ± .007 •
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classifiers in the chain are built by augmenting the feature

space with the predictions of preceding multi-class classifiers.

In other words, ECC models class dependencies via assuming

chaining structures over class spaces. Besides, different base

models in an ensemble of classifier chains consider different

random chaining orders. 
• Ensembles of Class Powerset (ECP): This approach solves the

MDC problem by training a single multi-class classifier. Specifi-

cally, each distinct class combination in training set is treated

as a new class label. In other words, ECP models class de-

pendencies via powerset transformation. Besides, different base

models in an ensemble of class powerset classifiers are built

over different sub-training sets which are randomly sampled

from the original training set. 
• Ensembles of Super Class classifiers (ESC): This approach solves

the MDC problem by partitioning class spaces into super-

classes, where the partition process is fulfilled according to

conditional dependencies among class spaces. In other words,

ESC models class dependencies via the new generated super-

classes. Specifically, different base models in an ensemble of

super-class classifiers are built over different sub-training sets

which are randomly sampled from the original training set. 

For each ensemble approach (i.e., ECC, ECP and ESC), its base

MDC model is induced over a sub-training set which contains 67%

examples sampled from the original one randomly, and a total of

10 base MDC models are employed in this paper [11] . Moreover,
ajority voting strategy is used to combine the predictions of all

ase MDC models for each example. 

As implementing each MDC approach also necessiate a base

ulti-class classifier, both support vector machine (SVM) and

aïve Bayes (NB) are investigated in this paper. Specifically, SVM is

mplemented by LIBSVM [35] where the type of kernel function is

inear and the regularization parameter C is set to 1. NB takes the

ommon implementation where Gaussian pdf is used for contin-

ous features and frequency counting with Laplacian correction is

sed for discrete features. Besides, the only parameter k for Kram ,

hich denotes the number of nearest neighbors considered, is set

o 8 when conducting comparative experiments. 

Let Kram - A be the instantiation of Kram with A , where A de-

otes one of the compared approaches, i.e., A ∈ {BR, ECC, ECP, ESC}.

o show whether Kram could improve the generalization abilities

f MDC approaches, our aim is to compare predictive performance

f Kram - A against A . On each configuration (each approach in

erms of each metric on each data set), ten-fold cross-validation is

onducted where both the mean metric value and corresponding

tandard deviation are recorded for performance comparison. 

.2. Experimental results 

The detailed experimental results are reported in Tables 2–5 for

ll MDC approaches and their Kram counterparts in terms of ham-

ing score, exact match , and sub-exact match respectively. Based on

he ten-fold cross-validation results of each data set, pairwise t -test
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Table 4 

Predictive performance of ECP and its two version Kram counterparts (mean ± std. deviation) in terms of all three evaluation metrics. In addition, •/ ◦ indicates whether 

Kram d -ECP or Kram c -ECP is statistically superior/inferior to ECP on each data set, and results in bold face of Kram d -ECP or Kram c -ECP indicate that current Kram version 

is statistically superior to the other version on each data set (pairwise t -test at 0.05 significance level). 

(a) Multi-class classifier: SVM 

Hamming Score Exact Match Sub-Exact Match 

Data Set ECP Kram d -ECP Kram c -ECP ECP Kram d -ECP Kram c -ECP ECP Kram d -ECP Kram c -ECP 

Edm 0.721 ± .082 0.763 ± .107 • 0.766 ± .094 • 0.559 ± .136 0.612 ± .170 0.618 ± .140 • 0.883 ± .074 0.915 ± .075 0.915 ± .075 

Flare1 0.921 ± .036 0.922 ± .034 0.923 ± .035 0.817 ± .078 0.821 ± .073 0.821 ± .073 0.947 ± .039 0.947 ± .039 0.951 ± .042 

Song 0.786 ± .029 0.781 ± .028 0.781 ± .035 0.484 ± .054 0.467 ± .059 0.470 ± .071 0.878 ± .040 0.877 ± .040 0.874 ± .043 

WQpla. 0.647 ± .015 0.585 ± .027 ◦ 0.586 ± .026 ◦ 0.093 ± .028 0.067 ± .029 ◦ 0.065 ± .029 ◦ 0.281 ± .049 0.187 ± .040 ◦ 0.191 ± .042 ◦
WQani. 0.629 ± .013 0.556 ± .014 ◦ 0.550 ± .015 ◦ 0.065 ± .018 0.029 ± .011 ◦ 0.024 ± .012 ◦ 0.230 ± .032 0.151 ± .030 ◦ 0.136 ± .022 ◦
WQ 0.628 ± .015 0.557 ± .010 ◦ 0.555 ± .012 ◦ 0.001 ± .003 0.004 ± .005 0.004 ± .005 0.035 ± .018 0.019 ± .016 0.016 ± .015 ◦
Voice 0.955 ± .013 0.950 ± .010 0.950 ± .010 0.912 ± .025 0.903 ± .020 0.903 ± .019 0.998 ± .003 0.998 ± .003 0.997 ± .004 

Thyroid 0.965 ± .002 0.968 ± .002 • 0.969 ± .003 • 0.773 ± .014 0.802 ± .015 • .804 ± .015 • 0.981 ± .005 0.979 ± .003 ◦ 0.979 ± .003 ◦
Flickr 0.772 ± .004 0.760 ± .006 ◦ 0.761 ± .006 ◦ 0.297 ± .012 0.281 ± .009 ◦ 0.281 ± .010 ◦ 0.680 ± .011 0.658 ± .016 ◦ 0.658 ± .018 ◦
Music 0.799 ± .032 0.802 ± .025 0.800 ± .030 0.343 ± .076 0.341 ± .073 0.343 ± .083 0.640 ± .064 0.659 ± .066 0.650 ± .072 

Enron 0.830 ± .008 0.824 ± .009 ◦ 0.822 ± .010 ◦ 0.235 ± .029 0.224 ± .026 0.224 ± .033 0.482 ± .021 0.459 ± .043 0.462 ± .034 

Image 0.832 ± .012 0.842 ± .009 • 0.841 ± .011 • 0.513 ± .024 0.540 ± .024 • 0.535 ± .029 • 0.710 ± .036 0.727 ± .029 • 0.725 ± .032 

Scene 0.914 ± .009 0.925 ± .008 • 0.925 ± .007 • 0.700 ± .029 0.731 ± .029 • 0.729 ± .029 • 0.796 ± .028 0.825 ± .018 • 0.825 ± .021 •
Yeast 0.795 ± .007 0.795 ± .007 0.794 ± .010 0.252 ± .012 0.262 ± .018 0.264 ± .018 • 0.304 ± .020 0.317 ± .018 0.317 ± .022 •
Mediamill 0.818 ± .002 0.841 ± .002 • .843 ± .002 • 0.218 ± .008 0.286 ± .004 • .293 ± .003 • 0.430 ± .008 0.506 ± .007 • .513 ± .008 •

(b) Multi-class classifier: NB 

Hamming Score Exact Match Sub-Exact Match 

Data Set ECP Kram d -ECP Kram c -ECP ECP Kram d -ECP Kram c -ECP ECP Kram d -ECP Kram c -ECP 

Edm 0.731 ± .062 0.722 ± .089 0.699 ± .076 0.554 ± .112 0.548 ± .120 0.528 ± .118 0.909 ± .047 0.896 ± .081 0.870 ± .069 

Flare1 0.908 ± .045 .903 ± .046 0.867 ± .048 ◦ 0.790 ± .081 .777 ± .084 0.734 ± .094 ◦ 0.941 ± .057 .938 ± .057 0.883 ± .059 ◦
Song 0.674 ± .044 .684 ± .042 0.674 ± .044 0.311 ± .053 0.317 ± .051 0.308 ± .057 0.733 ± .079 0.749 ± .080 0.733 ± .077 

WQpla. 0.607 ± .015 .647 ± .019 • 0.609 ± .028 0.034 ± .021 .067 ± .038 • 0.043 ± .028 0.175 ± .043 .258 ± .056 • 0.208 ± .049 •
WQani. 0.590 ± .020 .625 ± .017 • 0.598 ± .016 0.020 ± .014 .042 ± .016 • 0.030 ± .011 • 0.143 ± .054 .221 ± .049 • 0.188 ± .031 •
WQ 0.599 ± .018 .597 ± .018 0.562 ± .019 ◦ 0.008 ± .009 0.004 ± .007 ◦ 0.007 ± .008 0.032 ± .024 0.033 ± .020 0.027 ± .018 

Voice 0.903 ± .010 0.927 ± .011 • .937 ± .008 • 0.811 ± .019 0.857 ± .022 • .877 ± .018 • 0.995 ± .004 0.997 ± .003 0.997 ± .004 

Thyroid 0.966 ± .003 .963 ± .003 ◦ 0.948 ± .002 ◦ 0.793 ± .017 .768 ± .015 ◦ 0.678 ± .018 ◦ 0.974 ± .005 .973 ± .005 0.962 ± .006 ◦
Flickr 0.714 ± .007 0.717 ± .008 • .719 ± .007 • 0.197 ± .006 0.201 ± .006 • 0.200 ± .006 0.563 ± .015 0.568 ± .016 • .571 ± .014 •
Music 0.770 ± .029 0.784 ± .019 • 0.789 ± .018 • 0.249 ± .078 0.281 ± .073 • 0.277 ± .077 • 0.591 ± .071 0.617 ± .053 0.635 ± .036 •
Enron 0.777 ± .011 0.784 ± .009 • 0.788 ± .009 • 0.166 ± .034 0.177 ± .033 0.176 ± .036 0.324 ± .035 0.343 ± .034 • .358 ± .031 •
Image 0.746 ± .012 0.754 ± .011 • 0.759 ± .008 • 0.285 ± .022 0.302 ± .022 • .315 ± .020 • 0.597 ± .034 0.612 ± .033 • 0.622 ± .028 •
Scene 0.867 ± .011 0.875 ± .013 • .883 ± .012 • 0.550 ± .030 0.575 ± .040 • .591 ± .034 • 0.693 ± .031 0.713 ± .036 • .736 ± .033 •
Yeast 0.773 ± .011 0.787 ± .008 • 0.784 ± .009 • 0.203 ± .018 0.240 ± .024 • 0.234 ± .022 • 0.258 ± .022 0.293 ± .022 • 0.292 ± .029 •
Mediamill 0.656 ± .005 0.689 ± .004 • .692 ± .005 • 0.031 ± .003 .056 ± .003 • 0.053 ± .004 • 0.097 ± .008 0.147 ± .008 • 0.145 ± .008 •
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t 0.05 significance level is further conducted to show whether the

erformance of each Kram counterpart is significantly different to

ts corresponding MDC approach with different multi-class classi-

ers (SVM or NB). Accordingly, the resulting win/tie/loss counts are

ummarized in Table 6 in terms of each evaluation metric over the

5 benchmark data sets. 

Based on the experimental results mentioned above, it is inter-

sting to obtain the following observations: 

• Among all the 720 configurations (15 data sets × 4 MDC ap-

proaches × 3 metrics × 2 multi-class classifiers × 2 ver-

sions of Kram ), the Kram counterpart can achieve superior or

at least comparable performance against its corresponding MDC

approach in 643 configurations (about 89.3%). 
• BR deals with MDC tasks by independent decomposition, where

potential class dependencies are totally neglected in this ap-

proach. It is shown in Table 6 that Kram -BR can achieve supe-

rior or at least comparable performance against BR in 167 out

of 180 cases. This observation indicates that helpful discrimi-

native information is indeed brought into feature space via the

k NN-augmented features generated by Kram . Specifically, these

discriminative information can be regarded as an alternative

way of dependency modeling when designing MDC approaches.
• Both ECC and ESC deal with MDC tasks by explicitly modeling

class dependencies, which are fulfilled by specifying a chain-

ing structure over class spaces or grouping class spaces into

super-classes. It is worth noting that for these two MDC ap-

proaches which are designed under the inherent mechanism
of dependency modeling, the k NN-augmented features gener-

ated by Kram can also help improve their generalization per-

formance significantly. 
• ECP deals with MDC tasks by modeling full-order class de-

pendencies, where all distinct class combinations in training

set have been treated as new classes in the learning phase.

It is shown that the k NN-augmented features generated by

Kram can generally help improve ECP’s generalization perfor-

mance, while there are 35 cases where Kram -ECP performs sig-

nificantly inferior to ECP (the number of loss cases is a lot

more than BR, ECC and ESC relatively). Most of these under-

performing cases (29 out of 35) occur on data sets Flickr, Thy-

roid and WaterQuality (including its two divisions WQplants and

WQanimals ), in which the possible number of class combina-

tions is high (e.g., 4 14 for WaterQuality ). 

.3. Further analysis 

.3.1. Comparison between two KRAM versions 

To show whether the performance between two versions of

ram , i.e. Kram d −A and Kram c −A , is significantly different, pair-

ise t -test based on ten-fold cross-validation (at 0.05 significance

evel) is also conducted, and we use bold face type for the statisti-

ally superior one in Tables 2–5 . Table 7 summarizes the resulting

in/tie/loss counts accordingly. 

Based on the experimental results mentioned above, it is inter-

sting to obtain the following observations: 
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Table 5 

Predictive performance of ESC and its two version Kram counterparts (mean ± std. deviation) in terms of all three evaluation metrics. In addition, •/ ◦ indicates whether 

Kram d -ESC or Kram c -ESC is statistically superior/inferior to ESC on each data set, and results in bold face of Kram d -ESC or Kram c -ESC indicate that current Kram version is 

statistically superior to the other version on each data set (pairwise t -test at 0.05 significance level). 

(a) Multi-class classifier: SVM 

Hamming Score Exact Match Sub-Exact Match 

Data Set ESC Kram d -ESC Kram c -ESC ESC Kram d -ESC Kram c -ESC ESC Kram d -ESC Kram c -ESC 

Edm 0.701 ± .079 0.751 ± .102 • 0.766 ± .105 • 0.513 ± .122 0.592 ± .165 • 0.624 ± .164 • 0.890 ± .076 0.909 ± .070 0.909 ± .070 

Flare1 0.923 ± .033 0.923 ± .036 0.923 ± .035 0.821 ± .073 0.821 ± .073 0.824 ± .073 0.951 ± .036 0.951 ± .042 0.947 ± .039 

Song 0.790 ± .030 0.789 ± .029 0.787 ± .029 0.480 ± .067 0.481 ± .058 0.480 ± .057 0.893 ± .038 0.888 ± .047 0.884 ± .047 

WQpla. 0.651 ± .016 0.664 ± .015 • 0.665 ± .016 • 0.094 ± .038 0.104 ± .039 0.101 ± .037 0.284 ± .050 0.283 ± .049 .299 ± .049 

WQani. 0.630 ± .014 0.636 ± .016 0.633 ± .013 0.062 ± .021 0.065 ± .018 0.058 ± .017 0.232 ± .033 0.239 ± .041 0.230 ± .039 

WQ 0.641 ± .013 0.638 ± .017 0.635 ± .014 0.006 ± .008 0.012 ± .010 0.009 ± .006 0.046 ± .022 0.050 ± .022 0.048 ± .017 

Voice 0.961 ± .008 0.953 ± .009 ◦ 0.953 ± .010 ◦ 0.924 ± .016 0.908 ± .018 ◦ 0.908 ± .020 ◦ 0.998 ± .002 0.998 ± .003 0.998 ± .003 

Thyroid 0.965 ± .002 0.969 ± .002 • 0.969 ± .003 • 0.771 ± .014 0.801 ± .015 • 0.802 ± .016 • 0.982 ± .004 0.981 ± .004 0.981 ± .004 

Flickr 0.791 ± .004 0.784 ± .005 ◦ 0.783 ± .004 ◦ 0.320 ± .011 0.314 ± .011 ◦ 0.313 ± .012 0.718 ± .009 0.704 ± .013 ◦ 0.700 ± .010 ◦
Music 0.809 ± .022 0.810 ± .028 0.810 ± .025 0.330 ± .069 0.352 ± .093 0.335 ± .086 0.669 ± .062 0.671 ± .065 0.676 ± .057 

Enron 0.833 ± .009 0.829 ± .009 0.830 ± .011 0.224 ± .039 0.216 ± .032 0.211 ± .028 0.485 ± .038 0.470 ± .041 0.479 ± .040 

Image 0.833 ± .008 0.845 ± .013 • 0.843 ± .015 • 0.494 ± .025 0.529 ± .034 • 0.528 ± .040 • 0.719 ± .028 0.745 ± .036 • 0.738 ± .038 •
Scene 0.910 ± .013 0.923 ± .008 • 0.924 ± .008 • 0.668 ± .045 0.720 ± .030 • 0.722 ± .028 • 0.799 ± .032 0.825 ± .022 • 0.827 ± .027 •
Yeast 0.800 ± .006 0.807 ± .007 • 0.807 ± .007 • 0.236 ± .019 0.258 ± .018 • 0.260 ± .022 • 0.309 ± .028 0.320 ± .025 • 0.320 ± .024 •
Mediamill 0.824 ± .002 0.845 ± .002 • .848 ± .001 • 0.207 ± .006 0.277 ± .005 • .285 ± .004 • 0.434 ± .007 0.508 ± .008 • .517 ± .008 •

(b) Multi-class classifier: NB 

Hamming Score Exact Match Sub-Exact Match 

Data Set ESC Kram d -ESC Kram c -ESC ESC Kram d -ESC Kram c -ESC ESC Kram d -ESC Kram c -ESC 

Edm 0.674 ± .095 0.674 ± .101 0.696 ± .064 0.432 ± .166 0.438 ± .162 0.450 ± .140 0.915 ± .063 0.909 ± .062 0.941 ± .049 

Flare1 0.896 ± .059 .892 ± .053 0.857 ± .058 ◦ 0.780 ± .093 .768 ± .086 0.728 ± .094 ◦ 0.929 ± .064 .926 ± .060 0.870 ± .069 ◦
Song 0.646 ± .031 0.666 ± .037 • 0.662 ± .037 • 0.274 ± .047 0.304 ± .054 • 0.290 ± .063 0.692 ± .066 0.719 ± .067 • 0.722 ± .067 •
WQpla. 0.442 ± .034 .549 ± .031 • 0.487 ± .030 • 0.001 ± .003 .040 ± .025 • 0.017 ± .017 • 0.042 ± .019 .133 ± .031 • 0.082 ± .026 •
WQani. 0.577 ± .022 .598 ± .013 • 0.574 ± .022 0.024 ± .018 0.026 ± .023 0.026 ± .019 0.139 ± .050 0.167 ± .045 0.136 ± .043 

WQ 0.609 ± .017 .609 ± .017 0.553 ± .023 ◦ 0.002 ± .004 0.002 ± .004 0.001 ± .003 0.023 ± .013 0.025 ± .017 0.011 ± .012 

Voice 0.881 ± .012 0.922 ± .008 • .939 ± .010 • 0.782 ± .020 0.847 ± .015 • .880 ± .020 • 0.981 ± .008 0.996 ± .003 • .998 ± .003 •
Thyroid 0.958 ± .004 .952 ± .006 ◦ 0.945 ± .003 ◦ 0.738 ± .022 .703 ± .036 ◦ 0.660 ± .015 ◦ 0.970 ± .007 .966 ± .006 0.960 ± .007 ◦
Flickr 0.703 ± .008 0.705 ± .009 .710 ± .010 • 0.178 ± .013 0.181 ± .014 0.186 ± .016 • 0.533 ± .017 0.537 ± .015 .546 ± .020 •
Music 0.738 ± .023 0.764 ± .030 • 0.762 ± .026 • 0.210 ± .070 0.242 ± .089 • 0.218 ± .063 0.524 ± .039 0.581 ± .082 • 0.603 ± .051 •
Enron 0.768 ± .016 0.776 ± .018 0.766 ± .022 0.098 ± .029 0.106 ± .039 0.080 ± .045 0.302 ± .049 .337 ± .051 0.288 ± .078 

Image 0.593 ± .017 0.608 ± .015 • .618 ± .020 • 0.069 ± .021 0.074 ± .021 .084 ± .021 • 0.289 ± .032 0.315 ± .029 • .332 ± .035 •
Scene 0.866 ± .010 0.868 ± .013 .878 ± .015 • 0.541 ± .024 0.528 ± .046 0.525 ± .072 0.703 ± .031 0.733 ± .038 • .793 ± .021 •
Yeast 0.716 ± .006 .743 ± .006 • 0.731 ± .008 • 0.110 ± .014 .154 ± .015 • 0.135 ± .022 • 0.167 ± .019 .217 ± .022 • 0.195 ± .021 •
Mediamill 0.655 ± .003 0.693 ± .008 • .695 ± .009 • 0.038 ± .004 0.071 ± .005 • .076 ± .004 • 0.114 ± .006 0.177 ± .009 • .184 ± .007 •

Table 6 

Win/tie/loss counts of pairwise t -test (at 0.05 significance level) between each MDC approach and its Kram counterpart 

in terms of hamming score (HScore), exact match (EMatch), and sub-exact match (SEMatch). 

multi-class classifier: SVM multi-class classifier: NB 

HScore EMatch SEMatch HScore EMatch SEMatch In Total 

Kram d -BR against BR 8/5/2 7/7/1 2/13/0 10/5/0 7/8/0 8/7/0 42/45/3 

Kram d -ECC against ECC 8/6/1 6/8/1 3/12/0 10/5/0 7/8/0 10/5/0 44/44/2 

Kram d -ECP against ECP 5/5/5 4/8/3 3/8/4 10/4/1 9/4/2 8/7/0 39/36/15 

Kram d -ESC against ESC 7/6/2 6/7/2 4/10/1 8/6/1 6/8/1 8/7/0 38/44/7 

Kram c -BR against BR 8/6/1 7/7/1 2/12/1 11/2/2 7/5/3 8/5/2 43/37/10 

Kram c -ECC against ECC 8/5/2 6/8/1 3/12/0 11/2/2 7/6/2 9/4/2 44/37/9 

Kram c -ECP against ECP 5/5/5 6/6/3 3/7/5 8/4/3 7/6/2 9/4/2 38/32/20 

Kram c -ESC against ESC 7/6/2 6/8/1 4/10/1 9/3/3 6/7/2 9/4/2 41/38/11 

In Total 56/44/20 48/59/13 24/84/12 77/31/12 56/52/12 69/43/8 330/313/77 

Table 7 

Win/tie/loss counts of pairwise t -test (at 0.05 significance level) between Kram d −A and Kram c −A ( A ∈ {BR, ECC, ECP, 

ESC})in terms of hamming score (HScore), exact match (EMatch), and sub-exact match (SEMatch). 

multi-class classifier: SVM multi-class classifier: NB 

HScore EMatch SEMatch HScore EMatch SEMatch In Total 

Kram d -BR against Kram c -BR 0/13/2 0/12/3 0/14/1 5/4/6 4/6/5 3/7/5 12/56/22 

Kram d -ECC against Kram c -ECC 1/11/3 0/14/1 0/14/1 6/3/6 4/6/5 3/7/5 14/55/21 

Kram d -ECP against Kram c -ECP 0/14/1 0/13/2 0/14/1 6/5/4 5/7/3 4/8/3 15/61/14 

Kram d -ESC against Kram c -ESC 0/14/1 0/14/1 0/13/2 6/4/5 4/8/3 5/5/5 15/58/17 

In Total 1/52/7 0/53/7 0/55/5 23/16/21 17/27/16 15/27/18 56/230/74 
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Fig. 2. Performance of Kram -BR changes in terms of hamming score (HScore), exact match (EMatch), and sub-exact match (SEMatch) as k ranges from 5 to 10 on five data 

sets. 
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• Across all the 360 configurations (15 data sets × 4 MDC ap-

proaches × 3 metrics × 2 multi-class classifiers), Kram d and

Kram c tie 230 times (about 63.9%), Kram d wins 56 times, and

Kram c wins 74 times. So, two versions of Kram have compara-

ble performance in general. 
• When SVM is utilized as the multi-class classifier, performance

of Kram c is relatively better. Specifically, the performance of

Kram c is comparable with Kram d in most cases and superior

in some cases with SVM (with only one loss on HScore with

ECC approach). 
• When NB is utilized as the multi-class classifier, Kram d 

achieves relatively more robust performance than Kram c does.

Specifically, there are more win and loss cases with NB between

Kram c and Kram d . However, Kram c will achieve very poor per-

formance in some configurations compared with Kram d (e.g.,

Thyroid ) while Kram d won’t even if it achieves significantly in-

ferior performance to Kram c . Possible reason is that NB as-

sumes Gaussian pdf for continuous features, while Kram c ’s con-

tinuous augmented features will unfit this assumption some-

times. Obviously, the more imbalanced class distribution is, the

more severe unfitness will be, then Kram c will achieve worse

performance, and vise versa. 
• In summary, Kram c should be a better choice when SVM is uti-

lized as the multi-class classifier, while it depends on the char-

acteristics of concrete data set and MDC approach when making

a choice between Kram d and Kram c with NB as the multi-class

classifier. 

.3.2. Parameter sensitivity analysis 

As shown in Algorithm 1 , there is only one parameter to be

pecified for Kram , i.e., k , which is fixed to 8 in previous sections.

o justify this parameter setting, we also investigate the sensitiv-

ty of Kram w.r.t. the value of k . In terms of each evaluation met-
ic, Fig. 2 illustrates how the performance of Kram (with MDC ap-

roach BR) changes as the value of k increases from 5 to 10. It is

hown that both two Kram versions can achieve relatively stable

erformance when the value of k varies. Therefore, in this paper,

he value of k is moderately set to 8 which is also the recom-

ended parameter setting of Kram . Moreover, parameter insensi-

ivity serves as a desirable property which keeps Kram away from

ophisticated parameter-tuning issue for practical use. 

In this paper, both SVM and NB are utilized as the multi-class

lassifier to implement each MDC approach. Here, we also inves-

igate the sensitivity of Kram w.r.t. the regularization parameter C

f LIBSVM [35] (The common NB implementation doesn’t involve

pecific parameters to be tuned). In terms of each evaluation met-

ic, Fig. 3 illustrates how the performance of Kram (with MDC ap-

roach BR) changes as the regularization parameter C ranges in

0.01, 0.1, 1, 10, 100}. It is shown that both of the two Kram ver-

ions can achieve relatively better performance when C = 1 , which

s also the default parameter setting of LIBSVM. 

.3.3. Alternative experimental analysis 

The four selected compared approaches (i.e. BR, ECC, ECP, ESC)

ll necessiate a multi-class classifier for implementation, in this

ubsection, we also investigate the gMML approach [13] as com-

ared approach which does not necessiate a base multi-class clas-

ifier. Specifically, gMML alternately learns linear regression mod-

ls for each class label as well as a Mahalanobis distance metric

o solve MDC problem effectively, where the Mahalanobis distance

etric can make the distance between linear regression outputs

f one example and its ground-truth class label vector closer. The

etailed experimental results are reported in Table 8 . It is shown

hat the k NN-augmented features generated by Kram can also help

mprove the generalization performance of gMML and the perfor-

ance of the Kram c version is relatively better. 
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Fig. 3. Performance of Kram -BR changes in terms of hamming score (HScore), exact match (EMatch), and sub-exact match (SEMatch) as the LIBSVM regularization parameter 

C ranges in {0.01, 0.1, 1, 10, 100} on five data sets. 

Table 8 

Predictive performance of gMML and its two version Kram counterparts (mean ± std. deviation) in terms of all three evaluation metrics. In addition, •/ ◦ indicates whether 

Kram d -gMML or Kram c -gMML (denoted as Kram d or Kram c for short) is statistically superior/inferior to gMML on each data set, and results in bold face of Kram d or Kram c 

indicate that current Kram version is statistically superior to the other version on each data set (pairwise t -test at 0.05 significance level). 

Hamming Score Exact Match Sub-Exact Match 

Data Set gMML Kram d Kram c gMML Kram d Kram c gMML Kram d Kram c 

Edm 0.714 ± .083 0.770 ± .090 • 0.766 ± .082 • 0.487 ± .145 0.586 ± .188 • 0.579 ± .166 • 0.941 ± .065 0.954 ± .055 0.954 ± .055 

Flare1 0.923 ± .033 0.923 ± .035 0.924 ± .034 0.821 ± .073 0.818 ± .075 0.821 ± .073 0.951 ± .036 0.954 ± .039 0.954 ± .039 

Song 0.788 ± .027 0.787 ± .024 0.786 ± .025 0.484 ± .059 0.481 ± .054 0.481 ± .054 0.883 ± .041 0.883 ± .040 0.882 ± .041 

WQpla. 0.655 ± .015 0.663 ± .018 0.662 ± .016 0.092 ± .035 0.098 ± .039 0.096 ± .036 0.286 ± .053 0.295 ± .043 0.290 ± .040 

WQani. 0.630 ± .015 0.642 ± .014 • 0.642 ± .013 • 0.062 ± .023 0.062 ± .010 0.062 ± .013 0.227 ± .033 0.240 ± .033 .248 ± .033 

WQ 0.643 ± .013 0.649 ± .012 0.649 ± .012 0.006 ± .008 0.008 ± .006 0.008 ± .006 0.049 ± .024 0.054 ± .018 0.057 ± .020 

Voice 0.842 ± .009 0.945 ± .010 • 0.946 ± .010 • 0.699 ± .017 0.892 ± .020 • 0.893 ± .018 • 0.985 ± .011 0.998 ± .003 • 0.998 ± .003 •
Thyroid 0.960 ± .003 0.967 ± .003 • 0.967 ± .003 • 0.741 ± .015 0.790 ± .018 • 0.790 ± .100 • 0.982 ± .005 0.981 ± .004 0.981 ± .004 

Flickr 0.779 ± .004 0.782 ± .005 • 0.782 ± .006 • 0.287 ± .009 0.296 ± .011 • 0.295 ± .030 • 0.690 ± .016 0.696 ± .015 • 0.696 ± .016 •
Music 0.801 ± .018 0.815 ± .023 • 0.817 ± .027 • 0.254 ± .057 0.320 ± .095 • 0.333 ± .027 • 0.652 ± .040 0.681 ± .033 • 0.677 ± .049 

Enron 0.832 ± .009 0.833 ± .011 0.833 ± .011 0.197 ± .027 0.202 ± .038 .206 ± .024 • 0.477 ± .042 0.476 ± .042 0.478 ± .041 

Image 0.811 ± .010 0.839 ± .010 • 0.840 ± .010 • 0.289 ± .025 0.448 ± .028 • 0.454 ± .019 • 0.787 ± .027 0.781 ± .021 0.779 ± .024 

Scene 0.893 ± .009 0.917 ± .008 • .919 ± .007 • 0.457 ± .046 0.646 ± .025 • .657 ± .011 • 0.908 ± .017 0.858 ± .023 ◦ 0.861 ± .018 ◦
Yeast 0.800 ± .005 0.811 ± .006 • 0.811 ± .006 • 0.134 ± .018 0.210 ± .020 • 0.211 ± .035 • 0.266 ± .026 0.311 ± .016 • 0.309 ± .018 •
Mediamill 0.811 ± .001 0.847 ± .001 • .850 ± .001 • 0.111 ± .006 0.250 ± .005 • .258 ± .005 • 0.342 ± .007 0.497 ± .006 • .505 ± .007 •
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5. Conclusion 

Most existing works for multi-dimensional classification focus

on modeling class dependencies in output space, while this paper

extends our preliminary work [12] which solves MDC problems by

manipulating the input space. The major contribution of our re-

search is to propose a feature augmentation strategy for multi-

dimensional classification that augments feature space with aug-

mented features generated via combining with class space, which

suggests an alternative solution to induce MDC models. 

To justify the proposed strategy, a simple yet effective approach

named Kram is designed based on k NN techniques, and compre-

hensive comparative studies have been conducted to validate its
ffectiveness accordingly. Experimental results show that: (a) Both

ersions of Kram , i.e., discrete version Kram d and continuous ver-

ion Kram c , can improve predictive performance of existing MDC

pproaches; (b) Kram d has more stable performance than Kram c 

hen the base multi-class classifier is sensitive to the feature type

discrete or continuous), e.g., Naïve Bayes classifier. For other base

ulti-class classifier less sensitive to feature type, e.g., SVM, Kram c 

s likely to be a better choice; (c) In light of the effectiveness of

ram , feature augmentation technique can be further studied as

n alternative strategy for modeling class dependencies. 

As an initial attempt towards solving MDC problem with fea-

ure augmentation, there are several potential ways that the cur-

ent Kram instantiation can be improved: (a) In addition to the
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imple counting statistics derived from k nearest neighbors, more

dvanced information could be utilized for feature augmentation

y trying to exploit available domain knowledge [36] ; (b) Other

han the meta-strategy for feature augmentation, customized fea-

ure augmentation techniques can be investigated for given MDC

pproaches; (c) Similar to the label-specific features techniques

or multi-label classification [37,38] , it is worthwhile to investigate

he feasibility of generating specific augmented features w.r.t. each

lass space. 
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