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Introduction
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Multi-Dimensional Classification (MDC)

Settings: X = R% d-dimensional input (feature) space
YV=0CxCyx--
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x C, : output space, where C; =

Input : D={(z;,y;)|1<i< N}: training data set, where

£Lj = [%1,337;2, Ce ;CUid]T c X and y; = [%‘17%2, c e 7%th c )y

Qutput : f : multi-dimensional classifier X' — Y

MDC example (A piece of music)

Dim. 1: Genre -—>> o) ot ==> rock, popular, classical, etc.

J°

Dim. 2: Instrument ==> == piano, violin, guitar, etc.

Dim. 3: Language ==> == English, Chinese, Spanish, etc.

Our Goal : adapting maximum margin techniques for MDC
Two Key Challenges:

(I) modeling outputs from different dimensions are not comparable

(II) dependencies among different dimensions should be considered

The M3MDC Approach

S1: Transform D into m = Z}J-:l (gj) binary classification data sets via OvO
decomposition w.r.t. each dimension;

S2: Solve the following maximum margin formulation
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Notations: The ¢th OvO dataset D' = {( j,yj) 1< 7 <n;} (1 <i<m)
T wy, ..., wy] ERY™and b= (b,...,b,)"

I'he m hyperplanes: W =
W's column covariance matrix: C € R"*"™ regularization parameters: Aj, Ao

Remarks: (I) The optimization problem is jointly convex w.r.t. W, b and C ;

(II) Due to the non-linear and non-smooth constraint C > 0, it is not
easy to solve the optimization problem directly:;

(III) In this paper, an alternating method is used to solve it:

repeat

Optimizing with respect to W and b when C is fixed;

Optimizing with respect to C when W and b are fixed;
until convergence

S3: Calculate m binary predictions y? = sign(W 'z, + b) for test instance x,;
S4: Return z,’s predicted class vector y, via OvO decoding rule based on .

Optimization

Optimizing with respect to W and b when C is fixed
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The Lagrangian of the above problem 1S given by:
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The dual problem 1.€. rnaxa miny p L(W,b), is equivalently formulated as:
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QP problem

where M =
m N,

After solving out a, we can obtain W = ) a :cZeTC()nIm + XC) !
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and then obtain b via KKT conditions (for more details, please see our paper).

Optimizing with respect to C when W and b are fixed
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Experiments

Experimental Setup

> 10 Data sets and 3 Evaluation metrics

» Comparing Algorithms: BR ECC,.ECP,ESC [Read et al, TKDE14]
» Experimental Protocol: Ten-fold cross-validation

Experimental Results

Wilcoxon signed-ranks test for M?Mbpc against BR,ECC,ECP,ESC in terms of
cach evaluation metric (significance level o = 0.05; p-values shown in the brackets).

M3MbDcC vs BR MSMbpc vs ECC  M3Mbpc vs ECP - M?*MDbc vs ESC

Evaluation Metric

Hamming Score win [1.95e-3 win [9.77e-3] win [1.95e-3] win [3.91e-3]
Ezxact Match win [7.81e-3 tie |7.70e-1] tie [4.32e-1] tie [7.54e-1]
Sub-Fxact Match win [2.34e-2 tie [9.77e-2] win [4.88e-2] tie [1.95e-1]

OAcross all the 30 cases (10 data sets X 3 metrics), M3Mbc ranks first in 21 cases;
OIn terms of Hamming Score, M3Mbc is statistically better than BR/ECC/ECP/ESC;
OIn terms of all evaluation metrics, M3Mbpc is statistically better than BR;

OFor more details about experimental results and some further analysis (parameter
sensitivity, correlation analysis, convergent characteristics), please see our paper.

Conclusion

A first attempt towards adapting maximum margin technique for MDC is

investigated. Specifically, a novel approach named M3Mbc is proposed which
considers the margin over MDC examples via OvO decomposition and models
the dependencies among class spaces with covariance regularization.
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