
1

SMIX(λ): Enhancing Centralized Value
Functions for Cooperative Multi-Agent

Reinforcement Learning
Xinghu Yao∗, Chao Wen∗, Yuhui Wang and Xiaoyang Tan
Nanjing University of Aeronautics and Astronautics, China
{xinghuyao, chaowen, y.wang, x.tan}@nuaa.edu.cn

Abstract—Learning a stable and generalizable centralized
value function (CVF) is a crucial but challenging task in multi-
agent reinforcement learning (MARL), as it has to deal with
the issue that the joint action space increases exponentially with
the number of agents in such scenarios. This paper proposes
an approach, named SMIX(λ), that uses an off-policy training
to achieve this by avoiding the greedy assumption commonly
made in CVF learning. As importance sampling for such off-
policy training is both computationally costly and numerically
unstable, we proposed to use the λ-return as a proxy to compute
the TD error. With this new loss function objective, we adopt a
modified QMIX network structure as the base to train our model.
By further connecting it with the Q(λ) approach from an unified
expectation correction viewpoint, we show that the proposed
SMIX(λ) is equivalent to Q(λ) and hence shares its convergence
properties, while without being suffered from the aforementioned
curse of dimensionality problem inherent in MARL. Experiments
on the StarCraft Multi-Agent Challenge (SMAC) benchmark
demonstrate that our approach not only outperforms several
state-of-the-art MARL methods by a large margin, but also can
be used as a general tool to improve the overall performance of
other CTDE-type algorithms by enhancing their CVFs.

Index Terms—Deep reinforcement learning (DRL), multi-agent
reinforcement learning (MARL), multi-agent systems, StarCraft
Multi-Agent Challenge (SMAC).

I. INTRODUCTION

RECENTLY, reinforcement learning (RL) has made great
success in a variety of domains, from game playing [1],

[2] to complex continuous control tasks [3]–[5]. However,
many real-world problems are inherently multi-agent in nature,
such as network packet routing [6], automatic control [7], [8],
social dilemmas [9], consensus in multi-agent systems [10]–
[12] and multi-player video games [13], which raises great
challenges that are never encountered in single-agent settings.

In particular, the main challenges in multi-agent environ-
ments include the dimension of joint action space that grows
exponentially with the number of agents [14], [15], unstable
environments caused by the interaction of individual agents
[16], [17], and multi-agent credit assignment in cooperative
scenarios with global rewards [14], [15]. These challenges
make it troublesome for both fully centralized methods which
consider all agents as a single meta agent and fully decentral-
ized methods which individually train each agent by treating
other agents as part of the environment.

∗Equal contribution.
Code is available at: https://github.com/chaovven/SMIX

Recently the paradigm of centralized training with decen-
tralized execution (CTDE) has become popular for multi-
agent reinforcement learning [14], [15], [18], [19] due to
its conceptual simplicity and practical effectiveness. Its key
idea is to learn a centralized value function (CVF) shared
by all the agents during training, while each agent acts in
a decentralized manner during the execution phase. The CVF
works as a proxy to the environment for each agent, through
which individual value/advantage functions for each agent can
be conveniently learned by incorporating appropriate credit
assignment mechanism.

Unfortunately, the central role played by the centralized
value function in the CTDE approach seems to receive in-
adequate attention in current practice - it is commonly treated
in the same way as in single-agent settings [14], [15], [17],
[20], leading to larger estimation error in multi-agent environ-
ments. Furthermore, to reduce the difficulty of decomposing
the centralized value function to individual value functions,
many algorithms impose extra structural assumptions onto
the hypothesis space of the centralized value function during
training. For example, value decomposition networks (VDN)
[20], monotonic value function factorization (QMIX) [15], and
factorizaton with transformation (QTRAN) [21] assume that
the optimal joint action is equivalent to the collection of each
agent’s optimal action.

On the other hand, performing an accurate estimation of
centralized value function in multi-agent environments is in-
herently difficult due to the following reasons: 1) the “curse
of dimensionality” [22] of the joint action space results in the
sparsity of experiences; 2) the partial observability in multi-
agent environments become even more severe than in single-
agent settings; 3) the dynamics of multi-agent environments
are complex and hard to model, partially due to the com-
plicated interactions among agents. In practice, these factors
usually contribute to an unreliable and unstable centralized
value function with high bias and variance.

To tackle these difficulties, this work proposes a new sample
efficient multi-agent reinforcement learning method, named
SMIX(λ), under the CTDE framework. We summarize our
major contributions in the following threefold.

Firstly, we propose a general optimization framework for
CTDE (Centralized Training with Decentralized Execution)
in the context of fully cooperative MARL (Multi-Agent Re-
inforcement Learning) and analyze its theoretical properties.

ar
X

iv
:1

91
1.

04
09

4v
5

 [
cs

.M
A

]
 9

 A
ug

 2
02

0

2

While many previous CTDE-type MARL methods are built
on the centralized greedy behavior (CGB) assumption, which
states that a set of decentralized greedy policies (one for
each agent) are collectively optimal for the centralized greedy
policy. We emphasize more on the importance of improving
generalization capability of the learnt policies by incorporating
useful inductive bias (such as the non-negative constraint
for multi-agent coordination). Relaxing CGB 1 is not only
practical, but gives us the flexibility to choose a wider range
of methods to train the centralized value function (CVF) as
well, considering that many existing methods (especially those
Q-learning based, e.g., [15]) have to rely on this assumption
for tractable optimization in high-dimensional action space.

Secondly, we propose a novel variant of off-policy
SARSA(λ) [23] algorithm for centralized value function es-
timation in the context of CTDE. The method is charac-
terized by its capability to learn from multi-step lookahead
data with improved sample efficiency, but does not suffer
from the intensive computational cost originally involved in
estimating the product of importance-sampling (IS) ratios
in joint action space, hence being particularly suitable for
multi-agent reinforcement learning. We further establish its
convergence property by building its connection with the well-
known Q(λ) algorithm [24]. It is shown that our IS-free off-
policy SARSA(λ) algorithm is general and is widely appli-
cable to many other CTDE-type multi-agent algorithms such
as counterfactual multi-agent (COMA) policy gradients [14],
VDN [20] and QTRAN [21], to improve their performance.

Last but not least, with the flexibility provided by the pro-
posed optimization framework, we propose a novel cooperative
MARL method named SMIX(λ) to learn a set of decentralized
policies, with each agent only knowing its own partial obser-
vation, action history and a joint reward shared by all agents.
The method is based on the newly-developed IS-free off-
policy SARSA(λ) algorithm, incorporated within the enhanced
QMIX architecture [15] (hence the name SMIX(λ), meaning
“SARSA(λ)-based MIXture networks”). It is shown that the
proposed SMIX(λ) approach is reliable, easy to implement
and significantly outperforms several state-of-the-art CTDE
methods including COMA, VDN, QMIX, and QTRAN, on
the benchmark of the StarCraft Multi-Agent Challenge [25].

A preliminary version of this work appears in [26]. How-
ever, due to page limits, [26] fails to cover all important
information about SMIX(λ). This expanded version aims to
help readers gain a more comprehensive understanding of
SMIX(λ). Specifically, we summarize oue major contrubution
in the introduction section and the related work section (Sec-
tion II) is added for intruducing related works. The Section III
is added for building a gerenal CTDE optimization framework.
Moreover, the detailed proofs of theorems and more derivation
details are included in order to provide a more detailed descrip-
tion of the theoretical properties of QMIX, SMIX(λ) and Q(λ)
[24]. Besides, Figure 1 illustrates that the estimation method
of the CVF in SMIX(λ) can be easily applied to other popular
value-based and actor-critic-based CTDE methods. And more

1By ‘relaxing CGB’, we mean that in our framework the CGB assumption
is not explicitly needed although it could be derived from some constraints
such as the non-negative constraint.

experimental results have been added to show the effectiveness
and generality of this estimation method. Last but not least,
more implementation details are presented in Algorithm 1
and Section VI, which can improve the reproducibility of
SMIX(λ).

In what follows, we first introduce the related work in Sec-
tion II, then after a brief discussion about CTDE-type methods,
a general CTDE optimization framework is established in
Section III, the proposed SMIX(λ) method and its theoretical
analysis are respectively described in Section IV and Section
V. Main experimental results and ablation studies are given in
Section VI and we conclude the paper in Section VII.

II. RELATED WORK

Deep reinforcement learning (DRL) has made significant
progress in recent years with the powerful representation
capabilities of deep neural networks [1], [2], [27]. However,
challenges in multi-agent scenarios such as the unstable envi-
ronments and curse of dimensionality make it hard to apply
classic deep reinforcement learning methods to multi-agent
environments [14], [28], [29].

The centralized training with decentralized execution
(CTDE) paradigm provides a simple solution to the above
issue by separating the agent learning and execution, under
the greedy assumption that the optimal actions for individual
agents lead to optimal joint action. It has gradually become
the de facto standard in cooperative multi-agent scenarios
due to its conceptual simplicity and practical effectiveness.
Representative methods include counterfactual multi-agent
(COMA) policy gradients [14], value decomposition networks
(VDN) [20], monotonic value function factorization (QMIX)
[15], and factorizaton with transformation (QTRAN) [21] –
COMA is an on-policy actor-critic method that uses a carefully
designed counterfactual baseline to perform credit assignment,
while VDN, QMIX, and QTRAN are typical value-based
CTDE methods by learning individual agents through learning
a centralized value function first.

Our SMIX(λ) belongs to the CTDE framework as well, but
we focus more on how to improve the sample efficiency and
how to perform an accurate estimation of the centralized value
function. Our key idea is to use off-policy training to achieve
these goals while relaxing the greedy assumption in the
learning stage. Although off-policy methods are known to im-
prove the sample efficiency [1], [30], the popular importance
sampling methods for off-policy training are problematic as
these methods often involve calculating a product of a series of
importance sampling ratios, which is not only computationally
costly but has high variance [31] as well.

The estimation of the CVF plays a central role in the
CTDE framework, as its bias and variance directly affect
the performance of the whole system. Foerster et al. adopt
a variant of TD(λ) [14] to balance the bias and variance in
CVF estimation, but they use an on-policy training method
which could be sample inefficient. Precup et al. propose an
importance-sampling-based TD(λ) method in the single-agent
setting and prove the convergence property with linear function
approximation [32].

3

Under the fully decentralized framework, [33] proposes two
methods to stabilize the off-policy training process. For the
first method, the authors proposed adding extra time tags onto
every piece of information to be stored in the replay buffer.
This allows to decay obsolete data. In the second method,
each agent’s value function is conditioned on a fingerprint
that disambiguates the age of the data sampled from the
replay memory. Both methods help alleviate the non-stationary
problem, but we adopt an alternative mechanism for this rather
than manipulating the replay memory directly, as discussed in
Section III-D.

It is worth mentioning that in practice, however, off-policy
correction is not always needed in off-policy learning, espe-
cially when the behavior policy and target policy are close
to each other. For example, Hernandez et al. find that it is
possible to ignore off-policy correction over off-policy SARSA
[23] and Q(σ) [34] without seeing an adverse effect on the
overall performance [35]. Fujimoto et al. show that the off-
policy experiences generated during the interaction with the
environment tend to be heavily correlated to the current policy,
and their experimental results also reveal that the distribution
of off-policy data during the training procedure is very close
to that of the current policy [36]. Their analysis provides an
intuitive explanation for why performance can be improved
even without off-policy correction. Unfortunately, a notable
gap remains between the empirical success and the underlying
theoretical support. In Theorem 3 of Section V, we give a
principled way to justify this ‘thumb of rule’, showing that
a computationally efficient experience replay method such
as ours in the context of MARL is not only feasible but
theoretically sound as well.

There are other ways to deal with multi-agent problems.
For example, agents can exchange information with each
other through a communication channel [37], [38] or a shared
network structure [39], [40]. The opponent modeling methods
aim to infer other agents’ policies by interacting with the
environment and observing other agents’ policy [41], [42].
These methods are designed to establish explicit or implicit
connections among agents, and we aim to coordinate each
agent through a centralized value function. Thus, these ap-
proaches are complementary to ours. Besides, multi-agent self-
play [43] and task decomposition [44] have recently been
shown to be useful in MARL .

Finally, there have been several attempts on the StarCraft
Multi-Agent Challenge (SMAC) [25], including [14], [15],
[33]. The results of [15] are the published state-of-the-art in
value-based methods and [14] in actor-critic-based methods.

III. THE CTDE OPTIMIZATION FRAMEWORK

A. Problem Formulation

The cooperative multi-agent task we considered can be
described as a variant of decentralized partially observable
Markov decision process (Dec-POMDP) [45]. Specifically, this
task can be defined as a tuple: G = 〈S,A,P, r,Z,O, N, γ〉,
where s ∈ S denotes the true state of the environment,
A is the action set for each of N agents, and γ ∈ [0, 1]
is the discount factor. At each timestep, each agent i ∈

{1, 2, · · · , N} chooses an action ai ∈ A, forming a joint
action a =

{
a1, a2, · · · , aN

}
∈ AN . Then the environment

gets into next state s′ through a dynamic transition function
P(s′|s,a) : S × AN × S 7→ [0, 1]. All agents share the
same reward function r(s,a) : S × AN 7→ R. We consider
a partial observable scenario2 in which each agent draws
partial observation o ∈ O from the observation function
Z(s, i) : S ×N 7→ O. Each agent i also has an observation-
action history τ i ∈ T ≡ (O × A)∗, on which it conditions a
stochastic policy. A stochastic policy is a mapping defined as
π(a|τ) : T × A 7→ [0, 1].

In Dec-POMDP, the goal of a learning algorithm is to
obtain a group of individual policies that can maximize the
expected discounted returns Ea∈π,s∈S [

∑∞
t=0 γ

tr(s,a)]. To
simplify notation, we denote joint quantities over agents in
bold. We also omit the index i of each agent when there is no
ambiguity in the following sections.

The centralized training with decentralized enecution
(CTDE) approach provides a solution to the Dec-POMDP
problem by introducing a centralized structure to coordinate
the decentralized policies. In the training phase of the CTDE
paradigm, a centralized action-value function Q([s, τ],a) (or
simply expressed as Q(τ ,a)) is learned from the local obser-
vation history of all agents (denoted as τ = {τ1, τ2, · · · , τN})
and the global state (denoted as s), while during the exe-
cution phase, each agent’s policy πi only relies on its own
observation-action history τ i.

B. A General CTDE Optimization Framework

In this paper, we consider a fully cooperative multi-agent
scenario, in which the relationship between centralized value
function and decentralized value functions satisfies particular
coordinative constraints. Formally, we consider value-based
CTDE as the following optimization problem.

maximize
π

E
s0∼ρ0(s0),a1∼π1,··· ,aN∼πN

[Qπtot(s0,a)]

subject to Qtot(τ ,a) = f(Q1(τ1, a1), · · · , QN (τN , aN)),
(1)

where f is a state-dependent continuous function, ρ0 : S →
[0, 1] is the distribution of the initial state s0. The value
function of each agent are combined to give the centralized
value function Qtot, through a state-dependent continuous
function f implemented as a neural network.

Designing a proper optimization constraint in (1) is crucial
because it directly affects the generalization ability and opti-
mization cost of the algorithm. In this paper, we assume the
relationship between centralized value function and decentral-
ized functions satisfies the following assumption.

Assumption 1. In fully coorperative multi-agent scenarios,
the coordination among agents can be constrained through
∂Qtot

∂Qi ≥ 0, i ∈ {1, · · · , N}.
This non-negative constraint (positive weight) first appears

in VDN [20] and is generalized in QMIX [15] as a way to
ensure tractable optimization in MARL. In this paper, however,

2In standard Dec-POMDP, the observation function Z(o|a, s′) denotes the
probability of the observing joint observation o given that joint action a was
taken and led to state s′ (cf., [45]).

4

we take it as a prior to capture the coordination information
required to solve cooperative tasks. This effectively strikes a
balance between coordinative expressivity and learning diffi-
culty. As a result, each agent has a chance to influence the team
reward positively instead of canceling out with each other in
fully cooperative scenarios.

The following theorem guarantees that if assumption 1 is
satisfied, then the optimal policy of each agent is conditioned
on the optimal joint actions of other agents through the
centralized observable critic Qπtot. This helps to address the
non-stationary issue of MARL, as discussed later.

Theorem 1. In optimation problem (1) with assumption 1
satisfied, if the joint action-value function Qπtot is already
obtained, then we have:

argmax
ai

Qi(τ i, ai) = argmax
ai

max
a1,··· ,ai−1,ai+1,··· ,aN

Qπtot(τ ,a)

(2)

Proof: We denote a1∗ = argmaxa1 Q
1(τ1, a1). Since

∂Qπ
tot

∂Q1 ≥ 0, we have

max
a1,··· ,ai−1,ai+1,··· ,aN

Qπtot(τ , a
1, ai−1, ai, ai+1, · · · , aN)

= max
a2,··· ,ai−1,ai+1,··· ,aN

Qπtot(τ , a
1∗, ai−1, ai, ai+1, · · · , aN).

Similarly, we denote aj∗ = argmaxaj Q
j(τ j , aj) for j ∈

{2, 3, i− 1, i+ 1, N}. Then, due to ∂Qπ
tot

∂Qj ≥ 0, we have

max
a2,··· ,ai−1,ai+1,··· ,aN

Qπ
tot(τ , a

1∗, · · · , ai−1, ai, ai+1, · · · , aN)

= max
a3,··· ,ai−1,ai+1,··· ,aN

Qπ
tot(τ , a

1∗, a2∗, ai−1, ai, ai+1, · · · , aN)

= · · ·
= Qπ

tot(τ , a
1∗, a2∗, a(i−1)∗, ai, a(i+1)∗, · · · , aN∗).

Then, given ∂Qπ
tot

∂Qi ≥ 0, we have

argmaxai Q
π
tot(τ , a

1∗, a2∗, a(i−1)∗, ai, a(i+1)∗, · · · , aN∗)
= argmaxai Q

i(τ i, ai) = ai∗.

In an idealized setting where each agent observes the full
state (each agent’s partial observation τ i is equivalent to
the global state s), the optimal joint action-value function
Q∗ is a solution of a multi-agent Markov decision process
(MMDP) which is itself equivalent to a standard MDP with
AN as the action space [46]. In such cases, the joint action
a∗ = argmaxaQ

∗(τ ,a) is an Nash equilibrium from the
view of game theory [47]. Specifically, a Nash equilibrium is
achieved among a group of agent if the following expression
holds for all i ∈ {1, · · · , N}:

Q∗(τ ,a∗) = Q∗(τ , ai∗,a
−i
∗) ≥ Q∗(τ , ai,a−i∗),∀ai ∈ A,

(3)
where each agent acts with the best response ai∗ to others.

We adopt a compact notation for the joint action of all
agents except i as a−i∗ ,

[
a1∗, · · · , ai−1∗ , ai+1

∗ , · · · , aN∗
]
. The

following theorem shows that the Nash equilibrium a∗ can be
obtained when each agent i acts greedy according to Qi(τ i, ai)
if the optimal centralized value function Q∗(τ ,a) satisfies
assumption 1.

Corollary 1. If the optimal joint action-value function Q∗

satisfies assumption 1, then the optimal joint policy a∗ =
{a1∗, a2∗, · · · , aN∗}, where ai∗ = argmaxai Q

i(τ i, ai) and
Qi(τ i, ai) is the decentralized value function obtained by
solving (1).

Proof: According to theorem 1, we have ai∗ =
argmaxai Q

π∗

tot(τ , a
i, a−i∗). Thus, we have:

Qπ
∗

tot(τ , a
i∗, a−i∗) ≥ Qπ

∗

tot(τ , a
i, a−i∗),∀ai ∈ A.

The above expression holds for all i ∈ {1, 2, · · · , N}.

C. CTDE Under Centralized Greedy Behavior Assumption

To facilitate the freedom of each agent to make decision
based on its local observation without consulting the central-
ized value function, the following centralized greedy behavior
(CGB) assumption is usually adopted:

argmax
a

Qtot(τ ,a) =


argmax

a1
Q1
(
τ1, a1

)
...

argmax
aN

QN
(
τN , aN

)
 . (4)

This assumption establishes a structural constraint between
the centralized value function and the decentralized value
functions, which can be thought of as a simplified credit
assignment mechanism during the execution phase.

Many methods aim to impose a structure constraint between
centralized value function and decentralized value functions
to ensure the CGB assumption is satisfied. Specifically, VDN
[20] uses the following additive combination:

Qtot(τ ,a;θ) =

N∑
i=1

αiQ
i(τ i, ai; θi), αi ≥ 0, (5)

where θ is the collection of the parameter vector θi for
each agent’s action-value function. In VDN [20], all the
combination coefficients αi, i = 1, 2, · · · , N are set to 1.
QMIX [15] extends this additive value factorization to a more
general case by directly enforcing ∂Qtot

∂Qi ≥ 0, i ∈ {1, · · · , N}
via a non-negative mixing network f . With this, we can easily
obtain the following theorem.

Theorem 2. For QMIX, we have

max
a

Qtot(τ ,a) =

f

(
τ , argmax

a1
Q1(τ1, a1), · · · , argmax

aN
QN (τN , aN)

)
.

(6)

Proof:
Due to Qtot(τ ,a) = f

(
Q1(τ1, a1), . . . , QN (τN , aN)

)
,

where f is a state-dependent continuous monotonic function,
and a = (a1, . . . , aN). Thus, we have

Qtot
(
τ, argmaxa1 Q

1(τ1, a1), · · · , argmaxaN Q
N (τN , aN)

)
= f

(
max
a1

Q1(τ1, a1), . . . ,max
an

QN (τN , aN)

)
.

5

Since ∂f
∂Qi ≥ 0, given (ā2, . . . , ān), we have

f
(
Q1(τ1, a1), Q2(τ2, ā2), . . . , QN (τN , āN)

)
≤ f

(
max
a1

Q1(τ1, a1), Q2(τ2, ā2), . . . , QN (τN , āN)

)
for any a1. Similarly, given (ā1, . . . , āk−1, āk+1, . . . , āN), we
have

f
(
Q1(τ1, ā1), . . . , Qk(τk, ak), . . . , QN (τN , āN)

)
≤ f

(
Q1(τ1, ā1), . . . ,max

ak
Qk(τk, ak), . . . , QN (τN , āN)

)
for any ak. Finally, for any (a1, . . . , aN), we have

f
(
Q1(τ1, a1), . . . , QN (τN , aN)

)
≤f
(

max
a1

Q1(τ1, a1), . . . , QN (τN , aN)

)
≤f
(

max
a1

Q1(τ1, a1), . . . ,max
aN

QN (τN , aN)

)
.

Therefore, we obtain

max
a1,...,aN

f
(
Q1(τ1, a1), . . . , QN (τN , aN)

)
= f

(
max
a1

Q1(τ1, a1), . . . ,max
aN

QN (τN , aN)

)
,

which is the specific form of (6).
The above theorem shows that with the help of a non-

negative mixing network f , performing Q-learning is tractable
for Qtot(τ ,a) even in high dimensional joint action space.
So does VDN. However, this non-negative constraint is only a
sufficient condition of the CGB assumption, hence restricting
the algorithm’s representational complexity. To achieve the
best generalization, QTRAN [21] allows to search the best
hypothesis in a space equivalent to the one specified by the
CGB condition. In other words, QTRAN works in a larger
hypothesis space than both VDN and QMIX. However, opti-
mizing in a larger hypothesis space requires more optimization
efforts. Although a coordinate-decent-type method is proposed
in QTRAN to address this issue, the method’s scalability and
the range of practical use can be limited. See more discussions
on this in the experimental section.

D. Dealing with Non-Stationarity

The non-stationary problem is a key issue in the MARL set-
ting [48]. An environment that contains multiple agents, seen
from the angle of an individual agent, is constantly changing
with the changes of any other agent. Through this lens, the
CTDE (Centralized Training with Decentralized Execution)
scheme provides a simple solution to this issue by introducing
a fully observable critic (i.e., the centralized value function
Qtot). The fully observable critic accesses to the observation
and actions of all agents, and consequently the environment
becomes stationary even though the policy of other agents
changes. The fully observable critic also helps to simplify the
optimization problem and enables the algorithm to scale better
to more complex scenarios.

Alternatively, the CTDE strategy can be thought of as a way
to condition each agent’s policy on other agents’ joint policy

through the centralized observable critic (cf. Theorem 1). But
this idea can also be implemented in a more straightforward
way under fully decentralized settings without the need of
the centralized observable critic, as in Hyper Q-learning [49],
Distributed Q-learning [50] and multi-agent fingerprints [33].
Specifically, in Hyper Q learning, each agent learns a Q
function over all possible opponent strategies. Similarly, the
Distributed Q-learning [50] considers a decentralized coop-
erative multi-agent problem in fully observable environments
and the joint action is available for all agents in the training
time. The Distributed Q-learning algorithm updates the Q-
values only when there is a guaranteed improvement. In multi-
agent fingerprints, each agent’s value function conditions on
a fingerprint that disambiguates the age of the data sampled
from the replay memory, which helps to stabilize the training
process in fully decentralized settings.

IV. METHODS

In this section, we give the details of the proposed SMIX(λ)
method, which is a SARSA(λ) [51] style off-policy method
that aims at learning a flexible and generalizable centralized
value function within the CTDE framework.

A. Motivation

One of the most popular methods to estimate Qπtot in (1) is
based on the Q-learning, as in VDN, QMIX, and QTRAN.
However, to make this computationally tractable in a joint
action space, as discussed in III-C, the CGB assumption has
to be made. This potentially restricts the range of possible
learning algorithms for solving (1).

Alternatively, one can use an Expected-SARSA-based
method. The Expected SARSA estimates its TD (temporal
difference) target reinforcement signal with an expectation
value of the next state-action pairs in an on-policy way [23].
In other words, it does not have to perform a greedy search
over the joint action space and hence does not need the CGB
assumption either. This allows us to decouple the learning
algorithm and the CGB assumption. Through an iteration
process over Qπtot, the optimal joint action-value function can
be obtained [52]. Besides, it is well-known that the Q-learning
algorithm can be viewed as a particular case of Expected
SARSA in which the expectation over actions is replaced with
a deterministically greedy one [23], [34].

In what follows, we will propose a new off-policy value
function estimation method based on this idea and apply it
to centralized value function estimation within the CTDE
framework.

B. Importance-Sampling-Free Off-policy SARSA(λ)

Denoting the behavior policy as µ and the target policy as π,
a general off-policy strategy to evaluate the Q value function
(centralized value function Qtot in multi-agent setting) for π
using data τ generated by following µ can be expressed as
follows [31],

Q(τ ,a)← Q(τ ,a) + Eµ

∑
t≥0

γt

(
t∏
i=1

ρi

)
δπt

, (7)

6

Replay
Buffer

Environment

Centralized Q
Network

Loss

Centralized Critic
Network

𝑸𝟏 Network

gradient

Value-Based SMIX(𝝀) Actor-Critic-Based SMIX(𝝀)

global state 𝒔 (optional)global state 𝒔 (optional)

Training

Execution

⋯

gradient

𝑸𝑵 Network 𝝅𝟏 Network 𝝅𝑵 Network⋯

sa
m

p
le

store
episodes

Fig. 1. Applying IS-free SARSA(λ) to the centralized value function estimation for value-based and actor-critic-based methods. (The left and right dashed
boxes show the value-based SMIX(λ) and actor-critic based SMIX(λ) algorithms, and the two solid boxes represent the modules involved in the centralized
training and decentralized execution respectively. Each agent’s Q network (or π network) only has access to its own observation, and the centralized Q
network (or critic network) aggregates all agents’ observation information.)

where each ρi is a non-negative coefficient and satisfies∏t
i=1 ρi = 1 when t = 0. The error term δπt is generally

written as the following expected TD-error,

δπt = rt+1 + γEπQ (τ t+1, ·)︸ ︷︷ ︸
1-step TD-target

−Q (τ t,at), (8)

where EπQ(τ , ·) =
∑
a π(a|τ)Q(τ ,a).3 In particular, for

the importance sampling (IS) method, each ρi in (7) is
defined as the relative probability of their trajectories occurring
under the target policy π and behavior policy µ, also called
importance sampling ratio, i.e., ρi = π(ai|τ i)

µ(ai|τ i)
.

Despite its theoretical soundness, the importance sampling
(IS) method faces great challenges under the setting of multi-
agent environments: 1) it suffers from large variance due to the
product of the ratio [54], and 2) the “curse of dimensionality”
issue of the joint action space makes it impractical to calculate
the π(ai|τ i) even for a single timestep i, when the number of
agents is large. Previously, Liu et al. proposed a method that
effectively addresses the first issue by avoiding calculating the
product over the trajectories [54], but how to solve the second
one remains open.

The above analysis highlights the need for exploring alterna-
tive approaches that can perform off-policy learning without

3The policy evaluation strategy of many popular methods can be expressed
as (7), including SARSA(λ) [51], off-policy importance sampling methods
[32], off-policy Q(λ) method [24], tree-backup method, TB(λ) [53] and
Retrace(λ) [31]. These methods differ in the definition of the coefficient ρi
and error term δπt [24], [31].

importance sampling in multi-agent settings. To achieve the
above goal, the key idea of SMIX(λ) is to further simplify
the coefficient ρi in (7), so as to reduce the variance of the
importance sampling estimator and to potentially bypass the
curse of dimensionality involved in calculating π(·|τ).

Specifically, we relax each coefficient ρi = 1.0 in (7) use
the λ-return [23] as the TD target estimator, which is defined
as follows:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t , (9)

where G(n)
t = rt+1 + γrt+2 + · · ·+ γnEπQ (τ t+n,at+n; θ−)

is the n-step return and θ− are the parameters of the target
network.

Replacing 1-step TD-target in (8) with Gλt , and setting ρi =
1.0 for all i in (7), we have (the update step-size α is omitted
for simplification),

Q(τ ,a)← Q(τ ,a) + Eµ

∑
t≥0

γt(Gλt −Q(τ t,at))

. (10)

In this paper, we call the method using (10) as the TD-
target for off-policy value function estimation as “IS-free off-
policy SARSA(λ)”. Next, we use this method to estimate
the centralization value function in multi-agent reinforcement
learning and analyze its theoretical properties of this method
in section V.

7

C. The SMIX(λ) Algorithm

SMIX(λ) is trained end-to-end and the loss function for the
centralized value function Qπtot has the following form:

Lt(θ) =

Nb∑
i=1

[
(ytoti −Qπtot(τ ,a; θ))2

]
, (11)

where ytoti = Gλt is defined in (9) and is estimated through
experience replaying, Nb is the batch size.

In implementation, SMIX(λ) use an experience replay [1]
to store the most recent off-policy data. The experience replay
usually stores a queue of experiences (tuples of [observation,
action, reward, successor observation]). In SMIX(λ), however,
each tuple in the experience replay stores one complete trajec-
tory (s0, τ 0,a0, r1, · · · , sT−1, τT−1,aT−1, rT , sT) so as to
evaluate the λ-return target.

The QMIX [15] structure is adopted as the basic deep
network architecture for the proposed SMIX(λ). Each agent
i has its own decentralized Qi(τ i, ai) network composed of
GRU [55] modules. Then all the individual Qi values are
passed into a mixing network to calculate the joint action-
value Qπtot. The weight of the mixing network is generated by
hypernetworks [56] using the global state s. All the neural
networks are trained end-to-end and the centralized value
function Qπtot is updated by minimizing the loss (11).

The general training procedure for SMIX(λ) is provided
in Algorithm 1. Firstly, the replay buffer is filled with the
trajectories and the oldest data is replaced when the buffer
is full. Secondly, we sample a batch of episodes uniformly
from the replay buffer to calculate the λ-return TD target.
Then, the parameters of behavior network θ are updated by
minimizing the loss function. Finally, we replace the target
network’s parameters θ− with θ periodically and iterate the
above process.

It is worth noting that our method of training a centralized
value function is a general method and can be easily applied
to other CTDE methods, include value-based methods (such
as VDN [20]), actor-critic-based methods (e.g. COMA [14]),
and even fully decentralized methods (e.g. independent Q-
learning (IQL) [57]). Figure 1 gives the overall architecture
of a generalized version of SMIX(λ).

D. Representational Complexity

The hypothesis space (or hypothesis set) H is a space of
all possible hypotheses for mapping inputs to outputs that can
be searched [58], [59]. To learn a stable and generalizable
CVF, choosing a suitable hypothesis space is essential, which
is related not only to the characteristic of the problem domain
but also to how the learned system is deployed. In particular,
in multi-agent systems, all agents’ joint action space increases
exponentially with the increase of the number of agents,
implying that the hypothesis space of CVF should be large
enough to account for such complexity. However, to reduce
optimization costs and enable decentralized execution, it is
often necessary to impose some constraints on centrally valued
functions. Figure 2(a) shows the relationship of hypothesis
spaces under some different constraints.

The centralized value function Qtot obtained by solving
optimization problem (1) can represent any function that fits
assumption 1. Our SMIX(λ) also uses the non-negative con-
straint during training. This makes QMIX [15] and SMIX(λ)
share the same representational complexity of centralized
value function. However, SMIX(λ) is more flexible than
QMIX due to the decoupling of updating rule and CGB as-
sumption during training. QTRAN [21] directly optimizes the
joint action-value function, which gives this method a stronger
representational complexity than QMIX and SMIX(λ). Figure
2(b) shows the relationship of representational complexity for
several different algorithms.

QTRANQMIXVDNCGBMore Constraints SMIX(𝝀)

(a) (b)

Fig. 2. (a) The size of hypothesis space corresponding to different constraints.
(b) The relationship of representational complexity for several different
algorithms.

We use an m-step cooperative matrix game [60] for two
agents to illustrate the effects of representational complexity of
QMIX, SMIX(λ) and QTRAN. Similar matrix games are usu-
ally used to study the algorithm’s representational complexity
[15], [21], [60]. In the m-step matrix game, zero rewards lead
to termination, and the differentiating states are located at the
terminal ends. Figure 3 illustrates the m-step matrix game for
m = 5. The optimal policy is to take the top left joint action
and finally take the bottom right action, giving an optimal total
payoff of m+ 3.

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

1

1

4

1

1

×

×× ×

×

×

× ×

3 times

3 times initial state

Fig. 3. m-step matrix game for m = 5 case.

Figure 4 gives the results on the m-step matrix game. One
can see that although our SMIX(λ) learns the fast, QTRAN
achieves the highest return. This is as expected as QTRAN
has the most highest representational complexity among the
compared ones, allowing it to achieve the lowest bias in
this relatively simple scenario. However, with the increasing
complexity of search space (as in SMAC [25]), a larger
hypothesis space could turn out to be a disadvantage as the
variance could dominate the generalization error, making the
task of finding the best hypothesis quite challenging. In such
cases, methods like ours would be a better choice, as illustrated
in the experimental Section.

8

Algorithm 1 Training Procedure for SMIX(λ)
1: Initialize the behavior network with parameters θ, the target network with parameters θ−, empty replay buffer D to capacity
ND, training batch size Nb

2: for each training episode do
3: for each episode do
4: for t = 1 to T − 1 do
5: Obtain the partial observation ot = {o1t , · · · , oNt } for all agents and global state st
6: Select action ait according to ε-greedy policy w.r.t agent i’s decentralized value function Qi for i = 1, · · · , N
7: Execute joint action at = {a1, a2, · · · , aN} in the environment
8: Obtain the global reward rt+1, the next partial observation oit+1 for each agent i and next global state st+1

9: end for
10: Store the episode in D, replacing the oldest episode if |D| ≥ ND
11: end for
12: Sample a batch of Nb episodes ∼ Uniform(D)
13: Calculate λ-return targets ytoti according to (9) using θ− for each timestep
14: Update θ by minimizing

∑T−1
t=1

∑Nb

i=1

[
(ytoti −Qπtot(τ ,a; θ))2

]
15: Replace target parameters θ− ← θ every C episodes
16: end for

20k 40k 60k 80k 100k

Timesteps

4

5

6

7

8

M
ea

n
Te

st
R

et
ur

n

SMIX(λ)
QMIX
QTRAN

Fig. 4. Average return of QMIX, SMIX(λ) and QTRAN on 5-step matrix
game for 100k training steps. (The mean and 95% confidence interval are
shown across 20 independent runs.)

V. THERETICAL ANALYSIS

In this section, we give the convergence analysis of the
proposed SMIX(λ) algorithm, by first building the connection
between SMIX(λ) and a previous method named Q(λ) [24],
originally proposed for off-policy value function evaluation
under single-agent settings.

Denoting Gπ as the λ-return estimator (cf., 9) for the action-
value of the target policy π, the goal of an off-policy method
is to use the data from the behavior policy µ to correct Gπ ,
in a way such that the following criterion is met,

Eπ
[
Gπ
]

= Eµ
[
Gµ,π

]
, (12)

where Gµ,π is the corrected return of off-policy data.
The most commonly used method for calculating the Gµ,π

is the importance sampling (IS) method which multiply each
reward with a weighted term to satisfy (12). Indeed, the
motivation behind SMIX(λ) is to simplify the IS method so
that it can be used in multi-agent settings. If we define the IS
ratio at timestep t as: ρt = π(at|τ t)

µ(at|τ t)
, then the n-step return

using IS can be defined as:

G
(n)
t =rt+1 + γρt+1rt+2 + · · ·

+ γn−1ρt+1 · · · ρt+n−1rt+n
+ γnρt+1 · · · ρt+nEπQSMIX(τ t+n, ·).

(13)

Thus, we have the following form of Gµ,π:

Gµ,π = (1− λ)

∞∑
n=1

λn−1G
(n)
t . (14)

Plugging (13) into (14), we have:

Gµ,π ← QSMIX (τ t,at) +

∞∑
k=t

(
k∏

i=t+1

γλρi

)
δπk ,

δπk =
(
rk+1 + γρk+1Q

SMIX (τ k+1,ak+1)−QSMIX (τ k,ak)
)
.

(15)
In SMIX(λ), all the importance sampling factor are relaxed
to 1.0, then corresponding to (7), the update rule of SMIX(λ)
can be expressed as4,

QSMIX (τ t,at)← QSMIX (τ t,at) + Eµ

[
∞∑
k=t

(
k∏

i=t+1

λγ

)
δπk

]
,

δπk =
(
rk+1 + γEµQ

SMIX (τ k+1, ·)−QSMIX (τ k,ak)
)
.

(16)
In contrast with the multiplicative operation for off-policy

learning, an additive-type operation is used in Q(λ) [24]. In
particular, an additive correction term ∆µ,π

r , is added to each
reward when calculating Gµ,π in (12) and get:

G
(n)
t = (rt+1 + ∆µ,π

rt+1
) + · · ·+ γn−1(rt+n + ∆µ,π

rt+n
)

+ γnEπQQ(λ)(τ t+n, ·).
(17)

The major advantage of this additive off-policy correction is
that there is no product of the ratio and no the joint policy

4We consider the expected form of QSMIX (τk+1,ak+1) in (15) and the
training data is sampled from a replay buffer.

9

π(a|τ) involved, hence completely bypassing the limitations
of the IS method5.

Specifically, the updating rule of Q(λ) method is [24]:

QQ(λ)(τ t,at)← QQ(λ)(τ t,at) + Eµ

[
∞∑
k=t

(
k∏

i=t+1

λγ

)
δ̂πk

]
,

δ̂πk = (rk+1 + ∆µ,πrk+1) ,

∆µ,πrk+1 = γEπQ
Q(λ) (τ k+1, ·)−QQ(λ) (τ k,ak) .

(18)
By comparing (16) and (18), we see that our SMIX(λ) and off-
policy Q(λ) are essentially equivalent except that SMIX(λ)
calculates EµQSMIX (τ k+1, ·) in δπk while Q(λ) calculate
EπQQ(λ) (τ k+1, ·) in δ̂πk .

The following theorem states that when π and µ are suf-
ficiently close, the difference between the output of SMIX(λ)
and Q(λ) is bounded. This implies that SMIX(λ) is consistent
with the Q(λ) algorithm.

Theorem 3. Suppose we update the value function from
QSMIX
n (τ t,at) = Q

Q(λ)
n (τ t,at), where n represents the

n-th update. Let ε = maxτ ‖π(·|τ) − µ(·|τ)‖1, M =

maxτ ,a |QQ(λ)
n (τ ,a)|. Then, the error between QSMIX

n+1 (τ t,at)

and QQ(λ)
n+1 (τ t,at) can be bounded by the expression:

|QSMIX
n+1 (τ t,at)−QQ(λ)

n+1 (τ t,at) | ≤
εγ

1− λγ
M. (19)

Proof: First, we have,∣∣∣δπt − δ̂πt ∣∣∣ =
∣∣∣γEµQSMIX

n (τ t+1, ·)− γEπQQ(λ)
n (τ t+1, ·)

∣∣∣
= γ

∣∣∣∣∣∑
a

µ(a|τ t+1)QSMIX
n (τ t+1, ·)−

∑
a

π(a|τ t+1)QQ(λ)
n (τ t+1, ·)

∣∣∣∣∣
≤ γεM.

Thus,∣∣∣QSMIX
n+1 (τ t,at)−QQ(λ)

n+1 (τ t,at)
∣∣∣

=

∣∣∣∣∣Eµ
[∞∑
k=t

(
k∏

i=t+1

λγ

)
δπk

]
− Eµ

[∞∑
k=t

(
k∏

i=t+1

λγ

)
δ̂πk

]∣∣∣∣∣
=

∣∣∣∣∣Eµ
[∞∑
k=t

(
k∏

i=t+1

λγ

)(
δπk − δ̂πk

)]∣∣∣∣∣
≤

∣∣∣∣∣Eµ
[∞∑
k=t

(
k∏

i=t+1

λγ

)
(γεM)

]∣∣∣∣∣
≤ Eµ

[
1

1− λγ
(γεM)

]
=

εγ

1− λγ
M.

Therefore, the expression (19) holds.
This theorem indicates that SMIX(λ) has the similar conver-

gence property to Q(λ) when the difference between behavior
policy µ and target policy π is bounded by ε, which is
ε = maxτ ‖π(·|τ)−µ(·|τ)‖1. In practice, this condition can

5But under the condition that the behavior policy µ should be close to the
target policy π, which under our experience replay setting should not be a
problem (cf., [36]).

be easily implemented by periodically replacing the current
behavior policy with the old target policy and limiting the
size of the replay memory. The following theorem presents
the convergence property of the Q(λ) method [24].

Theorem 4. [24] Consider the sequence of Q-functions
computed according to (18) with fixed policy π and µ. Let
ε = maxτ ‖π(·|τ) − µ(·|τ)‖1. If λε < 1−γ

γ , then under the
following conditions:
•
∑
t≥0 P{τ t,at = τ ,a} ≥ D > 0., where P(τ ,a)

represents the visit frequency,
• Eµn

T 2
n <∞, where Tn is the length of τn,

•
∑
n≥0 αn(τ ,a) = ∞,

∑
n≥0 α

2
n(τ ,a) < ∞, where αn

is the step-size of the n-th iteration,
we have, almost surely:

lim
n→∞

QQ(λ)
n (τ ,a) = Qπ(τ ,a).

The above analysis shows that SMIX(λ) and Q(λ) have
similarities both formally and analytically. However, when
applying them to the problem of multi-agent reinforcement
learning, their computational complexity is fundamentally dif-
ferent. This is because to calculate the additive error correction
term, Q(λ) has to estimate the expectation over target policy π
in (18), but this is unrealistic in the multi-agent setting since
the dimension of the joint action space grows exponentially
with the number of agents. By contrast, the SMIX(λ) relies
on the experience replay technique to compute the expectation
in (16), whose computational complexity grows only linearly
with the number of training samples, regardless of the size of
joint action space and the number of agents involved. Such
scalability makes our method more appropriate for the task of
multi-agent reinforcement learning, compared to the Q(λ) and
QTRAN (which suffers from the same problem as Q(λ)).

Finally, before ending this section, we summarize some of
the key characteristics of QMIX and SMIX(λ) in Table I.

TABLE I
THE COMPARISON OF QMIX AND SMIX(λ).

Property QMIX SMIX(λ)

Uses experience replay 3 3

CVF estimation Q-learning based Expected-SARSA based
TD target one-step return λ-return

Algorithm’s Flexibility CGB assumption No explicit CGB
Stable point of convergence Q∗ Q∗

VI. EXPERIMENTS

In this section, we first describe the environmental setup and
the implementation details of our method. Then we give the
experimental results and ablation study. The code of SMIX(λ)
is available at: https://github.com/chaovven/SMIX.

A. Environmental Setup

We evaluate our SMIX(λ) in the StarCraft Multi-Agent
Challenge (SMAC) [25] environment. The SMAC is chosen as
our testbed mainly because of the following two reasons: (1)

10

TABLE II
THE SCENARIOS CONSIDERED IN OUR EXPERIMENTS.

Name Ally Units Enemy Units Type

3m 3 Marines 3 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric

2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots heterogeneous & symmetric
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots heterogeneous & symmetric

2m vs 1z 2 Marines 1 Zealot asymmetric
2s vs 1sc 2 Stalkers 1 Spine Crawler asymmetric
3s vs 3z 3 Stalkers 3 Zealots asymmetric
1c3s5z 1 Colossi, 3 Stalkers & 5 Zealots 1 Colossi, 3 Stalkers & 5 Zealots heterogeneous & symmetric
MMM 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 2 Marauders & 7 Marines heterogeneous & symmetric

SMAC provides a set of rich cooperative scenarios that chal-
lenge algorithms to handle significant partial observability and
credit assignment problem [14]. These problems bring a great
challenge for centralized value function estimation. (2) SMAC
also provides an open-source Python-based implementation
of several key algorithms, which allows for fair comparisons
between different methods.

SMAC is based on the popular real-time strategy (RTS)
game StarCraft II6. Each unit can be seen as an individual
agent which has a complex set of micro-actions. Different from
the full StarCraft II game, SMAC focuses on fully cooper-
ative, decentralized micromanagement multi-agent problems.
Micromanagement means the task of controlling individual or
grouped units to fight enemy units. While high-level strate-
gies such as economy and resource management, known as
macromanagement, are not considered in SMAC.

SMAC provides several challenging micro scenarios that
aim to evaluate different aspects of cooperative behaviors of
a group of agents. In each scenario, two groups of agents
are placed on the map with random initial positions within
groups at the beginning of each episode. Each agent can
only receive local observations within its sight range, which
introduces significant partial observability. Extra global state
information is available during centralized training. The units
of the first group (allied units) are controlled by decentralized
agents, while the units of the other group (enemy units) are
controlled by built-in heuristic game AI bot with difficulty
ranging from very easy to cheat insane. In our experiments,
we set the difficulty of the game AI bot to very difficult
for all experiments. Available actions for each agent con-
tain: move[direction], attack[enemy id], stop,
and noop. Agents receive a joint reward equal to the total
damage dealt on the enemy units. We use the default setting
for the reward. Refer to [25] for more details.

The following 3 types of scenarios are considered in our
experiments: (1) homogeneous and symmetric units, (2) het-
erogeneous and symmetric units, (3) asymmetric units. The list
of scenarios considered in our experiment is presented in Table
II. Figure 5 shows the screenshots of two SMAC scenarios
used in our experiments.

6StarCraft II is a trademark of Blizzard EntertainmentTM.

(a) 3 Staklers vs 5 Zealots (b) 8 Marines vs 8 Marines

Fig. 5. Screenshots of two SMAC scenarios.

We use test win rate as the evaluation metric, which is
proposed in [25] and is the default evaluation metric in the
SMAC environment. The test win rate is evaluated in the
following procedure: the training process is interrupted after
every 20,000 timesteps, then 24 independent test episodes are
run with each agent performing greedy action selection in a
decentralized way. Test win rate refers to the percentage of
episodes where the agents defeat all enemy units within the
time limit.

B. Implementation Details

The agent network architecture of SMIX(λ) consists of a 64-
dimensional GRU [55]. One 64-dimensional fully connected
layer with ReLU activation function before GRU is applied for
processing the input. The layer after GRU is a fully connected
layer of 64 units, which outputs the decentralized action-values
Qi(τ, ·) of agent i. All agent networks share parameters for
reducing the number of parameters to be learned. Thus the
agent’s one-hot index i is concatenated onto each agent’s
observations. The agent’s previous action is also concatenated
to the input.

Based on the basic network architecture of QMIX [15],
SMIX(λ) performs the centralized value function estimation
with λ-return (λ = 0.8) calculated from a batch of 32 episodes.
The batch is sampled uniformly from a replay buffer that
stores the most recent 1500 episodes. We run 4 episodes
simultaneously. Then we perform training on those fully
unrolled episodes. The target network is updated after every
200 training episodes. λ is set to 0.8.

The ε-greedy method is used in the training procedure for
exploration. ε is annealed linearly from 1.0 to 0.05 across the

11

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100
Te

st
W

in
R

at
e

%

SMIX(λ)
COMA-R
VDN-R
IQL-R
QTRAN-R

QMIX
COMA
VDN
IQL
QTRAN

(a) 3m

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(b) 8m

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(c) 2s3z

500k 1.00m 1.50m 2.00m 2.50m 3.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(d) 3s5z

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(e) 2m vs 1z

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(f) 2s vs 1sc

500k 1.00m 1.50m 2.00m 2.50m 3.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(g) 3s vs 3z

500k 1.00m 1.50m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(h) 1c3s5z

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(i) MMM

Fig. 6. Test win rates for SMIX(λ), revised methods (COMA-R, VDN-R, IQL-R, QTRAN-R) and comparison methods (QMIX, COMA, VDN, IQL, QTRAN)
in nine different scenarios. Revised methods are created by replacing original methods’ CVF estimation procedures with the one adopted by SMIX(λ). The
performance of our method and revised methods and plotted with solid line, with their counterparts shown with dashed lines of the same color. The mean
and 95% confidence interval are shown across 10 independent runs. The legend in (a) applies across all plots.

first 50k timesteps for all experiments. The discount factor
γ is set to 0.99, and the RMSprop optimizer is used with
learning rate lr = 0.0005 and α = 0.99 without weight decay
or momentum during training.

C. Comparative Evaluation

We compare our SMIX(λ) with state-of-the-art algorithms
QMIX [15] and COMA [14], which currently perform the
best on the SMAC benchmark. VDN [20] and IQL [57] are
chosen as baselines for comparisons. QTRAN [21] is also
implemented in SMAC for comprehensive comparison.

The results of all methods in the training process are plotted
in Figure 6 and we also provide quantitative comparisons of
our methods and their counterparts after training for 1 million
steps in Table III. Overall, SMIX(λ) significantly outperforms
all the comparison methods in heterogeneous or asymmetric
scenarios (i.e., scenarios except 3m and 8m), while performing

comparably to them in homogeneous and symmetric scenarios
(i.e., 3m and 8m) both in terms of the learning speed and final
performance.

In homogeneous and symmetric scenarios such as 3m
and 8m, COMA is only slightly faster than SMIX(λ) but
underperforms SMIX(λ) in terms of the final performance.
In asymmetric (e.g., 3s vs 3z, 2s vs 1sc) or heterogeneous
(e.g., 2s3z, 3s5z, 1c3s5z) maps, COMA fails to solve these
scenarios effectively. It’s worth noting that QTRAN does not
work very well in these complex environments, which is
also consistent with the experimental results of other authors
[60]. One possible reason is that QTRAN needs to address a
very large optimization problem in the high-dimensional joint
action space. This highlights the importance of improving the
performance in value function estimation.

Due to the poor performance of COMA and QTRAN,
QMIX can be seen as the state-of-the-art on this benchmark.

12

However, the learning speed of SMIX(λ) is almost twice as
fast as QMIX. In 3s5z, SMIX(λ) (solid red line) achieves
a nearly 90% win rate, while the best comparison method
QMIX (dotted red line) achieves about only 70% test win
rate. In 2s vs 1sc, SMIX(λ) also requires less than half the
number of samples of QMIX and other comparison methods
to reach the asymptotic performance. The largest performance
gap can be seen in 3s vs 3z map (Figure 6g). QMIX needs
to be trained for nearly 3 million timesteps to achieve a 100%
test win rate, while half of the timesteps are sufficient for
SMIX(λ) to achieve the same win rate. In MMM, we can
find an interesting result that the VDN can achieve better
performance than QMIX (see Figure 6i). This indicates that a
simpler network structure can also have enough representative
capacity and the reason for VDN’s superior performance is that
a simpler network architecture only needs a relatively small
number of samples for training. Furthermore, by incorporating
the proposed centralized training method, VDN’s performance
can be further improved, which implies that the bottleneck
of VDN and QMIX may be the bias and variance of the
CVF estimation. On the whole, the superior performance of
SMIX(λ) using λ-return with off-policy episodes presents a
clear benefit over the one-step estimation of QMIX.

D. Generalizing SMIX(λ) to Other MARL Algorithms
SMIX(λ) focuses on centralized value function evaluation

with λ-return calculated from off-policy episodes. This method
could ideally be generalized to other MARL algorithms incor-
porating critic estimation, including critic-only and actor-critic
algorithms.

To demonstrate the benefits of our approach, we generalize
the CVF estimation procedure of SMIX(λ) to the following
algorithms: COMA, VDN, IQL and QTRAN. We achieve
these by replacing their original value function estimation
procedure with ours (see Section IV), yielding four revised
algorithms called COMA-R, VDN-R, IQL-R and QTRAN-
R respectively. Figure 6 gives the comparisons between our
methods and their counterparts. Overall, most of the extended
methods (solid line) perform on par or significantly better than
their counterparts (in the same color but dashed line) in most
scenarios both in terms of the final win rate and learning speed.

VDN-R considerably improves the performance of VDN.
Especially under challenging scenarios such as 3s5z, VDN-
R achieves about 75% final win rate, which is more than
twice as that of VDN (nearly 30%). Such improvement may be
contributed to λ-return and the independence of the unrealistic
centralized greedy assumption during the learning phase.

Furthermore, we find that VDN-R performs even better
than QMIX in most scenarios. Recall that VDN uses a linear
combination of decentralized Q-values (and so does our VDN-
R) and QMIX extends VDN by combining decentralized Q-
values in a non-linear way. Thus, QMIX can represent a richer
class of CVF than VDN. However, our results indicate that
the performance bottleneck of VDN may not be the limited
representational capacity, but how to effectively balance the
bias and variance in the estimation of CVF.

Similarly, by comparing QTRAN-R and QTRAN in Fig-
ure 6, one can see significant performance improvement by

replacing QTRAN’s CVF with ours, indicating that the CVF
estimation plays an essential role in the QTRAN system and
our proposed method is beneficial.

Also, COMA-R improves COMA’s performance in most
scenarios, which can be considered as a success of utilizing
the off-policy data, as COMA also adopts λ-return but uses
only the on-policy data.

Another observation is that our method also works for IQL,
which is a fully decentralized MARL algorithm. This suggests
that our method is not limited to centralized value function
estimation but also applicable to decentralized cases.

It is worth mentioning that the extended methods may not
make improvements if the original methods do not work, e.g.,
QTRAN, COMA, IQL, and their counterparts do not work in
3s5z scenario (see Figure 6d and Table III). The reason may
be that the main limitations of QTRAN, COMA and IQL on
3s5z do not lie in the inaccurate value function estimation,
but rather in other problems, e.g., scaling not well to a large
number of agents and multi-agent credit assignment problem.

E. Sample Efficiency Analysis

To study the sample efficiency of SMIX(λ), we fix the
amount of samples used in training procedure to compare
the sample efficiency of different algorithms. The quantitative
comparisons of different methods after training for 1 million
steps (1 million interactions with the environment) are pre-
sented in Table III.

Overall, SMIX(λ) achieves the best performance consis-
tently across all scenarios among compared algorithms, after
being trained from the same number of interaction with the
environment. This can be partially explained by the fact that
our algorithm is off-policy by design. In other words, it has
the capability to learn from the previous experience/policies,
hence improving the sample efficiency.

F. Ablation Study

We perform the ablation experiments to investigate the
necessity of balancing the bias and variance and the influence
of utilizing the off-policy data.
λ-Return vs. n-Step Returns. To investigate the necessity
of balancing the bias and variance in multi-agent problems,
we adjust the parameter λ, where larger λ corresponds to
smaller bias and larger variance whereas smaller λ indicates
the opposite. Especially, λ = 0 is equivalent to one-step
return (corresponding to the largest bias and the smallest
variance); λ = 1 is equivalent to Monte-Carlo (MC) return
(∞-step, corresponding to the smallest bias and the largest
variance). We also evaluate a variant named SMIX(n), which
uses n-step return in place of λ-return as the TD target, i.e.,
ytott =

∑n
i=1 γ

i−1rt+i + γnQ(τ t+n,at+n; θ−).
As Figure 7a and 7d show, SMIX(λ) with λ = 0.8 con-

sistently achieves the best performance in selected scenarios.
The method with λ = 1 (MC return, blue line) performs
the worst in 3s5z, while λ = 0 (one-step return, green line)
performs the worst in 2s vs 1sc. These results reveal that the
large variance of MC return or large bias of one-step return
may degrade the performance. Similar results could also be

13

TABLE III
MEAN, STANDARD DEVIATION, AND MEDIAN OF TEST WIN RATE PERCENTAGES AFTER TRAINING FOR 1 MILLION TIMESTEPS IN NINE DIFFERENT

SCENARIOS.

Algorithms SMIX(λ) QMIX COMA-R COMA VDN-R VDN IQL-R IQL QTRAN-R QTRAN

3m mean ± std 99 (±0) 95 (±3) 93 (±8) 92 (±2) 98 (±0) 95 (±2) 91 (±4) 83 (±9) 84 (±10) 29 (±11)
median 99 95 97 93 98 95 94 86 86 29

8m mean ± std 91 (±3) 90 (±3) 92 (±2) 90 (±2) 94 (±3) 86 (±5) 80 (±5) 59 (±15) 72 (±6) 24 (±17)
median 90 89 93 91 93 87 79 58 72 21

2s3z mean ± std 90 (±4) 81 (±7) 44 (±18) 24 (±6) 78 (±14) 64 (±16) 32 (±8) 14 (±10) 5 (±8) 9 (±10)
median 91 81 47 24 79 71 31 13 2 5

3s5z mean ± std 61 (±11) 16 (±12) 0 (±0) 0 (±0) 29 (±12) 1 (±2) 0 (±0) 0 (±0) 0 (±0) 0 (±0)
median 62 11 0 0 26 0 0 0 0 0

2m vs 1z mean ± std 99 (±0) 69 (±38) 0 (±0) 0 (±0) 99 (±0) 99 (±0) 99 (±0) 85 (±27) 20 (±29) 7 (±4)
median 100 99 0 0 99 99 100 99 4 6

2s vs 1sc mean ± std 94 (±5) 39 (±19) 97 (±4) 77 (±11) 96 (±2) 86 (±8) 92 (±6) 51 (±22) 63 (±24) 6 (±11)
median 96 45 100 78 97 88 94 54 70 0

3s vs 3z mean ± std 84 (±14) 15 (±20) 0 (±0) 0 (±0) 67 (±25) 27 (±9) 35 (±21) 5 (±4) 0 (±0) 0 (±0)
median 88 9 0 0 83 27 31 6 0 0

1c3s5z mean ± std 92 (±3) 72 (±32) 24 (±19) 27 (±13) 84 (±3) 61 (±5) 11 (±5) 5 (±6) 21 (±29) 9 (±10)
median 93 88 18 28 85 61 11 3 9 8

MMM mean ± std 91 (±4) 59 (±15) 20 (±17) 34 (±18) 91 (±9) 72 (±17) 35 (±14) 20 (±19) 5 (±4) 4 (±5)
median 91 61 22 39 94 78 34 15 2 3

500k 1.00m 1.50m 2.00m 2.50m 3.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

SMIX(λ), λ=0 (1-step)
SMIX(λ), λ=0.2
SMIX(λ), λ=0.4
SMIX(λ), λ=0.6
SMIX(λ), λ=0.8
SMIX(λ), λ=1 (MC)
QMIX

(a) λ for SMIX(λ) (3s5z)

500k 1.00m 1.50m 2.00m 2.50m 3.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

SMIX(λ)
SMIX(n), n=1
SMIX(n), n=4
SMIX(n), n=16
SMIX(n), MC
QMIX

(b) Step n for n-step SMIX (3s5z)

500k 1.00m 1.50m 2.00m 2.50m 3.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

SMIX(λ), b=5000
SMIX(λ), b=2500
SMIX(λ), b=1500
SMIX(λ), b=500
SMIX(λ), On-Policy
QMIX

(c) Buffer size b for SMIX(λ) (3s5z)

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

SMIX(λ), λ=0 (1-step)
SMIX(λ), λ=0.2
SMIX(λ), λ=0.4
SMIX(λ), λ=0.6
SMIX(λ), λ=0.8
SMIX(λ), λ=1 (MC)
QMIX

(d) λ for SMIX(λ) (2s vs 1sc)

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

SMIX(λ)
SMIX(n), n=1
SMIX(n), n=4
SMIX(n), n=16
SMIX(n), MC
QMIX

(e) Step n for n-step SMIX (2s vs 1sc)

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

SMIX(λ), b=5000
SMIX(λ), b=2500
SMIX(λ), b=1500
SMIX(λ), b=500
SMIX(λ), On-Policy
QMIX

(f) Buffer size b for SMIX(λ) (2s vs 1sc)

Fig. 7. Sensitivity of SMIX(λ) to selected hyperparameters in two different scenarios. The mean and 95% confidence interval is shown across 10 independent
runs. The performance of the baseline (QMIX) is shown as a dashed red line. (a) and (d) show the sensitivity of SMIX(λ) to the value of λ; (b) and (e) show
the results using n-step TD with different backup steps; (c) and (f) show the comparison between SMIX(λ) and its on-policy version.

seen in SMIX(n) (Figure 7b and 7e), where SMIX(n) with
n = 4 performs the best in 3s5z, while the one with n = 16
performs the best in 2s vs 1sc. It is not easy to find the
same n for SMIX(n) as SMIX(λ) which sets λ = 0.8 and
performs consistently well across different maps. These results
are consistent with the results in literature [61] that multi-step
returns are beneficial for experience replay based algorithms.
In summary, it is necessary to balance the trade-off between
bias and variance in multi-agent problems, and λ-return could

serve as a convenient method to achieve such a trade-off.

Incorporating Off-Policy Data vs. Pure On-Policy Data.
To investigate the influence of utilizing the off-policy data,
we perform experiments to compare SMIX(λ) against its on-
policy version by scaling the size of the replay buffer. The
on-policy version of SMIX(λ) corresponds to SMIX(λ) with
buffer size b = 4 (the most recent 4 episodes in the replay
buffer are all on-policy data), while the off-policy SMIX(λ)
are the ones with buffer size b > 4, where the percentage of

14

off-policy data increases with the size of the replay buffer.
As shown in Figure 7c and 7f, all the variants of SMIX(λ)

incorporating off-policy data (b > 4) perform better than the
on-policy version (b = 4) in selected scenarios. Notably, the
performance of SMIX(λ) with b = 1500 is almost twice that
of the on-policy version both in terms of the final win rate
and learning speed in 3s5z. Note that 3s5z (8 units) map
is more complex than 2s vs 1sc (2 units) in terms of the
number of agents, and consequently, the joint action space
of the former is much larger. However, more off-policy data
does not always lead to better performance, as the method
with b = 5000 (green line) performs worse than the one with
b = 1500 (solid red line) in both scenarios. Actually, the buffer
size is corresponding to the ε in Theorem 3 which measures
the mismatch between the target policy π and the behavior
policy µ. A smaller buffer size makes SMIX(λ) less sample
efficient but a larger buffer size results in a looser error bound
which biases the CVF estimation. This may explain why the
performance degrades once the buffer size exceeds a threshold
value. And our experimental results suggest that a moderate
buffer size of 1500 could be a good candidate.
Effects of Non-negative Constraints. To illustrate the ra-
tionality of assumption 1, we compare the performance of
SMIX(λ) and QMIX with their ablations without this non-
negative constraint.

Figure 8 gives comparative results of SMIX(λ), and QMIX
with their ablations without “positive weights”. We can see that
all these algorithms suffer from drastic performance fluctuation
when the additive constraint is removed. This means that
non-negative constraint does play a positive role in multi-
agent learning. This figure also shows that even without the
requirement of non-negative weights, our SMIX(λ) is still
able to achieve competitive performance with the non-negative
version of QMIX.

TABLE IV
THE SCALABILITY OF SMIX(λ) AND QMIX AFTER TRAINING FOR 1

MILLION TIMESTEPS.

Algorithms SMIX(λ) QMIX

3m mean ± std 99 (±0) 95 (±3)
median 99 95

8m mean ± std 91 (±3) 90 (±3)
median 90 89

25m mean ± std 75 (±26) 30 (±17)
median 93 24

Scalability. The results in Table IV show the scalability
of SMIX(λ) and QMIX after training for 1 million steps.
Overall, the performance of both methods decreases along
with the increasing number of agents. However, our SMIX(λ)
still outperforms QMIX, especially in hard scenarios 25m.
Specifically, with 3 agents (the 3m map), SMIX(λ) achieves
the best performance among the compared methods with a
99% win rate. By increasing the number of agents to 8 (the
8m map), the performance of all the methods decreases due to

the higher degree of challenging of the task, while our method
still performs best among the compared ones7. Finally, when
the number of agents been increased to 25 (the 25m map), the
performance of QMIX decreases dramatically, which is not
the case for SMIX(λ). These results show that the centralized
value function estimation method used in SMIX(λ) method
has better scalability and performs more robust in challenging
tasks than QMIX. Finally, it is worth mentioning that for our
experiments with up to 25 agents, the joint action space would
be as large as |A|25, which imposes a great challenge to any
MARL method.

VII. CONCLUSIONS & FUTURE WORK

One of the central challenges in multi-agent reinforcement
learning with CTDE settings is to estimate the centralized
value function. However, the sparse experiences and unstable
nature of the multi-agent environments make this become
a challenging task. To address this issue, we present the
SMIX(λ) approach, by enhancing the quality of centralized
value function in three aspects: (1) removing the greedy
assumption to help to learn a more flexible functional structure,
(2) using off-policy learning to alleviate the problem of sparse
experiences and to improve exploration, and (3) using λ-
return to balance the bias and variance of the algorithm. Our
analysis indicates that SMIX(λ) has nice convergence guaran-
tee through off-policy learning without importance sampling,
which gives potential advantages in multi-agent settings. It
is shown that the proposed SMIX(λ) approach significantly
outperforms several state-of-the-art CTDE methods on the
benchmark of the StarCraft Multi-Agent Challenge, and is
beneficial to other CTDE methods as well by replacing their
centralized value function estimator with ours.

Our future work will focus on incorporating the communica-
tion and opponent modeling methods into SMIX(λ) to further
tackle the non-stationarity issue during the execution. We also
aim to make SMIX(λ) perform more efficiently in dealing with
a large numbers of agents.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[3] D. Zhao and Y. Zhu, “Meca near-optimal online reinforcement learning
algorithm for continuous deterministic systems,” IEEE transactions on
neural networks and learning systems, vol. 26, no. 2, pp. 346–356, 2014.

[4] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal
and autonomous control using reinforcement learning: A survey,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 6,
pp. 2042–2062, 2017.

[5] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, “Hierarchical deep
reinforcement learning for continuous action control,” IEEE transactions
on neural networks and learning systems, vol. 29, no. 11, pp. 5174–5184,
2018.

[6] D. Ye, M. Zhang, and Y. Yang, “A multi-agent framework for packet
routing in wireless sensor networks,” sensors, vol. 15, no. 5, pp. 10 026–
10 047, 2015.

7See Table III for more results on 3m and 8m.

15

500k 1.00m 1.50m 2.00m 2.50m 3.00m

Timesteps

0

20

40

60

80

100
Te

st
W

in
R

at
e

%

SMIX(λ)
QMIX

SMIX(λ), noabs
QMIX, noabs

(a) 3s5z

500k 1.00m 1.50m 2.00m

Timesteps

0

20

40

60

80

100

Te
st

W
in

R
at

e
%

(b) 2s vs 1sc

Fig. 8. The effects of non-negative constraints of SMIX(λ) and QMIX in two different scenarios. Performances of those without non-negative constraints
(denoted by “noabs”) are shown as dashed lines. Methods plotted with solid lines are enforced with non-negative constraint. The mean and 95% confidence
interval is shown across 6 independent runs.

[7] E. Van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement
learners for traffic light control,” Proceedings of the Learning, Inference
and Control of Multi-Agent Systems, 2016.

[8] W. Liu and J. Huang, “Cooperative adaptive output regulation for lower
triangular nonlinear multi-agent systems subject to jointly connected
switching networks,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 5, pp. 1724–1734, 2019.

[9] C. Yu, M. Zhang, F. Ren, and G. Tan, “Emotional multiagent reinforce-
ment learning in spatial social dilemmas,” IEEE transactions on neural
networks and learning systems, vol. 26, no. 12, pp. 3083–3096, 2015.

[10] G. Jing, Y. Zheng, and L. Wang, “Consensus of multiagent systems
with distance-dependent communication networks,” IEEE transactions
on neural networks and learning systems, vol. 28, no. 11, pp. 2712–
2726, 2016.

[11] X. Bu, Z. Hou, and H. Zhang, “Data-driven multiagent systems consen-
sus tracking using model free adaptive control,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 5, pp. 1514–1524,
2017.

[12] Y. Zheng, J. Ma, and L. Wang, “Consensus of hybrid multi-agent
systems,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 4, pp. 1359–1365, 2017.

[13] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.
Castaneda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruder-
man et al., “Human-level performance in 3d multiplayer games with
population-based reinforcement learning,” Science, vol. 364, no. 6443,
pp. 859–865, 2019.

[14] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[15] T. Rashid, M. Samvelyan, C. S. Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning, 2018, pp. 4292–4301.

[16] G. J. Laurent, L. Matignon, L. Fort-Piat et al., “The world of independent
learners is not markovian,” International Journal of Knowledge-based
and Intelligent Engineering Systems, vol. 15, no. 1, pp. 55–64, 2011.

[17] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems, 2017,
pp. 6379–6390.

[18] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approxi-
mate q-value functions for decentralized pomdps,” Journal of Artificial
Intelligence Research, vol. 32, pp. 289–353, 2008.

[19] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as
a rehearsal for decentralized planning,” Neurocomputing, vol. 190, pp.
82–94, 2016.

[20] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,

“Value-decomposition networks for cooperative multi-agent learning
based on team reward,” in International Conference on Autonomous
Agents and MultiAgent Systems, 2018, pp. 2085–2087.

[21] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in International Conference on Machine Learn-
ing, 2019, pp. 5887–5896.

[22] Bellman, Dynamic Programming, ser. Rand Corporation research study.
Princeton University Press, 1957.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[24] A. Harutyunyan, M. G. Bellemare, T. Stepleton, and R. Munos, “Q
(λ) with off-policy corrections,” in Proceedings of the International
Conference on Algorithmic Learning Theory. Springer, 2016, pp. 305–
320.

[25] M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Farquhar,
N. Nardelli, T. G. Rudner, C.-M. Hung, P. H. Torr, J. Foerster, and
S. Whiteson, “The starcraft multi-agent challenge,” in International
Conference on Autonomous Agents and MultiAgent Systems, 2019, pp.
2186–2188.

[26] C. Wen, X. Yao, Y. Wang, and X. Tan, “Smix(λ): Enhancing centralized
value functions for cooperative multi-agent reinforcement learning,”
in Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[28] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE transactions on cybernetics, 2020.

[29] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of
multiagent deep reinforcement learning,” Autonomous Agents and Multi-
Agent Systems, vol. 33, no. 6, pp. 750–797, 2019.

[30] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[31] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe
and efficient off-policy reinforcement learning,” in Advances in Neural
Information Processing Systems, 2016, pp. 1054–1062.

[32] D. Precup, R. S. Sutton, and S. Dasgupta, “Off-policy temporal-
difference learning with function approximation,” in International Con-
ference on Machine Learning, 2001, pp. 417–424.

[33] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli, and
S. Whiteson, “Stabilising experience replay for deep multi-agent rein-
forcement learning,” in International Conference on Machine Learning,
vol. 70. JMLR. org, 2017, pp. 1146–1155.

[34] K. De Asis, J. F. Hernandez-Garcia, G. Z. Holland, and R. S. Sutton,
“Multi-step reinforcement learning: A unifying algorithm,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

16

[35] J. F. Hernandez-Garcia and R. S. Sutton, “Understanding multi-step deep
reinforcement learning: A systematic study of the dqn target,” arXiv
preprint arXiv:1901.07510, 2019.

[36] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2019, pp. 2052–2062.

[37] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate to solve riddles with deep distributed recurrent q-
networks,” arXiv preprint arXiv:1602.02672, 2016.

[38] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at
scale in multiagent cooperative and competitive tasks,” in International
Conference on Learning Representations, 2019.

[39] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent
cooperation,” in Advances in Neural Information Processing Systems,
2018, pp. 7254–7264.

[40] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International Conference on Machine Learning, 2019, pp.
2961–2970.

[41] J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and
I. Mordatch, “Learning with opponent-learning awareness,” in Proceed-
ings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, 2018, pp. 122–130.

[42] A. Letcher, J. Foerster, D. Balduzzi, T. Rocktäschel, and S. Whiteson,
“Stable opponent shaping in differentiable games,” in International
Conference on Machine Learning, 2019.

[43] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and
R. Fergus, “Intrinsic motivation and automatic curricula via asymmetric
self-play,” in International Conference on Learning Representations,
2018.

[44] C. Sun, W. Liu, and L. Dong, “Reinforcement learning with task
decomposition for cooperative multiagent systems,” IEEE transactions
on neural networks and learning systems, 2020.

[45] F. A. Oliehoek and Amato, A concise introduction to decentralized
POMDPs. Springer, 2016, vol. 1.

[46] C. Boutilier, “Planning, learning and coordination in multiagent decision
processes,” in Proceedings of the 6th conference on Theoretical aspects
of rationality and knowledge, 1996, pp. 195–210.

[47] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov, pp. 1039–
1069, 2003.

[48] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht, “Dealing
with non-stationarity in multi-agent deep reinforcement learning,” arXiv
preprint arXiv:1906.04737, 2019.

[49] G. Tesauro, “Extending q-learning to general adaptive multi-agent sys-
tems,” in Advances in neural information processing systems, 2004, pp.
871–878.

[50] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement
learning in cooperative multi-agent systems,” in In Proceedings of the
Seventeenth International Conference on Machine Learning. Citeseer,
2000.

[51] R. Sutton, A. R. Mahmood, D. Precup, and H. Hasselt, “A new q (λ)
with interim forward view and monte carlo equivalence,” in International
Conference on Machine Learning, 2014, pp. 568–576.

[52] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering, “A theoret-
ical and empirical analysis of expected sarsa,” in 2009 ieee symposium
on adaptive dynamic programming and reinforcement learning. IEEE,
2009, pp. 177–184.

[53] D. Precup, R. S. Sutton, and S. Singh, “Eligibility traces for off-policy
policy evaluation,” in International Conference on Machine Learning,
2000.

[54] Q. Liu, L. Li, Z. Tang, and D. Zhou, “Breaking the curse of horizon:
Infinite-horizon off-policy estimation,” in Advances in Neural Informa-
tion Processing Systems, 2018, pp. 5356–5366.

[55] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in Advances
in Neural Information Processing Systems, 2014.

[56] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” in International
Conference on Learning Representations, 2017.

[57] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in International Conference on Machine Learning, 1993,
pp. 330–337.

[58] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[59] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[60] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “Maven:
Multi-agent variational exploration,” in Advances in Neural Information
Processing Systems, 2019, pp. 7613–7624.

[61] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney, “Revisiting fundamentals of experience
replay,” in International Conference on Machine Learning, 2020.

	I Introduction
	II Related Work
	III The CTDE Optimization Framework
	III-A Problem Formulation
	III-B A General CTDE Optimization Framework
	III-C CTDE Under Centralized Greedy Behavior Assumption
	III-D Dealing with Non-Stationarity

	IV Methods
	IV-A Motivation
	IV-B Importance-Sampling-Free Off-policy SARSA()
	IV-C The SMIX() Algorithm
	IV-D Representational Complexity

	V Theretical Analysis
	VI Experiments
	VI-A Environmental Setup
	VI-B Implementation Details
	VI-C Comparative Evaluation
	VI-D Generalizing SMIX() to Other MARL Algorithms
	VI-E Sample Efficiency Analysis
	VI-F Ablation Study

	VII Conclusions & Future work
	References

