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Abstract

The discriminative knowledge from a high-capacity deep

neural network (a.k.a. the “teacher”) could be distilled

to facilitate the learning efficacy of a shallow counterpart

(a.k.a. the “student”). This paper deals with a general sce-

nario reusing the knowledge from a cross-task teacher —

two models are targeting non-overlapping label spaces. We

emphasize that the comparison ability between instances

acts as an essential factor threading knowledge across do-

mains, and propose the RElationship FacIlitated Local

cLassifiEr Distillation (REFILLED) approach, which de-

composes the knowledge distillation flow into branches for

embedding and the top-layer classifier. In particular, differ-

ent from reconciling the instance-label confidence between

models, REFILLED requires the teacher to reweight the

hard triplets push forwarded by the student so that the sim-

ilarity comparison levels between instances are matched.

A local embedding-induced classifier from the teacher fur-

ther supervises the student’s classification confidence. RE-

FILLED demonstrates its effectiveness when reusing cross-

task models, and also achieves state-of-the-art performance

on the standard knowledge distillation benchmarks. The

code of the paper can be accessed at https://github.

com/njulus/ReFilled.

1. Introduction

Knowledge distillation [6, 20, 64] facilitates the learn-

ing efficiency of a deep neural network by reusing the “dark

knowledge” from another model. In detail, a strong clas-

sifier, e.g., a neural network trained with deeper architec-

tures [43], high-quality images [65], or precise optimiza-

tion strategies [13, 60], acts as a “teacher”, and guides the

training of a weaker “student” model. Such model-based

knowledge reuse improves the discriminative ability of the

target student model, and relieves the burden of model train-

ing and storage as well [20, 43, 64, 13]. Its success has

been witnessed in a wide range of applications such as

model/dataset compression [56, 2, 35, 36, 8], multi-task

learning [68, 27], incremental image classification [69, 24].

Teacher Model Student Model

Learn Student ModelLearn Teacher Model

A Pre-Trained model from Non-
Overlapping Classes

Learn current task (student) model 
with the help of the teacher.

Figure 1. An illustration of reusing the knowledge from a Cross-

Task teacher model. In a classification task, a teacher is learned

from images with non-overlapping classes, while its learning ex-

perience is distilled to facilitate the training of the student model.

The main idea of knowledge distillation is to specify a

kind of dark knowledge, based on which the student is asked

to align with the teacher. For example, the teacher specifies

the proportion of how much similar an instance with can-

didate categories rather than the extreme “black or white”

supervision. Although the predictions matching enables the

transition of knowledge flow across different neural archi-

tectures [20, 35], its dependence on the instance-label rela-

tionship restricts both teacher and student to the same label

space. In this paper, we enable the student to utilize the

learning experience from a cross-task teacher, i.e., a neural

network with non-overlapping label spaces, which general-

izes the knowledge reuse approaches to more applications.

The label difference between teacher and student im-

pedes the direct learning experience transition [22]. The

comparison ability of the embeddings — measuring how

similar two instances are — captures a kind of invariant

nature of the model [1] and is free from the label con-

straint [47, 33, 22]. For a teacher and a student discerning

‘Husky vs. Birman” and “Poodle vs. Persian” respectively,

the teacher’s discriminative embedding encoding the “dog-

cat” related characteristics is capable of estimating the sim-

ilarity relationship of instances in the student’s task. Thus,

we emphasize the instance-instance relationship to bridge

the knowledge transfer across different tasks, and thread the

knowledge reuse for both embedding and top-layer classi-

fier by taking advantage of the teacher’s comparison ability.

Figure 1 illustrates the notion of cross-task distillation.

To this end, we propose a 2-stage approach RElationship
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FacIlitated Local cLassifiEr Distillation (REFILLED).

First, the discriminative ability of features is stressed. For

those hard triplets determined by the student’s embedding,

how teacher comparing them acts as the soft supervision. In

other words, the teacher promotes the discriminative abil-

ity of the student’s embedding by specifying the proportion

for each object how much a dissimilar impostor should be

far away from a target nearest neighbor. Next, the teacher

constructs soft supervisions for classifying each instance by

measuring its similarity to a local embedding center. Specif-

ically, the classification confidences of the student model

and the embedding-induced “instance-label” predictions of

the teacher are aligned. Empirical results verify that the RE-

FILLED effectively transfers the classification ability from a

cross-task teacher to a student. The same mechanism ob-

tains the state-of-the-art performance on standard knowl-

edge distillation benchmarks as well. We also investigate

the middle-shot learning problem, and REFILLED is supe-

rior to some popular meta-learning methods.

In summary, We contribute to enhancing the training ef-

ficiency of a deep neural network by reusing the knowl-

edge from a cross-task model. The proposed REFILLED

approach aligns the high-order comparison relationship be-

tween models in a local manner, and works well in both

cross-task and same-task distillation problems.

We start by introducing the related literature and the pre-

liminary in Section 2 and Section 3. Then we formalize our

REFILLED approach in Section 4. After detailed discus-

sions, finally are experiments and conclusion.

2. Related Work

It is an effective way to take advantage of the learning

experience from related pre-trained models to facilitate the

model training in the current task [70]. Different from fine-

tuning [16] or parameter regularization [28, 11, 30, 48, 62],

knowledge distillation/reuse extracts kinds of dark knowl-

edge/privileged information [53, 51, 52] from a fixed strong

model (a.k.a. “teacher”) and enrich the target model (a.k.a.

student) training with more signals. Distilling the knowl-

edge from one model to another has been investigated for

model interpretability [71] and compression [6], which is

widely applied between deep neural networks since [20, 44,

35] with the help of soft targets. The teacher is usually set

as a high-capacity deep neural network or a previous model

generation in the current task [5, 13, 60]. Richer supervi-

sions like hidden layer activations [43, 67, 9, 25], parameter

flows [64], and transformations [29] are explored. Theoreti-

cal analyses and empirical studies of knowledge distillation

could be found in [40, 15, 19, 8].

Owing to the strong correspondence between classi-

fier and categories, it is difficult to reuse the classifica-

tion knowledge from a cross-task teacher. Heterogeneous

transfer learning or multi-task learning train a joint model

on current and related domains/tasks to fill the gap of

label/distribution divergence [27]. Heterogeneous model

reuse takes advantage of the model from a related task,

which relieves the burden of data storage so as to decrease

the risk of privacy leaking [62, 59]. Meta-learning has also

been utilized to transfer knowledge across different label

spaces, e.g., the few-shot learning [54, 46, 12, 41], but it

requires a special training strategy of the teacher.

Different from matching the instance-label predictions

between models, embedding [7, 2], pairwise distance [39,

49], and similarity graph [31] have been investigated to im-

prove the quality of the feature towards discriminative em-

beddings, so that the “downstream” cross-task clustering

and representation learning tasks could be improved [22,

38, 65]. The proposed REFILLED approach is general for

both same-task and cross-task distillation, where the classi-

fication ability of the teacher is transferred to the student by

matching the high-order local comparisons.

Embedding learning improves the feature representation

by pulling similar instances together and pushing dissimilar

ones away [57, 45, 33, 63]. Kinds of side-information such

as pairs [10] and triplets [57] are collected as weak super-

vision in terms of the instance-wise relationship. Stochastic

embeddings [32, 50, 3] learn hidden representation to ex-

plain the provided relationships, and in REFILLED, the rela-

tive instance comparisons measured by a cross-task teacher

model is embedded by the student. A local version of the

nearest center mean classifier [34, 46] is leveraged to distill

the classification ability once with good features.

3. Knowledge Reuse via Distillation

In this section, we first introduce the way to distill

knowledge from a high-capacity teacher classifier with soft

labels and then describe the cross-task distillation problem.

3.1. Background and Notations

For a C-class classification task, we denote the train-

ing data with N examples as D = {(xi,yi)}
N
i=1

, where

xi ∈ R
D and yi ∈ {0, 1}C are instance and one-hot label,

respectively. Index of 1 in yi indicates the class of xi. The

target is to learn a classifier f(x) : RD 7→ {0, 1}C (e.g., a

deep neural network) based on D, which maps an instance

to its label. f could be decomposed into a feature extractor

φ : RD 7→ R
d and a linear classifier W ∈ R

d×C , such that

f(x) = W⊤φ(x).1 The objective to learn the model f is

min
f

N
∑

i=1

ℓ (f(xi), yi) (1)

ℓ is the loss such as the cross-entropy, which measures the

discrepancy between the prediction and the true label.

1We omit the bias term for discussion simplicity.
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3.2. Distill Knowledge from a Same­Task Teacher

To improve the training efficacy of f , [20] suggests to

distill “dark knowledge” from another pre-trained teacher

model via aligning the soft targets:

min
fS

N
∑

i=1

ℓ(fS(xi),yi) + λR(sτ (fT (xi)), sτ (fS(xi)))

(2)

Subscripts “T” and “S” denote the model/parameters of the

teacher and student (the current task model), respectively.

λ > 0 is a trade-off parameter. sτ transforms the logit into

a softened C-way probability:

sτ (f(xi)) = softmax(
f(xi)

τ
) (3)

τ is an non-negative temperature, the larger the value of

τ , the smoother the output. R(·) measures the difference

between two distributions, e.g., the Kullback-Leibler diver-

gence. In Eq. 2, the student not only minimizes the mapping

f from an instance to its label over D, but also keeps its pre-

dictions consistent with the teacher. Note that the student

and the teacher could use different temperatures.

Since the teacher model usually possesses larger capac-

ity [20, 7, 35] or better parameters [13, 60], its predictions

encode the relationship between an instance and its can-

didate classes. Other forms of dark knowledge along the

thread of instance-label mapping are also investigated, such

as hidden activation [43] and parameter flows [64].

3.3. Distill Knowledge from a Cross­Task Teacher

The knowledge reuse in Eq. 2 requires the teacher net-

work to target the same labels as the student model so that

their classification results on the same instance could be

matched. While in a general scenario, it is necessary to bor-

row the learning experience from a cross-task teacher, i.e., a

pre-trained teacher fT on non-overlapping classes with the

student fS . The relaxing of the learning condition enables

knowledge reuse across related tasks.

4. REFILLED for Cross-Task Distillation

We introduce the main idea of RElationship FacIlitated

Local cLassifiEr Distillation (REFILLED) approach, fol-

lowed by analysis and discussions of its two stages.

4.1. Main Ideas of REFILLED

Towards reusing the knowledge from a cross-task

teacher, REFILLED decomposes the model into two com-

ponents, i.e., the embedding and the top-layer classifier,

such that the knowledge for each component could be dis-

tilled respectively. There are two stages in REFILLED. The

discriminative ability of features is distilled through align-

ing the high-order instance-wise comparisons of the stu-

dent with the teacher, which bridges the gap between non-

overlapping label spaces. After that, the teacher’s classifica-

tion confidences based on local embedding centers further

facilitates the classifier training of the student.

4.2. Distill the Embedding

Empirical studies verify the embedding extracted by the

penultimate layer of a deep neural network possesses dis-

criminative property [58, 18, 1], where similar instances are

close and dissimilar ones are far away. Since instance em-

bedding reveals whether two objects are similar or not, and

does not rely on the specific label of each class, thus it could

be used across different label spaces [57, 4, 45, 47, 33, 22].

Direct Embedding Distillation. One intuitive way to

match the instance-wise relationship between teacher and

student is to align their embeddings directly, e.g., minimiz-

ing the loss ‖φS(x)−φT (x)‖
2

2
over all instances in the cur-

rent task [7, 14, 25]. This constraint requires both models

to have the same size of embeddings, which is too strong to

satisfy especially there exists an architecture gap between

two models. [31, 38, 39, 49] reuse the embedding-based

pairwise relationship of the teacher, where the pairwise sim-

ilarity measured by the student’s embedding should have the

same value as the teacher’s measure. It still suffers the ar-

chitecture difference —- even the student has the right sim-

ilarity relationship, it could still be wrongly rectified by the

teacher due to their scale differences. Therefore, consider-

ing the discrepancy between the embedding spaces, in RE-

FILLED, we ask the teacher to provide its estimation about

relative comparisons among instances in the form of triplets

and require the student to align such relative similarity de-

termination to obtain discriminative embeddings.

Align Triplet. A triplet (xi, xj , xk) contains an anchor

xi, its similar target neighbor xj , and its dissimilar impostor

xk.2 The distance between (xi,xj) based on the embedding

φ is Distφ(xi,xj) = ||φ(xi) − φ(xj)||2. A good embed-

ding makes Distφ(xi,xj) smaller than Distφ(xi,xk). We

use the stochastic triplet probability [50] as a kind of “dark

knowledge”, which encodes how much the anchor is close

to its target neighbor than its impostor:

pijk(φ) = (4)

exp (−Distφ (xi,xj) /τ)

exp (−Distφ (xi,xj) /τ) + exp (−Distφ (xi,xk) /τ)

Eq. 4 measures the relative instance-wise similarities in a

triplet form. If the target neighbor xj is close to the an-

chor while the impostor is far away, pijk is large, otherwise

2Usually, we think two instances are similar if they come from the same

class, and they are dissimilar if they have different labels.
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Distill the Embedding

Distill the Classifier

Teacher’s Embedding Student’s Embedding

Aligning
Triplets

Updated Student’s Embedding

Teacher’s Estimation Student’s Prediction

Aligning
Local

Classifier

Updated Student’s Prediction

Figure 2. Illustration of the proposed RElationship FacIlitated Local cLassifiEr Distillation (REFILLED), which has two stages: it first

distills the discriminative embedding by aligning triplets, e.g. the relative similarities between two impostors (denoted by the red and blue

arrow) are specified by the teacher; REFILLED then distills the classification ability via local embedding-based classifiers. With the class

prototype (denoted by stars), the teacher provides a good estimation for the classification confidence. More details can be found in the text.

the probability is small. Different from the vanilla triplets

generated from labels with only the “similar or not” bi-

nary information [57, 45, 47, 33], we take advantage of the

stochastic triplet probability to introduce richer similarity

comparison information towards more effective embedding

learning. With a bit abuse of the notation, we also use the

temperature τ to soften the probability in Eq. 4.

In REFILLED, we improve the discriminative ability

of the student model embedding φS by distilling the

triplet comparison knowledge from the teacher. Define the

Bernoulli distribution Pijk(φ) = [pijk(φ), 1− pijk(φ)], we

minimize the KL-divergence over all generated triplets:

min
φS

∑

ijk

KL
(

Pijk(φT ) ‖ Pijk(φS)
)

(5)

By aligning the novel kind of dark knowledge in Eq. 5,

the student is expected to have better comparison ability as

strong as the teacher. There are two main advantages of the

triplet matching. With the help of the teacher, Eq. 5 not only

encodes the high-order relationship between instances but

also specifies the differences between the generated triplets.

For example, although three images of “black tern” are sim-

ilar to one “red-winged black bird” image, the two flying

black terns should be more close than the one black terns

drinking the water. Besides, aligning the triplet compar-

isons between different models gets rid of the scale and em-

bedding size differences between neural architectures.

It still remains one key component of collecting the

triplets for relationship distillation. In our implementa-

tion, we generate “semi-hard” triplets [45] based on the

student’s embedding (the triplets with relatively smaller

DistφS
(xi,xk) than DistφS

(xi,xj)). Thus, if the student

finds some triplets hard to evaluate, it will query the teacher

for concrete measures of the similarity proportions. We do

ℓ2-normalization on all the embeddings before computing

their distances, and only apply the temperature in Pijk(φT ).

Discussions. Define ρijk = 1 − pijk(φT ) and ι(x) =
ln(1 + exp(−x)) as the logistic loss, we can rethink the

objective in Eq. 5 by reformulating

KL (Pijk(φT ) ‖ Pijk(φS)) (6)

∼= ρijk (DistφS
(xi,xk)−DistφS

(xi,xj))

+ ι (DistφS
(xi,xk)−DistφS

(xi,xj))

∼= neglects the constants. In addition to optimizing the em-

bedding triplets with the loss ι, Eq. 6 adds different weights

when minimizing (resp. maximizing) the distance between

similar (resp. dissimilar) pairs based on the teacher’s esti-

mation. For example, if (xi,xj) are not too similar com-

pared with (xi,xk), the teacher will specify a relative lower

probability pijk to compensate for the over-emphasizing of

similarity/dissimilarity in the triplet, and the minimization

of DistφS
(xi,xj) in ι is weakened with weight ρijk .

4.3. Distill the Local Classifier

The student’s embedding depicts the relationship be-

tween instances as well as the teacher by aligning the triplet

probabilities, which facilitates the “downstream” task. Con-

sidering the transition between label space, REFILLED fur-

ther proposes to distill the classification ability from the

teacher via an embedding-based local classifier.

Embedding-Based Local Classifier. During the stochas-

tic optimization of the student model, with a little abuse of

notations, denote (X ∈ R
N×D, Y ∈ {0, 1}N×C) as the
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instances and one-hot labels in the sampled mini-batch, re-

spectively. Note that the batch may not cover all the classes

in the data. With the teacher’s embeddings φT (X) ∈ R
N×d

on X , we compute the embedding center of each class by

P = diag(1⊘ (Y ⊤1))Y ⊤φT (X) ∈ R
C×d (7)

⊘ denotes the element-wise division. Each row pc ∈ R
d

of P corresponds to the center of the c-th class in the batch.

The label of an instance in the batch can be determined by:

pφT
(yi | xi) = softmax

(

−‖φT (xi)− pc‖
2

2
/τ

)

(8)

which is normalized over the set of negative distances from

the instance embedding φ(xi) to all class centers in P .

pφT
(yi | xi) is large if φT (xi) is close to pc in the teacher’s

embedding space. τ is the temperature. Eq. 8 works in the

same manner as a local nearest center mean classifier [34],

where only the classes in the current sampled batch are

taken into account. It can be applied even to the classifi-

cation tasks across non-overlapping label spaces [46, 61].

Local Knowledge Distillation. Equipped with Eq. 8, the

classification ability of a cross-task teacher could be further

reused for training the student’s classifier. Therefore, we

incorporate a local knowledge distillation term with Eq. 1:

min
fS

N
∑

i=1

ℓ (fS(xi),yi)+λKL
(

pφT
(yi | xi), sτ (fS(xi))

)

(9)

Benefited from the local classifier induced from the

teacher’s embedding, the classifier of the student could be

further supervised by a cross-task teacher. In the second

term of Eq. 9, rather than aligning two model’s confidences

of all classes in the data set, only the posteriors of classes

in the sampled mini-batch are matched. This local knowl-

edge helps when distilling from a same-class teacher as

well (refer to Section 5.2), where two models match predic-

tions over the sampled classes in the mini-batch. In the im-

plementation, we also investigate an exponential-decayed

weight to set λ, so that the student relies on the teacher’s

supervision during its initial learning period while weaken-

ing the teacher’s guide if itself is strong enough.

Discussions. By decoupling the embedding φ and the lin-

ear classifier W , the effectiveness of the knowledge distilla-

tion could be analyzed by its gradient over the classifier wc

of the c-th class (denote the objective of Eq. 2 as O):

∂O

∂wc

=
∑

x

[

−pc +

C
∑

c′=1

pc′qc

]

φ(x) (10)

qc and pc are the teacher’s and student’s posterior probabili-

ties of the c-th class given instance x, respectively. Different

Algorithm 1 The Flow of REFILLED.

Require: Pre-trained Teacher’s Embedding φT .

Distill the Embedding:

for all Iter = 1,...,MaxIter do

Sample a mini-batch {(xi,yi)}.

Generate triplets {(xi,xj ,xk)} with student’s embed-

dings {φS(x)}.

Compute probability of triplets pijk(φT ) as Eq. 4.

Optimizing φS by aligning triplets in Eq. 5.

end for

Distill the Classifier:

Initialize fS with φS .

Optimizing fS with Eq. 9.

from the vanilla loss, when considering the soft supervision

from the teacher, not only the instance from the target class

but also those from helpful related classes (the ones with

large pc′ ) will be incorporated to direct the update of the

classifier. Since the summation in Eq. 10 is computed over

all C classes, the normalized class posterior qc becomes

small if C is large, so that the helpful class instance will

not be stressed obviously. Therefore, we consider a local

version of the knowledge distillation term in Eq. 9, where

only the classes in the current mini-batch are considered,

i.e., the influence of a helpful related class selected by the

teacher will be better emphasized in the update of wc.

The Two-Stage REFILLED Approach. In summary,

there are two steps in REFILLED to reuse the holistic knowl-

edge of the teacher through its embedding, so that to im-

prove the discerning ability of the student’s embedding and

classifier, respectively. The whole flow of REFILLED for

cross-task distillation is illustrated in Figure 2 and Alg. 1.

5. Experiments

We verify REFILLED on a variety of tasks, namely clas-

sification by reusing cross-task models, standard knowledge

distillation, and middle-shot learning.

5.1. Cross­Task Knowledge Distillation

REFILLED is able to reuse a cross-task teacher to assist

the training of a student model.

Datasets. Caltech-UCSD Birds-200-2011 (CUB) [55]

constructs a fine-grained classification problem over 200

different species of birds. We use the first 100 classes to

train the teacher, and learn the student model on the remain-

ing 100 classes.

Implementation Details. We use different configurations

of the MobileNets [21] and adjust the model complexity

12400



Table 1. The mean accuracy of cross-task distillation on CUB data

set, where teacher and student are trained for non-overlapping 100

classes with MobileNets. The three values in the “teacher” row

correspond to baselines: applying 1NN based on teacher’s embed-

ding, train a linear LR classifier based on fixed teacher’s embed-

ding, and Fine-Tune (FT) based on teacher’s embedding.

Width Multiplier 1 0.75 0.5 0.25

Teacher 1NN: 45.31 , LR: 53.82 , FT: 65.72

Student 71.25 67.56 66.85 64.48

RKD [38] 70.83 68.80 67.44 63.97

REFILLED 73.38 70.42 69.77 67.10

with different channels (complicated models have larger

channels). The teacher is trained with cross-entropy loss

and width multiplier 1.0. We change the width multiplier of

the student in {1, 0.75, 0.5, 0.25}.

Evaluations. For each 100-way classification task, we

split 70% of data in each class for training, and the remain-

ing is used for test. The teacher model is first trained on

the first 100 classes till convergence and then used to di-

rect the training of the student model upon non-overlapping

classes. The averaged classification accuracy over 3 trials

is reported. The neural networks are optimized by SGD w/

momentum. Detailed configurations are in the supp.

Results. The results of cross-task distillation are in Ta-

ble 1. We first investigate three baselines by adapting the

teacher for cross-task classification, i.e., the 1NN based

on teacher’s embedding, training a linear Logistic Regres-

sion (LR) upon the fixed teacher’s embedding, and Fine-

Tuning (FT) the teacher model initialized by the pre-trained

embedding. The test accuracy of the student becomes

higher when learning the task with more complicated mod-

els (w/ larger width multiplier value). We also compare

with one representative embedding-based approach Rela-

tion Knowledge Distillation (RKD) [38], and fine-tune the

model after obtaining the distilled embedding from the

cross-task teacher. RKD sometimes gets better accuracy

than the vanilla student model. Our REFILLED achieves the

best classification performance in all cases. Benefited from

reusing the knowledge from the teacher, the classification

achieves a further improvement w.r.t. the vanilla training.

Will All Components in REFILLED Help? Given pre-

trained weights of the teacher and fixing the width multi-

ple of the student equals 1, we investigate three fine-tuning

variants in Figure 3 besides training the student model di-

rectly (Vanilla) , namely, fine-tuning with the distilled em-

bedding after the first stage of REFILLED (REFILLED
1st),

fine-tuning with Eq. 9 using fixed λ (REFILLED
−), and RE-

Figure 3. Left: The mean accuracy of different variants of RE-

FILLED on CUB for cross-task distillation; Right: The change of

accuracy when the number of instances per class (shot) varies.

FILLED (which has exponential-decayed λ). The step-wise

improvements of the classification results verify the effec-

tiveness of each component in REFILLED.

REFILLED with Different Size of Target Task Data. To

test the extreme of the knowledge distillation ability of RE-

FILLED, we construct the target classification task with dif-

ferent sizes of training data. When the number of effective

training data is small, it is more difficult to train the student

model, so that the help from the teacher becomes more im-

portant. We vary the number of instances per class in the

student’s task from 5 to 30, and the averaged classification

accuracies are shown in Figure 3. REFILLED keeps a per-

formance margin with comparison methods in all cases.

5.2. Standard Knowledge Distillation

The REFILLED is a general approach that helps the train-

ing of a student with a same-class teacher.

Datasets. Following [2], we test the knowledge distilla-

tion ability of REFILLED on another benchmark CIFAR-

100 [26] besides CUB. CIFAR-100 contains 100 classes

with 6000 small images per class. In each class, there are

5,000 images for training and 1,000 images for test. We use

the standard split to train both teacher and student models.

We also evaluate REFILLED on CUB, where all 200 classes

are used during training based on the standard split.

Implementation Details. We test the effectiveness of

REFILLED across diverse architectures, i.e., ResNet [17],

Wide-ResNet [66], and MobileNets [21]. Towards inves-

tigating different capacities of the teacher and student, we

change the depth of ResNet (through the number of layers),

the width and depth of Wide-ResNet, and the width multi-

plier of MobileNets. Both teacher and student are trained

on the same training set till convergence.

Evaluations. Both teacher and student are trained on the

same set with three different seeds of initialization, and we

report the mean accuracy of the student on the test set.
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Table 2. The average classification results of knowledge distilla-

tion methods on CIFAR-100 data set based on the Wide-ResNet.

We fix the teacher with (depth, width) = (40, 2), and set the stu-

dent capacity with different (depth, width) values.

(depth, width) (40, 2) (16, 2) (40, 1) (16, 1)

Teacher 74.44

Student 74.44 70.15 68.97 65.44

KD [20] 75.47 71.87 70.46 66.54

FitNet [43] 74.29 70.89 68.66 65.38

AT [67] 74.76 71.06 69.85 65.31

NST [23] 74.81 71.19 68.00 64.95

VID-I [2] 75.25 73.31 71.51 66.32

KD+VID-I [2] 76.11 73.69 72.16 67.19

RKD [38] 76.62 72.56 72.18 65.22

REFILLED 77.49 74.01 72.72 67.56

Table 3. The average classification results of knowledge distilla-

tion methods on CUB based on MobileNets. We fix the teacher’s

width multiplier to 1.0, and change the student’s multipliers.

Width Multiplier 1 0.75 0.5 0.25

Teacher 75.36

Student 75.36 74.87 72.41 69.72

KD [20] 77.61 76.02 74.24 72.03

FitNet [43] 75.10 75.03 72.17 69.09

AT [67] 76.22 76.10 73.70 70.74

NST [23] 76.91 77.05 74.03 71.54

KD+VID-I [2] 77.03 76.91 75.62 72.23

RKD [38] 77.72 76.80 74.99 72.55

REFILLED 78.95 78.01 76.11 73.42

Distillation From Same Architecture Family Models.

We first test the case when teacher and student come from

the same model family. The results on CIFAR-100 and

CUB could be found in Table 2 and Table 3, respectively.

On CIFAR-100 we exactly follow the evaluation proto-

col in [2], which implements teacher and student with the

Wide-ResNet. We re-implement RKD [38] and cite the

results of other comparison methods from [2]. For CUB,

we use MobileNets as the basic model. Since the teacher

possesses more capacity, its learning experience assists the

training of the student once utilizing the knowledge distil-

lation methods. REFILLED achieves the best classification

performance in all settings, which validates transferring the

knowledge for both embedding and classifier is one of the

key factors for model reuse.

Will Embedding Help for Knowledge Distillation? We

use the Normalized Mutual Information (NMI) as a crite-

rion to measure the embedding quality, the larger the better.

In Table 4, we compute NMI for student model’s embed-

Table 4. The NMI on CIFAR-100 to evaluate the embedding qual-

ity before and after the Triplet Aligning (TA) step in REFILLED.

(depth, width) (40, 2) (16, 2) (40, 1) (16, 1)

w/o TA 56.50 54.91 54.02 51.77

w/ TA 59.63 57.98 57.62 54.39

Table 5. The mean accuracy on CIFAR-100 to evaluate the effec-

tiveness of Local Knowledge Distillation (LKD) in REFILLED.

(depth, width) (40, 2) (16, 2) (40, 1) (16, 1)

w/ KD 77.08 73.57 72.24 67.14

w/ Local KD 77.49 74.01 72.72 67.56

NMI=51.77 NMI=54.39

Figure 4. The tSNE [50] of the vanilla student training (left) and

the improved embedding after the 1st stage of REFILLED (right)

over 10 classes sampled from CIFAR-100.

ding trained with and without aligning the teacher’s triplets

in CIFAR-100. Figure 4 visualizes the embedding quality

over 10 sampled classes using tSNE [50]. Both quantitative

and qualitative results verify the effectiveness of the triplet

aligning step in REFILLED for knowledge distillation.

Will Local Knowledge Distillation Help? Results in Ta-

ble 5 verify the further improvement of Local Knowledge

Distillation (LKD) in Eq. 9 compared with the vanilla

Knowledge Distillation (KD) when training based on the

distilled embedding after the first stage of REFILLED. A

local consideration of probability matching helps.

Distillation From Different Model Families. To further

evaluate the performance of REFILLED, we use REFILLED

to distill the knowledge from a cross-family teacher. For

CIFAR-100, we set the teacher as ResNet-110, and use the

MobileNets with different channels as the student model.

Table 6 demonstrates the results, and REFILLED keeps its

superiority in this case. More results are in the supp.

5.3. Middle­Shot Learning

Training a deep neural network with middle-shot of data

is a difficult task, where models are prone to over-fit. In this

subsection, we apply our REFILLED approach for middle-

shot learning, where the classification ability from a teacher

trained on SEEN class can be used to help the student model

training for UNSEEN middle-shot tasks.
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Table 6. The average classification accuracy of knowledge distil-

lation methods on CIFAR-100 data set. The teacher is trained

with ResNet-110, which gets 74.09% test accuracy. The student

is learned with MobileNets, whose width multiplier is changed.

Width Multiplier 1 0.75 0.5 0.25

Student 68.57 67.92 65.66 60.87

KD [20] 70.34 68.21 66.06 61.38

FitNet [43] 67.99 67.85 65.12 61.01

AT [67] 68.97 67.88 66.44 62.15

NST [23] 70.62 70.49 69.15 61.32

KD+VID-I [2] 71.94 70.13 68.51 62.50

RKD [38] 70.41 68.93 66.24 61.44

REFILLED 73.81 72.88 70.02 63.15

Datasets. We use the popular MiniImageNet data set [54],

which contains 100 classes and 600 images in each class.

Following [54, 42], there are 64 classes (SEEN class) to train

the teacher, 16 classes for validation, and we sample tasks

from the remaining 20 classes to train the student.

Implementation Details. Following the literature, we in-

vestigate two different backbones, a 4-layer ConvNet [54,

46, 12] and the ResNet [37, 61], which outputs embed-

dings with 64 and 640 dimensions, respectively. We train

a teacher model on the SEEN classes with ResNet or Con-

vNet, and use the teacher model to help the training of the

student classifier on tasks composed by UNSEEN classes.

Evaluations. Define a K-shot C-way task as a C-class

classification problem with K instances per class. Different

from the few-shot learning setting where K ∈ {1, 5}, here

we consider there are a bit more instances in each class, i.e.,

K = {10, 30}. Note that even K = 30 is not enough to

train a complicated neural network from scratch. We sam-

ple 5-way tasks from the 20-class split to train the student

model and evaluate its performance by classifying another

15 instances from each of the 5 sampled classes. We evalu-

ate the final performance by mean accuracy over 600 trials.

More results of few-shot learning are in supp.

Comparison Methods. Meta-learning is a popular way to

solve the few-shot classification problem. To mimic the test

case, it samples C-Way K-Shot tasks from the SEEN class

set to learn task-level inductive bias like embedding [54, 46]

or initialization [12, 41]. However, the computational bur-

den (e.g., the batch size) becomes large when the number

of shots increases. Besides, meta-learning needs to spec-

ify the way to obtain a meta-model from the SEEN classes.

We compare our methods with the embedding-based meta-

learning approaches like and ProtoNet [46] and FEAT [61].

We can make predictions directly with the teacher’s embed-

Table 7. The mean accuracy over 600 trials of middle-shot tasks.

We set the student model as the ConvNet, and investigate both

ResNet and ConvNet as the teacher model, for our REFILLED

approach. Detailed results and configurations are in the supp.

REFILLED
1 denotes the result reusing a ResNet teacher and RE-

FILLED
2 stands for the result reusing a ConvNet teacher.

Tasks 10-Shot 5-Way 30-Shot 5-Way

1NN 66.56 69.80

SVM 74.24 77.87

Fine-Tune 74.95 78.62

ProtoNet [46] 74.42 78.10

FEAT [61] 74.86 78.84

REFILLED
1 76.42 80.33

REFILLED
2 75.37 78.94

ding, the penultimate layer of the teacher, by leveraging the

nearest neighbor (1NN). Based on the teacher’s embedding,

we also train linear classifiers like SVM or fine-tune the

whole model upon the middle-shot training data of sample

tasks. We tune the hyper-parameters of such methods with

sampled middle-shot tasks from the validation split.

Results. The results of middle-shot learning are shown

in Table 7. When the number of shots becomes large,

fine-tuning is a very strong baseline, which gets better re-

sults than some meta-learning approaches. Our REFILLED

method achieves better results than fine-tune, which vali-

dates the importance of reusing the knowledge of a cross-

task teacher for training a classifier.

6. Conclusion

Although knowledge distillation facilitates the transi-

tion of learning experience between heterogeneous models,

i.e., neural networks with different architectures, it is still

challenging to reuse models across non-overlapping label

spaces. In this paper, we focus on matching the comparison

ability on account of embeddings, which not only gets rid

of the label space constraint but also captures the high order

relationships among instances. The proposed RElationship

FacIlitated Local cLassifiEr Distillation (REFILLED) ap-

proach has two stages, namely embedding aligning and lo-

cal knowledge distillation. Besides improving the learn-

ing efficiency by reusing cross-task models, REFILLED

also achieves better classification performance in standard

knowledge distillation tasks.
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Póczos. Hypothesis transfer learning via transformation

functions. In NeurIPS, pages 574–584. 2017. 2

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, pages 1126–1135, 2017. 2, 8

[13] Tommaso Furlanello, Zachary Chase Lipton, Michael

Tschannen, Laurent Itti, and Anima Anandkumar. Born-

again neural networks. In ICML, pages 1602–1611, 2018.

1, 2, 3

[14] Mengya Gao, Yujun Shen, Quanquan Li, Chen Change

Loy, and Xiaoou Tang. Feature matters: A stage-by-stage

approach for knowledge transfer. CoRR, abs/1812.01819,

2018. 3

[15] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong,

and Richard Socher. A closer look at deep learning heuris-

tics: Learning rate restarts, warmup and distillation. In ICLR,

2019. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In ICCV, pages 1026–

1034, 2015. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 6

[18] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang

Bai. Triplet-center loss for multi-view 3d object retrieval. In

CVPR, pages 1945–1954, 2018. 3

[19] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No-

jun Kwak, and Jin Young Choi. A comprehensive overhaul

of feature distillation. In ICCV, pages 1921–1930, 2019. 2

[20] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.

Distilling the knowledge in a neural network. CoRR,

abs/1503.02531, 2015. 1, 2, 3, 7, 8

[21] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. 5, 6

[22] Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. Learning

to cluster in order to transfer across domains and tasks. In

ICLR, 2018. 1, 2, 3

[23] Zehao Huang and Naiyan Wang. Like what you like:

Knowledge distill via neuron selectivity transfer. CoRR,

abs/1707.01219, 2017. 7, 8

[24] Khurram Javed and Faisal Shafait. Revisiting distillation and

incremental classifier learning. In ACCV, pages 3–17, 2018.

1

[25] Animesh Koratana, Daniel Kang, Peter Bailis, and Matei Za-

haria. LIT: learned intermediate representation training for

model compression. In ICML, pages 3509–3518, 2019. 2, 3

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Uni-

versity of Toronto, 2009. 6

[27] Jogendra Nath Kundu, Nishank Lakkakula, and

R. Venkatesh Babu. Um-adapt: Unsupervised multi-

task adaptation using adversarial cross-task distillation. In

ICCV, pages 1436–1445, 2019. 1, 2

[28] Ilja Kuzborskij and Francesco Orabona. Fast rates by

transferring from auxiliary hypotheses. Machine Learning,

106(2):171–195, 2017. 2

[29] Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. Self-

supervised knowledge distillation using singular value de-

composition. In ECCV, pages 339–354, 2018. 2

[30] Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit

inductive bias for transfer learning with convolutional net-

works. In ICML, pages 2830–2839, 2018. 2

[31] Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming

Hu, Yangxi Li, and Yunqiang Duan. Knowledge distillation

via instance relationship graph. In CVPR, pages 7096–7104,

2019. 2, 3

[32] Laurens van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. JMLR, 9(Nov):2579–2605, 2008. 2

[33] R. Manmatha, Chao-Yuan Wu, Alexander J. Smola, and
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