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Abstract

Label noise may significantly degrade the performance

of Deep Neural Networks (DNNs). To train noise-robust

DNNs, Loss correction (LC) approaches have been intro-

duced. LC approaches assume the noisy labels are cor-

rupted from clean (ground-truth) labels by an unknown

noise transition matrix T . The backbone DNNs and T can

be trained separately, where T is approximated by prior

knowledge. For example, T can be constructed by stack-

ing the maximum or mean predictions of the samples from

each class. In this work, we propose a new loss correction

approach, named as Meta Loss Correction (MLC), to di-

rectly learn T from data via the meta-learning framework.

The MLC is model-agnostic and learns T from data rather

than heuristically approximates T using prior knowledge.

Extensive evaluations are conducted on computer vision

(MNIST, CIFAR-10, CIFAR-100, Clothing1M) and natural

language processing (Twitter) datasets. The experimental

results show that MLC achieves very competitive perfor-

mance against state-of-the-art approaches.

1. Introduction

Deep learning has achieved great success on computer

vision tasks such as object detection [9], image classifi-

cation [20], segmentation [2], face recognition [13]. It is

well known that the performance of DNNs highly relies

on the large-scale high quality well-labeled training data.

However, collecting such big clean data is expensive and

time-consuming. To collect such data, people usually turn

to search engine, automatic tagging software and crowd-

sourcing, which inevitably bring label noises (wrong or cor-

rupted labels). The label noises can lead the DNNs to over-

fit to such noises [38], eventually degrading the model gen-

eralization performance.

The loss correction (LC) approaches [17, 28, 12] re-
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cently achieved great success on noise-robust deep learn-

ing. LC approaches assume the noisy labels are corrupted

from clean (ground-truth) labels by an unknown noise tran-

sition matrix T . Thus, the LC approaches try to learn this

matrix accurately. Some early works [31, 17] add a linear

noise layer at the end of backbone Convolutional Neural

Network (CNNs) to implicitly estimate matrix T . Unlike

these implicit optimizations, the LC approaches [28, 12]

explicitly estimate T . For example, a ‘perfect example’ as-

sumption [28] is made to approximate ‘perfect example’ as

the one with the maximum prediction in each class. Then

T is estimated by stacking the prediction of each ‘perfect

example’. Instead of using the maximum predictions, Gold

Loss Correction (GLC) [12] uses the mean predictions of a

small clean dataset to estimate T . Clearly, these approaches

[28, 12], which use prior knowledge to estimate T , are

heuristic and the ‘perfect example’ assumption cannot al-

ways hold true.

To learn T directly from data rather than in a heuris-

tic way, we introduce meta-learning. Meta-learning is

a general data-driven optimization framework, and it can

learn experience (meta-parameters) from data (meta-data).

More general, meta-parameters can be some parameters to

be optimized in deep learning. Recently, meta-learning

achieved great success on many optimization tasks in-

cluding: hyper-parameter optimization [18], neural archi-

tecture searching [41] and optimizer selection [26], etc.

Most meta-learning approaches contain two optimization

loops: an inner loop (Actual-Train) conducts the main

optimization (e.g. the main deep network training), and

an outer loop (Meta-Train) optimizes some aspects (meta-

parameters, e.g. hyper-parameters of the main network) of

inner loop.

Motivated by the success of meta-parameter optimiza-

tion, in this work, we adapt meta-learning to optimize T by

viewing T as the meta-parameter. Meta-learning usually

uses a small ‘clean’ validation set to conduct outer loop

optimization (Meta-Train) [30] . A small ‘clean’ valida-

tion set is also a popular setting for LC noise-robust learn-

ing approach [12]. With meta-learning and a small valida-
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tion set, we propose a new loss correction approach, Meta

Loss Correction (MLC), to learn noise transition matrix T .

Specifically, we conduct an alternating optimization to op-

timize T and main (backbone) network weights θ. First,

we make one-step-forward virtual optimization of θ on the

noisy training set during Virtual-Train; During Meta-Train,

we then optimize T (meta-parameter) guided by the loss

(meta-objective) on validation set with the one-step-forward

θ fixed; Finally we optimize the unrolled θ with the updated

T on the noisy training set in the stage of Actual-Train.

Our contributions can be summarized as follows: We

propose a new loss correction approach, Meta Loss Cor-

rection (MLC), to learn noise transition matrix. MLC is

model-agnostic and can adapt to different backbone net-

works and can easily generalize to tasks on both com-

puter vision (CV) and natural language processing (NLP).

Our MLC does not rely on the ‘perfect example’ assump-

tion [28] and learns T from data rather than directly uses

prior knowledge (stacking the maximum predictions [28]

or mean predictions [12] to construct T ). We conduct ex-

tensive evaluations on CV datasets: MNIST [3], CIFAR-10

[19], CIFAR-100 [19], Clothing1M [35] and NLP dataset

Twitter [8]. MLC achieves very competitive performance

on these datasets over state-of-the-art approaches.

The paper is organized as follows. In the next section we

present a brief introduction to related work. Our method-

ology is introduced in Section 3. The proposed algorithm

is evaluated in Section 4. Section 5 draws the paper to a

conclusion.

2. Related work

In this section, we briefly review the existing research on

label noise.

Robust loss function is widely investigated. [27] proposes

two robust loss functions to deal with aerial noise, one han-

dles asymmetric omission noise and the other models reg-

istration errors, which can be optimized via an EM algo-

rithm. [29] introduces ‘soft’ and ‘hard’ loss functions based

on bootstrapping. [7] proves a sufficient condition under

that loss to be tolerant to uniform label noise, and shows that

0-1 loss and sigmoid loss satisfy that condition. Then, [6]

further proves that mean absolute error (MAE) is a noise-

robust loss for deep CNN. Then, [40] proposes a general-

ized CrossEntropy (GCE) loss, which is a generalization of

MAE and traditional CrossEntropy (CE) loss. The weights

between MAE and CE can be adapted by tuning the param-

eters of GCE. Robust loss functions achieve some success,

however, they cannot perform well on challenging noisy

datasets.

Relabelling is the re-assignment of the labels for noisy sam-

ples. Relabeling includes two settings: (1) including a small

clean dataset and (2) no such a dataset. For (1), [32] pro-

poses a multi-task network: one cleaning model is trained

on clean samples to clean (relabel) noisy data, and then one

classification model is trained on a merged dataset (clean

and relabeled data). [22] distills information from knowl-

edge graph and clean labels to guide the relabelling of the

noisy data. For (2), [25] introduces a self-error-correcting

(SEC) strategy to relabel the noisy data based on the predic-

tion/confidence of a CNNs. [34] also uses the predictions to

relabel the samples.

Weighting aims to learn to assign small weights to samples

with corrupted labels. [11] introduces co-teaching strat-

egy which simultaneously trains two networks. These two

networks select training samples with small loss (expected

clean samples) and then communicate with each other with

those selected samples for training. Self-paced learning

[15, 39] is proposed to learn the weights of training sam-

ples guided by the training loss. For random classification

noise, [24] designs an importance reweighting method to

reweight samples by employing the in-versed noise rates.

[16] employs an additional LSTM network to learn the opti-

mal weights of training samples. [30] reweights the training

samples by employing a small validation set. [33] detects

noisy labels and reweights the noisy samples based on the

confidence supplied by noisy label detection.

Loss correction approach recently achieved great success

on noise-robust learning. Basically, the noise transition ma-

trix T is introduced to correct the predictions. Then the ap-

proaches of this category aim to learn the optimal T which

can lead to noise-robust performance. [31, 1] add an extra

linear layer at the end of a backbone CNN that simulates

the noise transition matrix. Instead of modifying architec-

ture, [28, 12, 10] use prior knowledge to estimate T e.g., via

stacking the maximum [28] and mean predictions [12] of

each class from samples. Our work belongs to this category.

As aforementioned, most existing approaches estimate T

based on prior knowledge. In comparison, we directly op-

timize T from data without relying on prior knowledge and

assumptions.

3. Methodology

3.1. Noisy Label Problem

In many applications, the collected dataset is corrupted

by label noises. Denote the noisy dataset by Dη =
{(xi, ỹi), 1 ≤ i ≤ N} where ỹi ∈ {0, 1}C may be noisy

label in C classes. Denote the C × C noise transition ma-

trix by T which specifies the probability of clean label i

flipping to noisy label j by Tij = p(ỹ = j|y = i). Follow-

ing [12, 30], it is assumed that we have access to a small

clean dataset. It is a sound assumption since it is feasi-

ble to collect such a dataset in the real world. Denote the

small clean dataset (which usually works as validation set)

by Dv = {(xi, yi), 1 ≤ i ≤ M}, M ≪ N .

Let f(x; θ) denote the backbone DNN which is encoded
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by θ, then the CrossEntropy (CE) loss is expressed as:

Loss = CE(f(x; θ), ỹ) = −
1

N

N
∑

i=1

ỹi log(f(xi; θ)) (1)

Given the noise transition matrix T , we modify the loss

function Eq. (1) to include T to achieve noise robust model

training. Thus, the corrected loss function is represented as:

LossLC = −
1

N

N
∑

i=1

ỹi log(Tf(xi; θ)) (2)

Existing approaches The effectiveness of loss correction

approaches highly depends on the estimate of T . To esti-

mate T , [28] makes the assumption that there exists ‘per-

fect example’ x′

i of each class i that p(y = i|x′

i) = 1. Then

‘perfect example’ x′

i is approximated by the sample which

has the maximum prediction/probability (softmax score) of

class i. Then Tij = p(y = j|x′

i). Unlike [28], Gold Loss

Correction (GLC) [12] approximates T using the mean pre-

diction of all the samples belonging to class i on a clean

validation set instead of the maximum prediction.

Motivation Although [28, 12] achieve promising perfor-

mance, the assumptions in [28] and [12] cannot always hold

true. For example, we cannot guarantee the ‘perfect exam-

ple’ of each class always exists. In addition, the estimation

of T is heuristic, because T is constructed directly by the

simple operations, i.e. maximum [28] or mean[12] of the

predictions of samples. In this work, we propose a learning-

based model that learns T by employing a meta-learning

optimization strategy, Meta Loss Correction (MLC). Our

MLC does not rely on ‘perfect example’ assumption or ap-

proximate T by the predictions of samples. Instead, MLC

optimizes T directly from data.

3.2. Optimizing Transition Matrix T via Meta­
learning

In this work, we conduct an alternating optimization to

optimize noise transition matrix T and the backbone net-

work encoded by θ via the Meta Loss Correction (MLC)

strategy. Specifically, the MLC approach contains three

stages: Virtual-Train, Meta-Train and Actual-Train. Al-

ternating optimization is performed on these three stages.

During Virtual-Train stage, we optimize the backbone net-

work weights θt to obtain θ̂t+1 with a fixed T t (which is

optimized in the previous iteration) guided by the corrected

loss function on noisy training set Dη . Note that this is a

‘virtual’ step, meaning that the backbone network does not

actually move to θ̂t+1. The ‘virtual’ step makes prepara-

tions for estimating T t+1 in the next stage. During Meta-

Train stage, we optimize T t+1 by keeping θ̂t+1 fixed under

CrossEntropy loss on a small clean validation set Dv . The

motivation of Meta-Train is that we would like to find a

Figure 1: The framework of the proposed Meta Loss

Correction (MLC) approach, which contains three stages:

Virtual-Train (First), Meta-Train (Second) and Actual-Train

(Third). GD means gradient descent algorithm.

T t+1 which has a low validation loss. Since Dv is clean,

this supervision signal is ideal to guide the optimization of

T t+1. Note that the idea of ‘validation’ guided approach has

also been used for model transfer learning via meta-learning

[5] and differentiable neural network search [23].

During Actual-Train, the unrolled network weights θt

are optimized to obtain θt+1 with the updated T t+1.

Clearly, the Actual-Train is the step of ‘Actual’ backbone

network optimization from unrolled network weights rather

than a ‘virtue’ step. The optimization framework is shown

in Fig. 1. Then we detail these three optimization steps

separately.

Virtual-Train Given the noisy training set Dη , in each

mini-batch, we fix T t and optimize the network weights θt,

thus the loss function at step t is:

lvirtual−trn = −
1

n

n
∑

i=1

ỹi log(T
tf(xi; θ

t)) (3)

where n is the batch size in training set. Then the one-

step-forward ‘virtual’ model weights θ̂t+1 are optimized via

gradient descent with learning rate α:

θ̂t+1(T t) = θt − α∇θt lvirtual−trn (4)

Meta-Train Given the one-step-forward backbone network

(fixed θ̂t+1), we can optimize the optimal T t+1 on the vali-

dation set:

lmeta−trn = −
1

M

M
∑

i=1

yi log(f(xi; θ̂
t+1)) (5)
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However, this is still time and memory consuming, so we

get an approximate estimate on a mini-batch of validation

set:

lmeta−trn = −
1

m

m
∑

i=1

yi log(f(xi; θ̂
t+1)) (6)

where m is the size of mini-batch. The transition matrix T

is also updated via gradient descent method with learning

rate β:

ut+1 = T t − β∇T t lmeta−trn (7)

Apply chain rule to Eq. (7):

ut+1 = T t − β{∇
θ̂t+1 lmeta−trn(−α∇2

θt,T t lvirtual−trn)}
(8)

Note that ut+1 is the raw one-step-forward noise tran-

sition matrix. ut+1 cannot work as the final noise transi-

tion matrix because the entries of ut+1 are not always non-

negative and ut+1 is not normalized. Thus, we first make

ut+1 become non-negative via:

T̃ t+1 = max(ut+1, 0) (9)

For the jth row of T̃ t+1, i.e. T̃ t+1

j = [T̃ t+1

j1 , ..., T̃ t+1

jC ]
which indicates all the probabilities transited to class j, we

then perform normalization on T̃ t+1

j to achieve the final

T t+1

j :

T t+1

j =
T̃ t+1

j
∑

T̃ t+1

j + δ(
∑

T̃ t+1

j )
, δ(a) =

{

1, if a = 0
0, if a 6= 0

(10)

where δ(·) is used to avoid division by 0.

Actual-Train After the ‘virtual’ network optimization and

the Meta-Train, we now conduct the ‘actual’ network opti-

mization on noisy training set by keeping T t+1 fixed. Then

we can achieve new network weights θt+1 via gradient de-

scent with learning rate γ on Dη:

θt+1 = θt − γ∇θt(−
1

n

n
∑

i=1

ỹi log(T
t+1f(xi; θ

t))) (11)

The whole optimization framework (Virtual-Train,

Meta-Train and Actual-Train) is summarized in Algorithm

1.

Analysis To understand the influence of noisy labels, we

first go through the normal (no corrupted labels) deep model

Algorithm 1: Meta Loss Correction (MLC)

Input: Randomly initialized {θt, T t}, noisy training

set Dη , clean validation set Dv , the number of

iterations I

for t = 1, ...,I do
Virtual-Train: Optimize the ‘virtual’ network

weights θ̂t+1 on Dη via Eq. (3-4)

Meta-Train: Optimize the transition matrix T t+1

on Dv via Eq. (5-10)

Actual-Train: Optimize the ‘actual’ network

weights θt+1 on Dη via Eq. (11)

end

Output: Model θI+1

training process. During the initial training stage (Stage

I), the network quickly fits easy samples. After that the

network learns to fit hard samples (Stage II). This process

(Stage I and II) is detailed in [4]. For deep model training

with noisy samples, we can see noisy labels do not really

affect training too much in Stage I because noisy samples

are clearly not easy. During Stage II, the network cannot

distinguish the hard samples with correct labels and noisy

samples with wrong labels because these two types of sam-

ples both produce large loss. The supervision signals from

wrong labels can make the network over-fit to the noisy

samples during Stage II. The introduce of transition ma-

trix T actually aims to reduce this overfitting in Stage II.

The approach [28] uses prior knowledge learned from noisy

data to estimate T . However, this estimation cannot guaran-

tee the accuracy of T since this estimation essentially stems

from noisy training data. Then the following approach GLC

[12] realizes the limitation of [28], and conducts the esti-

mation on a clean validation set which can provide accu-

rate supervision signal. However, GLC does not optimize

T directly with a proper loss function associated with deep

model training. Instead, GLC heuristically stacks the mean

predictions of each class to construct T . In this work, our

MLC also uses a clean validation set to avoid wrong super-

vision signal for estimating T . Moreover, we directly op-

timize T associated with deep model training with the loss

function which targets the best accuracy on the clean vali-

dation set. clearly, our approach is data driven rather than

prior knowledge driven.

4. Experiments

4.1. Experimental Settings

We evaluate our approach on four computer vision (CV)

datasets: MNIST [3], CIFAR-10 [19], CIFAR-100 [19] and

Clothing1M [35], one natural language processing (NLP)

dataset: Twitter [8]. Note that the noises in Clothing1M

[35] are from the real world. And the noises on other
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Figure 2: Visualization of three types of true noise transition matrix T (30% noisy ratio). Using first 4 (10 classes in all)

classes as an example.

datasets are artificially generated.

MNIST The MNIST [3] dataset is annotated with 10 ob-

ject categories, containing 28×28 handwritten digit images.

The training and test sets contain 60k and 10k images, re-

spectively. For MNIST, we employ a network like LeNet

[21] using SGD optimizer with learning rate 1e − 2. Set

α = 1e− 2, β = 1 in this implementation.

CIFAR The CIFAR [19] dataset contains 32× 32 color im-

ages. The training and test sets consist of 50K and 10K
images, respectively. CIFAR-10 and CIFAR-100 contain 10

and 100 categories, respectively. Following [12], we use the

Wide ResNet of depth 40 and widening factor 2 (WRN-40-

2) [37] on these 2 datasets. We train the network using SGD

optimizer with batch-size 64, learning rate 1e− 4, momen-

tum 0.9 and weight decay 5e−4. Set α = 1e−3, β = 1e−2
in this implementation.

Clothing1M The Clothing1M dataset consists of 1M noisy

data and additional 50K, 14K and 10K clean data for train-

ing, validation and test sets, respectively. The Clothing1M

dataset is annotated with 14 classes. Following [28], we

use the ResNet-50 which is pre-trained on ImageNet with

batch-size 32, learning rate 8e − 3, momentum 0.9 and

weight decay 1e − 3. Set α = 1e − 2, β = 1e − 1 in

this implementation.

Twitter The Part-of-Speech Tagger for Twitter [8] dataset

contains 1827 tweets annotated with 25 POS tags. The

Twitter is split into one training set with 1000 tweets, one

development set with 327 tweets, and one test set with 500

tweets. We merge the training and development sets to con-

struct an augmented training set. Following [12], We use

window size 3 and a two-layer fully connected network.

We train the network using Adam optimizer with batch-

size 64, learning rate 1e − 3 and weight decay 5e − 5. Set

α = 1e− 2, β = 1 in this implementation.

Noises We conduct extensive experiments under different

types of noise. Following [6, 30], we artificially corrupt

the labels with three types of noise: flipping uniformly to

all classes (Uniform), flipping randomly to any other class

(Flip-Random) and flipping to one single different class

(Flip-To-One). An example of noise transition matrix (30%

noise ratio) under three types of noise is shown in Fig.

2. We evaluate our approach under different noise levels

{10%, 20%, 30%, 40%}.

Clean validation set For CIFAR-10 and MNIST, we ran-

domly sample 50 clean images per class, so m = 500. For

CIFAR-100, we randomly sample 5 clean images per class,

so m = 500. For Twitter, we sample 8 clean images per

class, so m = 200.

Compared approaches We compare with state-of-the-art

approaches [28, 12, 30, 10, 11] using the open-source

implementations released by original papers. To make

fair comparisons, all the approaches use the same training

(noisy) and small validation (clean) sets. If the compared

approaches do not rely on a small validation set, both the

training and small validation sets are merged as training set.

The compared approaches include: (1) Baseline (CE). We

train a baseline model with CrossEntropy (CE) loss only

(not using noise corrections at all). (2) Baseline (FC). We

add an extra noise correction layer (Fully-Connected layer)

at the end of the backbone network to simulate the noise

transition matrix. (3) Forward Loss Correction (Forward).

Forward [28] approximates T using the maximum softmax

probabilities of corresponding class from the noisy training

dataset. (4) Gold Loss Correction (GLC). GLC [12] esti-

mates T using the mean prediction of all samples belong-

ing to the same class from a small clean validation set. (5)

Confusion Matrix. It is a simplified version of GLC that

estimates T by a confusion matrix [12]. (6) Learning to

Reweight Examples (LRE). Instead of estimating T , LRE

[30] learns to weight samples with the expectation that the

noisy samples have small weights. (7) Co-teaching. Two

deep neural networks are trained simultaneously to select

training samples with small loss (expected clean data) for

each other [11]. In this way, these two networks can teach

each other by feeding (expected) clean samples for train-

ing. (8) Masking. Masking [10] proposes a structure-aware

probabilistic model, which incorporates a (human-assisted)

structure prior, to learn the noise transition probabilities.

(9)PENCIL. PENCIL [36] introduces a probabilistic model,

which can update both network parameters and label esti-
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(a) Uniform (b) Flip-Random (c) Flip-To-One

Figure 3: Test accuracy (%) on various sizes of clean image on CIFAR-10 under 30% noise ratio (a) Uniform noise; (b)

Flip-Random noise; (c) Flip-To-One noise.

(a) CIFAR-10, All noise types (b) CIFAR-10, Uniform

(c) CIFAR-10, Flip-Random (d) CIFAR-10, Flip-To-One

Figure 4: The comparisons under various noise types and ratios. (a) Our MLC vs. Baseline(CE) under various types of noise;

(b) Our MLC vs. state-of-the-art under Uniform noise; (c) Flip-Random noise; (d) Flip-To-One noise.

mations as label distributions.

4.2. Results

The effect of the small clean validation set Following

[12, 30, 10, 11], we introduce a small clean validation set

to estimate T . In our MLC framework, T is optimized un-

der the supervision of the loss on the small validation set in

the stage of Meta-Train. Here we explore the influence of

small validation set on the final noise-robust classification

performance. We fix the training and test sets and change

the size of small validation set. From Fig. 3, we can see

that the increase of small validation set (clean images) can

boost the performance. However, when the size of small

validation set is larger than 100, the gain of performance is

small. It means we do not need to annotate a large number

of clean dataset to guide the meta training, which is very

favorable in the real world. In addition, our MLC consis-

tently outperforms our competitor GLC [12]. In particular,

for an extremely small validation set (50 images), MLC sig-

nificantly works better than GLC. It shows that our MLC is

very robust to noises even when very small annotated clean

samples are available.

Robustness to various types of noise We explore the ro-

bustness of our MLC under various types of noise. Specif-

ically, we test under 3 types of noise (Uniform, Flip-

Random, Flip-To-One) with noise ratios {10%, 20%, 30%,

40%}. We make this evaluation on CIFAR-10 dataset.

Fig. 4 (a) compares our MLC with Baseline(CE) approach.
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Table 1: Test accuracy (%) on various datasets under various noise ratios. The best accuracy is in bold. Note that the mean

accuracy across three types of noise and four ratios. CIFAR-100 cannot generate samples with ‘Uniform’ noise due to the

limited (< 100) samples per class. The results of Co-teaching are copied from [11].

Dataset Method
Uniform Flip-Random Flip-To-One

Mean

10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

MNIST

Baseline(CE) 98.59 98.39 98.27 98.02 98.60 98.46 98.25 98.18 97.59 96.65 94.26 84.68 96.66

Confusion[12] 98.26 96.05 91.62 74.43 98.73 98.53 98.46 98.39 98.26 96.05 91.62 74.43 92.90

Froward[28] 98.64 98.40 98.36 98.14 98.70 98.48 98.44 98.31 97.84 97.07 95.40 95.21 97.75

GLC[12] 98.72 98.52 98.45 98.23 98.78 98.70 98.42 98.29 97.86 97.45 96.53 95.47 97.95

LRE[30] 98.66 98.60 98.28 97.79 98.92 98.54 98.33 97.77 98.82 98.48 98.15 97.78 98.34

Co-teaching[11] - 97.25 - - - - - - - - - 87.63 97.25

MLC 98.98 98.80 98.64 98.47 98.97 98.91 98.63 98.54 99.18 98.94 98.31 97.36 98.64

CIFAR-10

Baseline(CE) 80.23 78.21 74.13 72.18 79.96 77.94 75.51 71.74 81.31 80.80 79.31 71.25 76.88

Confusion[12] 80.12 78.23 74.26 72.83 80.40 77.87 74.99 72.11 81.62 80.05 78.76 75.31 77.21

Froward[28] 81.02 79.29 76.91 74.63 80.31 78.26 75.78 72.44 82.49 81.35 80.80 79.43 78.56

GLC[12] 82.69 80.54 77.42 75.44 82.98 80.55 77.24 74.37 83.92 82.72 81.70 80.95 80.04

LRE[30] 82.82 81.80 79.39 78.51 83.02 81.20 79.45 76.88 84.10 82.89 82.42 81.87 81.20

Co-teaching[11] - 82.32 - - - - - - - - - 72.62 76.32

PENCIL[36] 85.80 84.56 82.98 80.27 86.07 84.76 82.03 79.53 86.59 85.09 84.27 78.37 83.36

MLC 85.23 84.28 82.10 79.89 86.17 84.60 82.27 79.85 88.17 85.95 84.82 82.75 83.84

CIFAR-100

Baseline(CE) - - - - 50.67 45.18 41.68 37.40 52.98 47.72 44.19 37.78 44.56

Confusion[12] - - - - 36.82 28.12 24.07 19.17 39.24 36.02 35.53 29.47 31.06

Forward[28] - - - - 50.14 42.19 37.72 31.70 54.51 53.26 50.84 45.42 45.72

GLC[12] - - - - 39.46 37.30 31.34 27.51 45.20 43.53 40.18 37.28 37.73

LRE[30] - - - - 54.46 52.07 48.64 44.10 58.10 55.53 53.62 50.42 52.12

Co-teaching[11] - - - - - 54.23 - - - - - 34.81 43.47

PENCIL[36] - - - - 59.97 56.15 51.75 44.85 60.03 58.48 57.33 52.62 55.15

MLC - - - - 60.88 57.22 55.68 53.33 58.73 55.70 52.56 50.11 55.53

Twitter

Baseline(CE) 87.36 86.52 86.25 85.41 87.54 86.77 86.03 85.80 86.85 85.01 81.02 70.28 84.57

Confusion[12] 84.75 86.36 85.75 85.47 86.84 85.65 85.85 84.49 86.06 85.97 84.08 79.65 85.08

Froward[28] 79.05 77.86 81.80 78.38 55.01 75.39 79.32 68.88 47.17 65.30 71.38 58.32 69.82

GLC[12] 87.13 86.40 85.94 85.31 86.88 85.69 85.29 84.31 86.40 86.05 85.65 85.54 85.88

LRE[30] 86.73 86.26 85.75 85.20 86.29 85.44 85.30 84.10 86.60 86.07 85.62 84.91 85.69

MLC 87.28 86.92 86.10 85.52 87.60 86.73 86.12 85.43 87.45 87.01 85.71 84.36 86.35

We can see that our MCL consistently outperforms Base-

line(CE) across all the noise ratios and types, showing the

effectiveness of our loss correction strategy. Fig. 4 (b) (c)

(d) compare MLC with state-of-the-art approaches under 3

types of noise: Uniform, Flip-Random and Flip-To-One, re-

spectively. Clearly, our MLC consistently outperforms the

other approaches. In particular, our MLC works better than

other Loss Correction approaches by a very large margin.

The effect of meta-learning It is interesting to explore the

promising performance coming from our meta-learning or

the clean validation set. Then we introduce Baseline (FC)

which adds a Fully-Connected layer at the end of the back-

bone network to simulate the noise transition matrix. We

use the clean validation set and an alternating optimiza-

tion: optimizing the backbone network using the valida-

tion set and optimizing the backbone and FC layer using the

noisy training set. From Fig. 5, Baseline (FC) works bet-

ter than Baseline (CE), showing the usefulness of the noise
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(a) Uniform (b) Flip-Random (c) Flip-To-One

Figure 5: Comparisons among MLC, Baseline(FC) and Baseline(CE) on CIFAR-10 under various noise types: (a) Uniform

noise; (b) Flip-Random noise; (c) Flip-To-One noise.

transition matrix. Since both Baseline (FC) and MLC use

the clean validation set, MLC outperforms Baseline (FC),

showing the effectiveness of meta-learning.

Comparisons with state-of-the-art We make extensive

comparisons (various noise types and ratios) with many

state-of-the-art approaches on three popular computer vi-

sion (CV) datasets (MNIST, CIFAR-10 and CIFAR-100)

and one natural language processing (NLP) dataset (Twit-

ter) in Table 1. (1) For MNIST, our MLC consistently

outperforms the other approaches across 3 noises. (2) For

CIFAR-10, our MLC consistently works better than other

approaches, e.g. 83.84% of MLC vs. 83.36% of PEN-

CIL (the 2nd best) in terms of mean accuracy across all

the noise ratios and types. PENCIL achieves similar per-

formance with our MLC under individual noise ratios. (3)

For CIFAR-100 dataset, our MLC outperforms other ap-

proaches under Flip-Random noise and achieves similar

performance with PENCIL under Flip-To-One noise. (4)

Apart from CV datasets, we also evaluate our MLC on one

NLP dataset Twitter to verify the generalization capacity

of MLC. Unlike CV datasets, the Baseline(CE) approach

achieves comparable performance with the loss correction

approaches, e.g. it even outperforms the Forward in terms

of mean accuracy: 84.57% (Baseline(CE)) vs. 69.82%

(Forward). Our MLC achieves the best mean accuracy:

86.35% (MLC) vs. 85.88% (GLC, the 2nd best).

To summarize, MLC is very robust to noises (across var-

ious types and ratios) from CV to NLP tasks. In compari-

son, another state-of-the-art loss correction approach GLC

works well on MNIST and CIFAR-10, however, the per-

formance drops significantly on a more challenging dataset

CIFAR-100.

Real-world noises Finally, to show the robustness of our

approach under real-world noises, we test our MLC on

Clothing1M dataset. As shown in Table 2, the results of

CrossEntropy and Forward are copied from [28], GLC and

Mask are copied from [12] and [10], respectively. We can

see that our MLC and Mask [10] achieve the best perfor-

mance, significantly outperforming other approaches. It

means that our MLC and Mask [10] are both very robust to

real-world noises. Note that Mask [10] manually defines the

prior knowledge that which classes are similar (e.g. cat and

dog) and which are not (e.g. cat and car). Then this human-

defined prior knowledge is used to optimize the noise tran-

sition matrix T . In comparison, our MLC learns T directly

and automatically from data.

Table 2: Test accuracy (%) on Clothing1M.

Approach Prior knowledge Accuracy

CrossEntropy [28] no 68.94

Forward [28] yes 69.84

GLC [12] yes 70.84

Mask [10] yes 71.10

MLC no 71.06

5. Conclusion

In this work, when a small clean dataset is available, we

propose a learning-based loss correction approach, Meta

Loss Correction (MLC), which can learn noise transition

matrix T and network weights jointly via meta-learning.

Unlike most existing approaches which estimate T using

prior knowledge, MLC learns T directly from data with-

out ‘perfect example’ assumption and human-in-the-loop

process. Extensive experiments are conducted on both CV

and NLP datasets. Results show that our MLC approach

compares favorably with other loss correction approaches

and general state-of-the-art noise-robust deep learning ap-

proaches.
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