
Introduction

Predicting Temporal Sets with Deep Neural Networks
Le Yu1, Leilei Sun1*, Bowen Du1, Chuanren Liu2, Hui Xiong3, Weifeng Lv1

1SKLSDE and BDBC Lab, Beihang University, Beijing 100083, China

2Department of Business Analytics and Statistics, University of Tennessee, Knoxville, USA

3Department of Management Science and Information Systems, Rutgers University, USA

Contact: {yule,leileisun}@buaa.edu.cn Lab: https://www.brilliantasus.com/

Methodology Experimental Results

We propose an integrated solution based on the deep neural networks for temporal sets prediction. A unique perspective of our approach is to learn element relationship by constructing set-level co-

occurrence graph and then perform graph convolutions on the dynamic relationship graphs. Moreover, we design an attention-based module to adaptively learn the temporal dependency of elements and 

sets. Finally, we provide a gated updating mechanism to find the hidden shared patterns in different sequences and fuse both static and dynamic information to improve the prediction performance. 

Abstract

Related Work

Conclusion

Three types of temporal data:

• Time Series: a sequence of numerical values.

• Temporal Event: a sequence of nominal events.

• Temporal Sets: a sequence of sets with timestamps, where 

each set contains an arbitrary number of elements. 

Recent literature for temporal sets prediction usually follow a 

two-step strategy:

1) Set Embedding.

2) Sequential Behaviors Learning.

Problem Formalization
Let 𝕌 = 𝑢1, 𝑢2, ⋯ , 𝑢𝑛 , 𝕍 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} denote the set 

of 𝑛 users and 𝑚 elements, a set 𝑆 ⊂ 𝕍 denotes the 

collection of elements. Given a sequence of sets 𝕊𝑖 =

𝑆𝑖
1, 𝑆𝑖

2, ⋯ , 𝑆𝑖
𝑇 that records the historical behaviors of user 

𝑢𝑖 ∈ 𝕌. The goal is to predict the next-period set of 𝑢𝑖 ,
መ𝑆𝑖
𝑇+1 = 𝑓 𝑆𝑖

1, 𝑆𝑖
2, ⋯ , 𝑆𝑖

𝑇 ,𝑾 ,

where 𝑾 is the trainable parameter.

Element Relationship Learning
• Weighted Graphs Construction:

a) Generate pairs of elements.

b) Get unique pairs and add self-connection.

c) Normalization.

d) Construct weighted graphs and assign representations.

• Weighted Convolutions on Dynamic Graphs with 

Parameter Sharing:

𝒄𝑖,𝑗
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𝐴𝑖
𝑡 𝑗, 𝑘 · 𝑾𝑙𝒄𝑖,𝑘

𝑡,𝑙

• Datasets: TaFeng, DC, TaoBao and TMS.

• Baselines: TOP, PersonalTOP, ElementTransfer, DREAM 

and Sets2Sets.

• Evaluation metrics: Recall, NDCG and PHR.

This paper studies predictive modelling of a new type of 

temporal data, namely, temporal sets. Different from the 

existing methods, our method is founded on the multiple and 

comprehensive set-level element representations. Experimental 

results demonstrate that our method could circumvent the 

information loss problem suffered by the set-embedding based 

methods, and achieve higher prediction performance than the 

state-of-the-art methods.

For temporal sets prediction:

• Methods designed for time series can not handle semantic 

relationships among elements.

• Methods designed for temporal events prediction cannot 

deal with multiple elements within a set.

Hence, it is necessary to design a dedicated method for 

predicting temporal sets.

Figure 1: Prediction of three types of temporal data: time 

series, temporal events and temporal sets.

Figure 2: The two-step strategy that existing methods adopt.

The two-step strategy would lead to information loss, which 

results in unsatisfactory prediction performance.

Figure 3: Framework of the proposed model.

Framework
The proposed model consists of three components:

1) Element relationship learning: learn set-level element 

relationship.

2) Attention-based temporal dependency learning: learn 

temporal dependency of each element in different sets.

3) Gated information fusing: fuse static and dynamic 

representations together.

By focusing more on element relationship, the integrated 

architecture could leverage useful information of elements 

as much as possible, which alleviates the information loss 

issue in existing methods.

Figure 4: The process of weighted graphs construction.

Attention-based temporal dependency learning 
• Self-attention mechanism:

𝒁𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
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• Weighted aggregation: 𝒛𝑖,𝑗 = 𝒁𝑖,𝑗 · 𝒘𝑎𝑔𝑔
T
· 𝒁𝑖,𝑗
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Gated Information Fusing
• Static information: original element representation.

• Dynamic information: learned compact representation.

The gated updating mechanism:

𝑬𝑖,𝐼 𝑗
𝑢𝑝𝑑𝑎𝑡𝑒

= 1 − 𝛽𝑖,𝐼 𝑗 · 𝛾𝐼 𝑗 · 𝑬𝑖,𝐼 𝑗 + (𝛽𝑖,𝐼 𝑗 · 𝛾𝐼 𝑗 ) · 𝒛𝑖,𝑗

The Prediction Layer
The possibilities of elements appearing in the next-period 

set is calculated by,

ෝ𝒚𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑬𝑖
𝑢𝑝𝑑𝑎𝑡𝑒

𝒘𝑜 + 𝒃𝑜

Table 1: Comparisons with different methods.

Figure 5: Ablation study of the proposed model.

Figure 6: Performance on different ratios of training data.

Experimental results demonstrate that our approach could 

outperform existing methods with a significant margin.


