

# Deep Learning: From Theory to Algorithm



### 北京大学



## Outline:

- 1. Overview of theoretical studies of deep learning
- 2. Optimization theory of deep neural networks1) Gradient finds global optima2) Gram-Gauss-Newton Algorithm

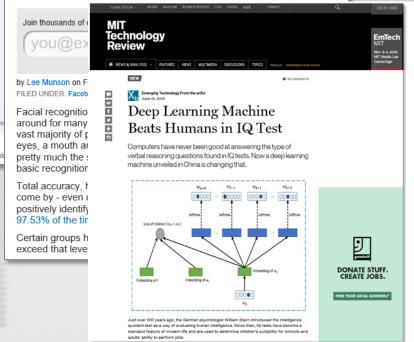


This

## Success of Deep Learning

Microsoft Research shows a promising new breakthrough in speech translation technology

Facebook's DeepFace facial recognition technology has human-like accuracy



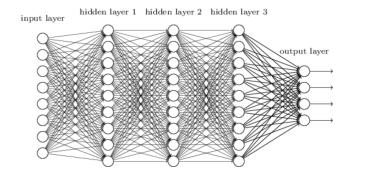
### Mainly four areas:

- Computer Vision
- Speech Recognition
- Natural Language Processing
- Deep Reinforcement Learning

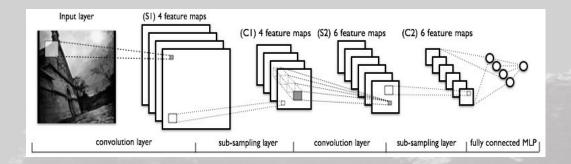


## **Basic Network Structure**

#### Fully Connected Network

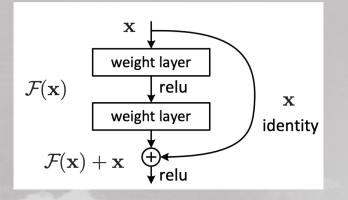


#### Convolutional Network



Further improvement:

Residual Network ... Recurrent Network (LSTM ...)





## Mystery of Deep Neural Network

For any kind of dataset, DNN achieves 0 training error easily.

Why do neural networks work so well?

A key factor:

Over-Parametrization



## Supervised Learning

Collect data: 
$$\{(x_i, y_i) | i = 1, 2, ..., n\}$$

Learn a model:  $f: \mathcal{X} \to \mathcal{Y}, f \in \mathcal{H}$ 

Predict new data:  $x \rightarrow f(x)$ 

All  $(x, y) \sim \mathcal{D}$ , where  $\mathcal{D}$  is unknown

A common approach to learn: ERM (Empirical Risk Minimization)

$$\min R_n(w) := \frac{1}{n} \sum_i l(w; x_i, y_i)$$

w: model parameters l(w; x, y): loss function w.r.t. data

Population Risk:  $R(w) \coloneqq E[l(w; x, y)]$ 



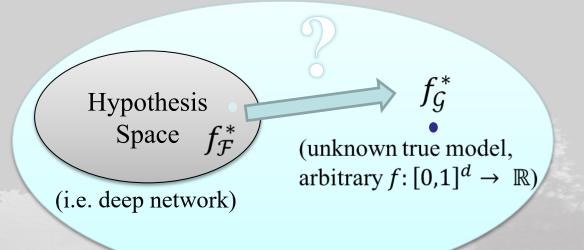
### **Theoretical Viewpoints of Deep Learning**

- Model (Architecture)
  - CNN for images, RNN for speech...
  - Shallow (but wide) networks are universal approximator (Cybenko, 1989)
  - Deep (and thin) ReLU networks are universal approximator (LPWHW, 2017)
- Optimization on Training Data
  - Learning by optimizing the empirical loss, nonconvex optimization
- Generalization to Test Data
  - Generalization theory



## Representation Power of DNN

### Goal: find unknown true function



Universal Approximation Theorem

NN can approximate any continuous function arbitrarily well:  $\forall f \in \mathcal{F}, \exists NN \in \mathcal{N}, s.t.$ 

 $\forall x \in [0,1]^d, |NN(x) - f(x)| \le \epsilon$ 

Depth bounded (Cybenko, 1989)
 Width bounded (LPWHW, 2017)

Issue: only show existence, ignore the algorithmic part

Cybenko, Approximation by superpositions of a sigmodial function, 1989 Lu et al. The Expressive Power of Neural Networks: A View from the Width, NIPS17



### Some Observations of Deep Nets

- # of parameters >> # of data, hence easy to fit data
- Without regularization, deep nets also have benign generalization
- For random label or random feature, deep nets converge to 0 training error but without any generalization

How to explain these phenomena?

ICLR 2017 Best Paper:

"Understanding deep learning requires rethinking generalization"



### **Traditional Learning Theory Fails**

#### Common form of generalization bound (in expectation or high probability)

| $R(w) \le R_n(w) + 1$       | Capacity Measure<br>n                                                                                                                      |                |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>Capacity Measurement</b> | Complexity                                                                                                                                 |                |
| VC-dimension                | $VC \leq O( E  \log  E )$                                                                                                                  | E : # of edges |
| E-Covering number           | $\log_2 N_{l_1}(\mathcal{F},\epsilon,m) \le O\left(\frac{\left(AL_{\phi}\right)^{\boldsymbol{L}(\boldsymbol{L}+1)}}{\epsilon^{2L}}\right)$ | L: # of layers |
| Rademacher Average          | $R_m(\mathcal{F}) \le O(\mu^L)$                                                                                                            |                |
|                             |                                                                                                                                            |                |

All these measurements are far beyond the number of data points!



### Generalization of DL: margin theory

#### Bartlett et al. (NIPS17):

Main idea Normalize Lipschitz constant (product of spectral norms of weighted matrices) by margin

Final bound 
$$\Pr\left[\underset{j}{\operatorname{arg\,max}} F_{\mathcal{A}}(x)_{j} \neq y\right] \leq \widehat{\mathcal{R}}_{\gamma}(F_{\mathcal{A}}) + \widetilde{\mathcal{O}}\left(\frac{\|X\|_{2}R_{\mathcal{A}}}{\gamma n}\ln(n)\ln(W) + \sqrt{\frac{\ln(1/\delta)}{n}}\right)$$

where  $R_{\mathcal{A}}$  is the spectral complexity

Remark:

(1) nearly has no dependence on # of parameters

(2) a multiclass bound, with no explicit dependence on # of classes



### The Generalization Induced by SGD: Train faster generalize better

In nonconvex case, there are some results, but very weak

Hardt et al. (ICML15), for SGD:

Assuming Lipschitz and  $\beta$ -smooth, then  $\varepsilon_{stab} \leq O(\frac{T^{1-\frac{1}{\beta c+1}}}{n})$ 

which maybe linear dependent on training iterations



### **Our Results**

### From the view of stability theory:

Under mild conditions of (surrogate) loss function, the generalization error of SGLD at *N*-*th* round satisfies

$$E[l(w_{S},z)] - E_{S}[l(w_{S},z)] \le O\left[\frac{1}{n}\left(k_{0} + L\right) \beta \sum_{k=k_{0}+1}^{N} \eta_{k}\right]$$

where *L* is the Lipschitz constant, and  $k_0 \coloneqq \min \{k: \eta_k \beta L^2 < 1\}$ 

If consider high probability form, there is an additional  $\tilde{O}(\sqrt{1/n})$  term



### **Our Results**

From the view of PAC-Bayesian theory:

For regularized ERM with  $R(w) = \lambda ||w||^2/2$ . Under mild conditions, with high probability, the generalization error of SGLD at *N*-*th* round satisfies

$$E[E[l(w_{S}, z)]] - E_{S}[E[l(w_{S}, z)]] \le O\left(\sqrt{\frac{\beta}{n} \sum_{k=1}^{N} \eta_{k} e^{-\lambda(T_{N} - T_{k})/2} E[|g_{k}||^{2}]}\right)$$

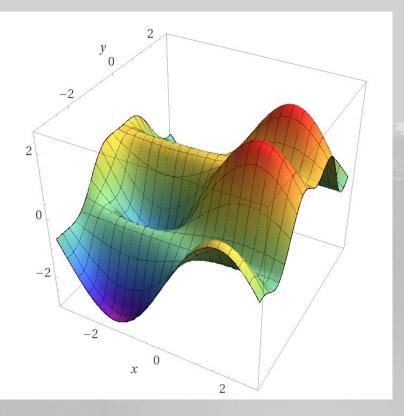
where  $T_k = \sum_{j=1}^k \eta_k$ ,  $g_k$  is the stochastic gradient in each round.



## Optimization for Deep Neural Network

- Loss functions for DNN is highly non-convex
- Common SG methods (such as SGD) work well

What's the reason behind above facts?





## Our Results (DLLWZ, 2019)

Notations:

*n*: the number of training data; *L*: network depth;  $R_n(w)$ : empirical square loss;  $\lambda_0$ : some constant that depends on network structure and initialization scheme;  $w_t$ : network parameters obtained by GD

Theorem: For fully connected network with smooth activity if width  $m = poly\left(n, 2^{L}, \frac{1}{\lambda_{0}}\right)$  and step size  $\eta = O\left(\frac{\lambda_{0}}{n^{2}2^{L}}\right)$ , then with high probability, there is  $R_{n}(w_{t}) \leq (1 - \eta\lambda_{0})^{t}R_{n}(w_{0})$ 

GD finds global minima in a linear convergence rate!



### Our Results (DLLWZ, 2019)

Theorem: For ResNet or Convolutional ResNet with smooth, activation, if width  $m = poly\left(n, L, \frac{1}{\lambda_0}\right)$ , and step sitze  $\eta = O\left(\frac{\lambda_0}{n^2}\right)$ , then with high probability there is  $R_n(w_t) \leq (1 - \eta\lambda_0)^t R_n(w_0)$ 

Note there is an exponential improvement about the network width compared with fully connected network!

Du et al. Gradient Descent Finds Global Minima of Deep Neural Networks, ICML19



### **Concurrent Results**

Concurrently, Allen-Zhu et al. [1] and Zou et al. [2] proved (Stochastic) GD converges to global optimum under some similar but a little different assumptions.

When width of network is infinite, gradient descent converges to the solution of a kernel regression, which is characterized by Neural Tangent Kernel (NTK) [3].

NTK:  $K(x, x') = \langle \nabla_w f(w, x), \nabla_w f(w, x') \rangle$ 

[1] Allen-Zhu et al. A convergence theory for deep learning via over-parameterization
[2] Zou et al. Stochastic gradient descent optimizes over-parameterized deep ReLU networks
[3] Jacot and Gabriel, Neural Tangent Kernel: convergence and generalization in neural networks (NIPS18)



## Critical Facts

- 1. There is a global optimum inside this neighbor.
- 2.  $f(w, x_i)$  is approximately linear w.r.t w in a neighbor of initialization, which is implicitly implied in the proof of GD;

Can we design faster algorithm than (stochastic) GD?



## Second Order Algorithm for DNN

In classic convex optimization, second order algorithm achieves much faster convergence rate.

Main idea: use second order information (Hessian matrix) to accelerate training at the price of additional computational cost.

Second order algorithm for DNN is much more challenging:

1. Loss function is highly non-convex;

2. High dimensional parameter space (which is usually ignored in classic convex optimization).



### Classic Gauss-Newton Method

Non-linear least square:

First order approximation at  $w_t$ :  $f(w, x_i) \approx f(w_t, x_i) + \nabla_w f(w_t, x_i) \cdot (w - w_t)$ 

Notation:  

$$f_t \coloneqq (f(w_t, x_1), \dots, f(w_t, x_n))^T$$

$$J_t \coloneqq (\nabla_w f(w_t, x_1), \dots, \nabla_w f(w_t, x_n))^T$$
 (Jacobian)  

$$H_t = J_t^T J_t \qquad y_t \coloneqq (y_1, \dots, y_n)^T$$

$$w_{t+1} = argmin_w \frac{1}{2} \left| |f_t + J_t(w - w_t) - y_t| \right|_2^2$$

 $\min_{w} F(w) := \frac{1}{2} \sum (f(w, x_i) - y_i)^2$ 

$$w_{t+1} = w_t - H_t^{-1} J_t^T (f_t - y)$$

Approximation of Newton's method (using  $H_t$  to approximate Hessian)



## **Potential Issues**

For DNN, parameter dimension  $d \gg n$ 

 $J_t \in \mathbb{R}^{n \times d}, \quad H_t = J_t^T J_t \in \mathbb{R}^{d \times d}$ 

1. Approximate Hessian  $H_t$  is too large to be stored;

2.  $H_t$  is not invertible;

3. Computational complexity may be expansive compared with SGD.



## Key Observation

Theorem: Let  $J \in \mathbb{R}^{n \times d}$ ,  $r \in \mathbb{R}^{n}$ , where  $d \gg n$  and J has full rank, then  $\Delta w \coloneqq -J^{T}(JJ^{T})^{-1}r$  is a solution of the equation  $J^{T}J\Delta w = -J^{T}r$ with minimum norm  $||\Delta w||_{2}^{2}$ .

 $w_{t+1} = w_t - H_t^{-1} J_t^T (f_t - y) \qquad \Longrightarrow \qquad w_{t+1} = w_t - J_t^T (J_t J_t^T)^{-1} (f_t - y)$ 

 $J_t J_t^T \in \mathbb{R}^{n \times n}$ : Gram matrix of NTK  $K(x, x') = \langle \nabla_w f(w, x), \nabla_w f(w, x') \rangle$ 



## Gram-Gauss-Newton (GGN) Algorithm

 $w_{t+1} = w_t - J_{t,B_t}^T (J_{t,B_t} J_{t,B_t}^T)^{-1} (f_{t,B_t} - y_{B_t})$ 

Stable version:

Mini-batch extension:

$$w_{t+1} = w_t - J_{t,B_t}^T (\lambda J_{t,B_t} J_{t,B_t}^T + \alpha I)^{-1} (f_{t,B_t} - y_{B_t})$$

#### For each iteration do

- 1. Sample a mini-batch  $B_t$  from dataset
- 2. Calculate Jacobian matrix  $J_{t,B_t}$  and Gram matrix  $G_{t,B_t} = J_{t,B_t}J_{t,B_t}^T$
- 3. Update  $w_{t+1} = w_t J_{t,B_t}^T (\lambda G_{t,B_t} + \alpha I)^{-1} (f_{t,B_t} y_{B_t})$



## Computational Complexity

Space complexity:

Jacobian matrix  $J_{t,B_t}$ :  $b \times d$ , where b is the batch size

Gram matrix  $G_{t,B_t}$ :  $b \times b$ 

Time complexity:

Mainly compute Gram matrix  $G_{t,B_t}$  and its inverse  $O(b^2d + b^3)$ Compared with SGD:

Nearly the same computational cost, except keeping track of the derivative of every data point in mini-batch, instead of their average in SGD.



### Theoretical Guarantee (CGHHW)

Theorem: For two layer ReLU network, if width  $m = poly\left(\frac{n}{\lambda_{n}}\right)$ , then with hig

- 1. Gram matrix  $G_t$  at each iteration is invertible;
- 2. Empirical square loss converges to 0:

$$R_n(w_{t+1}) \le \frac{Cn}{m} R_n(w_t)^2$$

#### 1. Quadratic convergence;

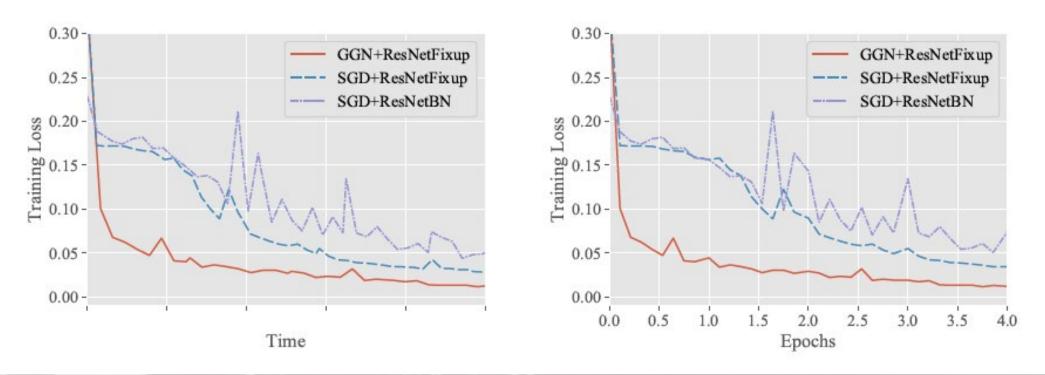
2. Conclusion holds for general networks like GD.

Cai et al. A Gram-Gauss-Newton Method Learning Over-Parameterized Deep Neural Networks for Regression Problems, Arxiv19



### Experiments

### RSNA Bone Age task: predicting bone age by images

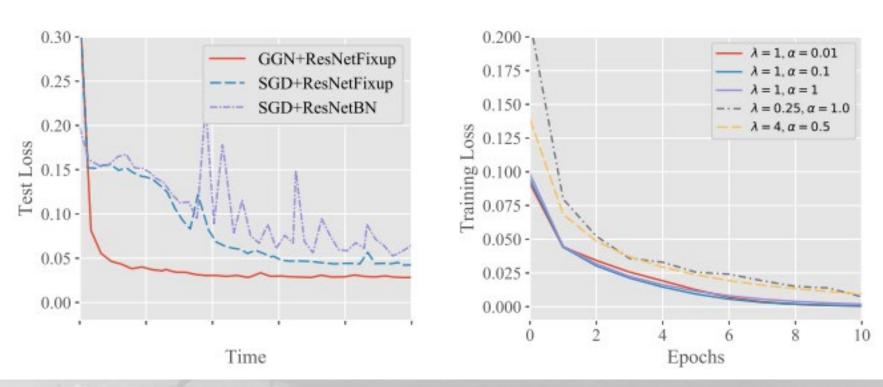


(a) Loss-time curve

(b) Loss-epoch curve



### Experiments



(a) Test performance

(b) Training with different hyper-parameters



## Take-aways

- We prove Gradient Descent achieves global optimum in a linear convergence rate for general over-parametrized neural network.
- We propose a novel quasi second order algorithm (GGN) for training network, which converges in quadratic order for general over-parametrized neural network and enjoys nearly the same computational complexity as SGD for regression task.



## Related Paper

- Gradient Descent Finds Global Minima of Deep Neural Networks, ICML19
- 2. A Gram-Gauss-Newton Method Learning Overparameterized Deep Neural Networks for Regression Problems, Arxiv, 2019
- Lu et al. The Expressive Power of Neural Networks: A View from the Width, NIPS17



# Thank you!