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Deep Learning: From Theory to Algorithm
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Outline:

1. Overview of theoretical studies of deep learning

2. Optimization theory of deep neural networks
1) Gradient finds global optima
2) Gram-Gauss-Newton Algorithm
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Success of Deep Learning

Microsoft Research shows a
promising new breakthrough in
speech translation technology

Facebook's DeepFace facial recognition ‘

technology has human-like accuracy
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Mainly four areas:

» Computer Vision
» Speech Recognition
» Natural Language Processing

» Deep Reinforcement Learning
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Basic Network Structure

Fully Connected Network Convolutional Network

hidden layer 1 hidden layer 2 hidden layer 3

Inpuc layer (§1) 4 feature maps

(Cl) 4 feature maps (52) 6 feature maps  (C2) 6 feature maps

[ convolution layer | sub-sampling layer | convolution layer | sub-sampling layer |fuJchonnected I"1LPI
. £ X |
Further improvement: {
weight layer
F(x) Jrelu <
Residual Network .. weight layer dentity

Recurrent Network (LSTM )
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Mystery of Deep Neural Network

For any kind of dataset, DNN achieves 0O training error easily.

Why do neural networks work so well?

A key factor: Over-
Parametrization
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Supervised Learning

All (x,y) ~ D, where D is unknown
Collect data: {(x;,y))|i=1,2,...,n}

A common approach to learn:
ERM (Empirical Risk Minimization)

1
Learnamodel: f: X - Y, fe H minR,,(w): = = z L(w; x;, ;)
[

w:. model parameters
l(w; x,y): loss function w.r.t. data

Predict new data: x — f(x) Population Risk: R(w) = E[l(w; x, V)]



Theoretical Viewpoints of Deep Learning

* Model (Architecture)
— CNN for images, RNN for speech...
— Shallow (but wide) networks are universal approximator (Cybenko, 1989)

— Deep (and thin) ReLU networks are universal approximator (LPWHW,
2017)

» Optimization on Training Data

— Learning by optimizing the empirical loss, nonconvex optimization
* (Generalization to Test Data
— Generalization theory
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Representation Power of DNN

Goal: tind unknown true function Universal Approximation Theorem

NN can approximate any continuous function
arbitrarily well:

Hypothesis fg* VfeFANN € N,s.t.
Space fﬂf: (unknown true model, Vx € [Oyl]d: |NN(JC) T f(x)l =9
. arbitrary f:[0,1]¢ —» R)
(i.e. deep network) 1. Depth bounded (Cybenko, 1989)

2. Width bounded (LPWHW, 2017)

Issue: only show existence, ignore the algorithmic part

Cybenko, Approximation by superpositions of a sigmodial function, 1989
Lu et al. The Expressive Power of Neural Networks: A View from the Width, NIPS17



NELFLE®

PEKING UNIVERSITY

—————————————————————————————————————————————————————————————————————

How to explain these phenomena?

ICLR 2017 Best Paper:

“Understanding deep learning requires rethinking generalization”
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Traditional Learning Theory Fails

Common form of generalization bound (in expectation or high probability)

Capacity Measure

R(w) < R,(w) +

\ n
Capacity Measurement Complexity
VC-dimension VC < O(|E|log|E|) |E|: # of edges
L(L+1)
i (ALy)
€-Covering number log, Ny, (F,e,m) <0 7 L: # of layers
Rademacher Average R, (F)<owhH)

All these measurements are far beyond the number of data points!
D
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Generalization of DL: margin theory
Bartlett et al. (NIPS17):

Normalize Lipschitz constant (product of spectral

Main idea norms of weighted matrices) by margin

Final bound Pr [argmaxF_A (z); # ry} < ﬁﬁ(FA) L O (HXH:ZRA In(n) In(W) + \ 111{1/5))

j yn n

where R 4 Is the spectral complexity

Remark:
(1) nearly has no dependence on # of parameters
(2) a multiclass bound, with no explicit dependence on # of classes
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The Generalization Induced by SGD: Train faster generalize better

In nonconvex case, there are some results, but very weak

Hardt et al. (ICML15) , for SGD:

Assuming Lipschitz and B-smooth, then

)

which maybe linear dependent on training iterations

1
Tl_BC+1

Estab < O( "
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Our Results

From the view of stability theory:

Under mild conditions of (surrogate) loss function, the generalization
error of SGLD at N-thround satisfies

N
1
Ell(ws, 2)] - Esllws, D1 < O = [ ko +L [ > g
k=kg+1

\
where L is the Lipschitz constant, and k, := min {k:n,fL* < 1}

If consider high probability form, there is an additional 0(,/1/n) term
D
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Our Results

From the view of PAC-Bayesian theory:

For regularized ERM with R(w) = /1| |lw| |2/2. Under mild conditions, with high
probability, the generalization error of SGLD at N-thround satisfies

N
EIE[1Ovs, )~ Es[ElLGws, DN < 0| | ee=2mnrorzg | gl
\ k=1

where Tj, = §=1 Nk, g 1S the stochastic gradient in each round.
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Optimization for Deep Neural Network

* Loss functions for DNN 1s highly non-convex

 Common SG methods (such as SGD) work well

What's the reason behind above facts?
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Our Results (DLLWZ, 2019)
Notations:

n: the number of training data;  L: network depth;  R,,(w): empirical square loss;
Ag: some constant that depends on network structure and initialization scheme;

w;: network parameters obtained by GD

Theorem: For fully connected network with smooth actix

L 1 . Ao
if widthm = poly (n, ZL'E) and step sizen = 0 (nZZL)'
then with high probability, there is

Ro(wy) < (1- nAO)tRn(WO)

GD finds global minima 1n a linear convergence rate!
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Our Results (DLLWZ, 2019)

Theorem: For ResNet or Convolutional ResNet with smooth ,

1 A
activation,if width m = poly (n L, A_) ,and step sitzen = 0 (n—g) ,

then with high probability there is
R,(wy) < (1 —n20) Ry (W)

Note there i1s an exponential improvement about the network
width compared with fully connected network!

Du et al. Gradient Descent Finds Global Minima of Deep Neural Networks, ICML19
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Concurrent Results

Concurrently, Allen-Zhu et al. [1] and Zou et al. [2] proved (Stochastic) GD
converges to global optimum under some similar but a little different assumptions.

When width of network 1s infinite, gradient descent converges to the solution of a
kernel regression, which 1s characterized by Neural Tangent Kernel (NTK) [3].

NTK: K (x,x") = (V,, f(w, x), V., f (W, x"))

[1] Allen-Zhu et al. A convergence theory for deep learning via over-parameterization
[2] Zou et al. Stochastic gradient descent optimizes over-parameterized deep ReLU networks
[3] Jacot and Gabriel, Neural Tangent Kernel: convergence and generalization in neural networks (NIPS18)
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Critical Facts

1. There 1s a global optimum 1nside this neighbor.

> f(w,x;) is approximately linear w.r.t w in a neighbor of
" initialization, which is implicitly implied in the proof of GD;

Can we design faster algorithm than (stochastic) GD?




Second Order Algorithm for DNN

In classic convex optimization, second order algorithm achieves much faster
convergence rate.

Main 1dea: use second order information (Hessian matrix) to accelerate training
at the price of additional computational cost.

Second order algorithm for DNN is much more challenging:

1. Loss function 1s highly non-convex;
2. High dimensional parameter space (which 1s usually 1gnored in classic

convex optimization).
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Classic Gauss-Newton Method

1
. min F(w): = EZ(}C(W; ) — R
Non-linear least square: Y

First order approximation at wy:

1 2
Wiyl = a?"gmmwiﬂft +J(w—w,) — Yt”z
fw,x;) = f(we,x;) + U, f(we, x;) - (W — wy)

Notation:

fe = (f(wt' X1), -"'f(wt’xn))T Weer = we — Ho U (fe — )

Jt = (wa(Wt:xl): ---:wa(Wt:xn))T (Jacobian)

Hy = J{ J; i, T ma Approximation of Newton’s method

(using H; to approximate Hessian)
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Potential Issues

For DNN, parameter dimension d > n

Je € R4, H.= ][], € R¥4

1. Approximate Hessian H; 1s too large to be stored;

2. H; 1s not invertible;

3. Computational complexity may be expansive compared with SGD.
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Key Observation
Theorem: Let ] € R™%,r € R"®,where d > n and ] has full
rank, then Aw = —JT(JJT)"1ris a solution of the equation
J'JAw = —]"r

2
with minimum norm ||Aw| |2 .

Wii1 =G Ht_lftT(ft = ) Wty1 = Wt —]{Ut]{)_l(ft - )

JoJI € R™™: Gram matrix of NTK K (x,x") = (V,,f(w, x), V,, f (w, x"))
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Gram-Gauss-Newton (GGN) Algorithm
Mini-batch extension: Wey1 = We — J¢ g, (]t,BtJEth)_l(f t,B, — VB,)

. —1
Stable version: Werr =Wy — JLp,(MepJis, +al)  (fep, — ¥B,)

For each iteration do
1. Sample a mini-batch B; from dataset

2. Calculate Jacobian matrix Jt,B, and Gram matrix Gep, = ]t,Bt]Z B,

=4
3. Update weyq = we — | tT,Bt(’lG t.5, T al ) (ft.B, — VB,
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Computational Complexity

Space complexity:
Jacobian matrix J; p,: b X d, where b 1s the batch size
Gram matrix Gypg.: b X b

Time complexity:
Mainly compute Gram matrix G;p, and its inverse
0(b%d + b3)

Compared with SGD:

Nearly the same computational cost, except keeping track of the derivative
of every data point in mini-batch, instead of their average in SGD.
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Theoretical Guarantee (CGHHW)

n
Theorem: For two layer ReLU network,if width m = poly (2—),
then with hig i

1. Gram matrix G.at each iteration is invertible;
2. Empirical square loss converges to O:

Cn
Ry(Weiq) < oy R, (w;)?

1. Quadratic convergence;
2. Conclusion holds for general networks like GD.

Cai et al. A Gram-Gauss-Newton Method Learning Over-Parameterized Deep Neural

Networks for Regression Problems, Arxivl9
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Experiments

RSNA Bone Age task: predicting bone age by images
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\ ——  GGN+ResNeiFixup t —— GGN+ResNetFixup
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Take-aways

* We prove Gradient Descent achieves global optimum 1n a linear
convergence rate for general over-parametrized neural network.

 We propose a novel quasi second order algorithm (GGN) for training
network, which converges 1in quadratic order for general over-
parametrized neural network and enjoys nearly the same computational
complexity as SGD for regression task.
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Related Paper

1. Gradient Descent Finds Global Minima of Deep Neural Networks,
ICML19
2. A Gram-Gauss-Newton Method Learning Overparameterized Deep Neural

Networks for Regression Problems, Arxiv, 2019

3. Luetal. The Expressive Power of Neural Networks: A View from the
Width, NIPS17
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Thank you!
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