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I ImageNet Challenge
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[ Accuracy is NOT the Sole Metric

B Suppose you have a well-trained ImageNet classifier that achieves >97% accuracy.
B Should you always trust its prediction?



[ Accuracy is NOT the Sole Metric

B Suppose you have a well-trained ImageNet classifier that achieves >97% accuracy.
® Should you always trust its prediction?

Any differences?
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[ Accuracy is NOT the Sole Metric

B Suppose you have a well-trained ImageNet classifier that achieves >97% accuracy.
® Should you always trust its prediction?
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B Adversarial Examples

B A small perturbation could dramatically change the prediction

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 09.3 % confidence

Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
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B, Trade-off between Accuracy & Robustness

B Solely pursuing for high-accuracy rate may be misleading

Robustness 3.5E-08
3.0E-08
2.5E-08
2.0E-08
1.5E-08

1.0E-08

5.0E-09

Per Pixel /., CLEVER Score

Tradeoff between Accuracy and £, CLEVER Score

alexnet

alexnet

vgg_16

vgg_19
resnet_v2_50
resnet_v2_101
resnet_v2_152
mobilenet_v1_100
mobilenet_v1_050
mobilenet_v1_025
inception_v1
inception_v2
inception_v3 .
inception_resnet_v2

inception_v4 mobilenet_v1_050
densenet121_k32

densenet169_k32

densenet161_k48 mobilenet v1 100
nasnet_large e

Number of Parameters
« 1M

75 M

50 M

inception_resnet_v2

mobilenet_v1_025
nasnet_large

inception_¥3

0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Top-1 Accuracy Accuracy

Su et al., Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models, ECCV 2018
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B Dilemma in Security-critical Tasks

B Security-critical tasks require both accuracy and robustness
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I, Adversarial Machine Learning: a Fast Growing Area

@] Research Prediction Competition

Number of papers about adversarial examples

NIPS 2017: Defense Against Adversarial Attack . .
increases almost exponentially.

Create an image classifier that is robust to adversarial attacks

Google Brain - 107 teams - 3 months ago

NIPS 2018 : Adversarial Vision Challenge (Robust
Model Track)

P g mac visic bdels against advers
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https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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I Key Problems in Adversarial Machine Learning
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B, Attack Settings: White and Black-Box Attacks

Attack Settings Deep Neural Networks (DNNs) Output Back
Propagation

Softmalx Confidence

White-box — layer| ~ scores
Increasingly
i h

Black-box with soft Softmax Confidence arder
labels layer| scores
Black-box with  — @ — Hard labels
hard labels




B || White-box Attack by Optimization-based Approaches

'm General attack formulation
x* = arg min Dist(x,xq) + ¢+ L(x, )

* Dist(x, Xg) : the distortion between the input image and the adversarial example
: * { distance: ||d]|sc = max; |d;] maximal pixel-wise distortion |
. (5 distance: ||§]|2 = m Euclidean distance i
i + ¢y distance: ||d]|; = >_, |d;] total variation i

- Elastic Net regularization: ||x —xg||5+ 3][x —xgl||1 [Chen et al., AAAI 2018]
- Craft adversarial examples with better attack transferability
« Bypass many defending techniques

« L(x,1) : loss function, usually use cross entropy or contrastive loss

N. Carlini, D. Wagner. Towards Evaluating the Robustness of Neural Networks. IEEE Symposium on Security and Privacy, 2017
Chen et al. EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Exampla%Al 2018



B, Black-box Attacks with Soft Labels

B The adversary has no access to the structure and parameters of deep neural networks

B He can only query the model and get the probability outputs

Joftmax Confidence
layer| scores




B || Black-box Attacks by Zeroth Order Optimization (ZOO)

x* = argmin Dist(x,Xg) + ¢ 'E( <),

X —————

« Cannot compute the gradient in the black-box setting

Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without
Training Substitute Models. AlSec@CCS 2017



B || Black-box Attacks by Zeroth Order Optimization (ZOO)

x* = argmin Dist(x,Xg) + ¢ 'E( <)

X —————

« Cannot compute the gradient in the black-box setting

« Symmetric difference quotient to estimate the gradient: §1
~ OL(x) L(x+cej) — L(x — eej) X<—X—7n] -
g ~ I ~ '
X 2€ A

8d

« However, need O(d) queries to estimate a gradient -
« ImageNet: d = 299*299*3 > 268K
« 100 iterations => 26.8 million queries

Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without
Training Substitute Models. AlSec@CCS 2017



B || Black-box Attacks by Zeroth Order Optimization (ZOO)

B Reduce number of queries:

« Stochastic Coordinate descent: update a small set of coordinates at each time
« Greedy approach: select important coordinates first
« Attack-space dimension reduction + hierarchical attack

B The first black-box attack algorithm that achieves close to 100% attack success rate.

MNIST
Success Rate Avg. Lo Avg. Time (per attack)
White-box 100 % 2.00661 0.53 min
Black-box (Substitute Model) 26.74 % 5.272 0.80 min (+ 6.16 min)
Proposed black-box (ZOO) 98.9 % 1.987068 1.62 min
CIFAR10
Success Rate Avg. Lo Avg. Time (per attack)
White-box 100 % 0.37974 0.16 min
Black-box (Substitute Model) 5.3 % 5.7439 0.49 min (+ 7.81 min)
Proposed Black-box (ZOO) 96.8 % 0.39879 3.95 min

Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Netygrks without
Training Substitute Models. AIS%SJGDTU



I || Further Improves Query Efficiency

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Black-box ML model
under attack

AutoZOOM:

1. Dispense with coordinate-wise
estimation and instead propose a scaled

. . Prob (0} = 0.00
random full gradient estimator. Prob 21051
(Contrasted) '
2. An autoencoder trained offline with it Sl .
the latent space :;x EZ{;EET

unlabeled data or a bilinear resizing

operation for attack acceleration. " Black-box ML model attack
ack-box model attacking
Reduced at least 93.2% query count (with redcued attack space)

00.4% for ImagelN et st et e e e ’

Adversarial example InPUt-free AttaCk:

\
| 1. Start with a gray color image;
| 2. Shrink the dimension, then
Q-U:ry cassrer TR ! - - s perturb a small region and tile it to
i = Stngray  cover the input image.
| With only 1.7K queries on average,
|
|

_ can perturb a gray image to any
\ Perturbate by NES gradients P target class of ImageNet with a 100%

S e e e e e e = - success rate on InceptionV3.

in the latent space

Autoencoder training

Input: - ——mmmmmm = -
A gray image / Iteratively optimize \
299 x299x3

Tu et al., AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks. AAAI 2019

Du et al., Towards Query Efficient Black-box Attacks: An Input-free Perspective. c@CCS 2018
"T JDAI
..-/, Fte:—.ear-:h



B || Further Improves Query Efficiency

|
Using an active learning strategy to I Spanning Attack

significantly reduce the number of queries 1 Constrain a subspace spanned by an
I auxiliary small unlabeled dataset

Propose a novel Frank-Wolfe based
projection-free attack framework for
both white-box and black-box settings

Algorithm 2 Substitute DNN training with active learning

INPUT: target oracle (j, a maximum number p,,,, of training
epochs, and an initial training set Sj.
OUTPUT: a trained substitute model F.

1: Define architecture F";

2: for p =0;p < pazip+ + do

3: if p =0 then

;rgg f(xt) + (x = x¢, Vf(xy))

a=>b"S§ = (bTUNEN)VAT,.
L ULS =V

Xi41 = Xt — Y€ - sign(my) — v (Xp — Xori)-

a=>b" V;{ = (b T ER}I U;\'])S Algorithm 1 Frank-Wolfe White-box Attack Algorithm

~ 1: input: number of iterations T, step sizes {v;};
4: D+ {(x,0(x))|x € S,}: _ —v ’ ek
s else — \ 21 X0 = Xori,m—1 = V f(x0)
' 5 =" 600 3: fort =0,...,7 —1do
6: D, ga + {(X, O(X)HX e Sadd}; o Pl = \ i i ’ 1 v
_ 2 7 _ z \ _ 4 my=0 -me1+(1-75) Vf(x)
7 D D, Dadal; 70951y = Bascline Sl . Bascline 5 vy = argmingcy(x,m;) // LMO
8: end if S ] == = Spanning attack & & == = Spanning attack 6. dt xe X\ X, 1
. . < =] =vVv; —X
9: train F with D; 7 I & 400 M - ! t _: 4
- — X =X
10:  craft Sqda; 0.901 J ~~. t+1 t +yede
. ) 300 : 8: end for
11:  Use Active Learning strategy to generate a new Sgqq; 250 500 750 1000 250 500 750 1000
12: Sp+1 — Sp U Saads Subspace size Subspace size 9: output: xp
13: end for (a) Success rate (b) Query mean

The proposed attack algorithms with
momentum mechanism enjoy an
0(1/\JT) convergence rate in the
nonconvex setting.

Reduce more than 90% of queries
Obtain an accurate substitute model 85%
similar with the target oracle.

The reinforced attack typically requires
less than 50% queries while improves

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
success rates in the meantime. I
I

Li, et al., Query-Efficient Black-Box Attack by Active Learning, ICDM 2018
Wang et al., Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data, Machine Learning 2020

Chen et al., A Frank-Wolfe Framework for Efficient and Effective Adversarial Attgigks, AAAI 2020
’T JDAI
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B, Black-box Attacks with Hard Labels

B The adversary has no access to the structure and parameters of deep neural networks

B He can only query the model and get the hard-label multi-class output

%2,

—» Hard labels

Toy poodle




B | Optimization-based Hard-label Black-box Attack

B Reformulate the attack optimization problem

0* = arg mgin q(0)

%
X (optimal adversarial example)

6
Untargeted attack: g(8) = argmin,yg (f(xo +A—) F# yo)

Targeted attack: g(@) = argmin,. (f(xo +A—-) = t)
« Cannot compute the gradient of g
« However, can compute the function value of g via querying

- Binary search + fine-grained search 0: the direction of adversarial example

Cheng et al., Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach. ICLR 2019

T JDA
[ \T Research



B | Optimization-based Hard-label Black-box Attack

Algorithm for computing g(6) Zeroth-order optimization for minimizing g(6)

Algorithm 1 Compute g(@) locally Algorithm 2 RGF for hard-label black-box attack

I: Input: Hard-label model f, original image ), initial .
2. fort =0,1,2,...,T do

3: Randomly choose u; from a zero-mean Gaussian distribution
4: Evaluate g(0;) and g(6; + Su) using Algorithm 1

I: Input: Hard-label model f, original image xg,
query direction 6, previous value v, increase/decrease ratio
a = (.01, stopping tolerance ¢ (maximum tolerance of computed error)

|
|
|
|
|
|
|
|
|
|
|
2: 6 0/)0) ; ..
3 iff(:[?(] + 1)9) = Yo then I 5 Compute g = Q(Gt T J“ﬂ,) _ (}(Bt) -
4: Vleft < U, Upight < (1 + a)v : ’;.5)
5: while f(il?(] + rU'r'a'ghtB) = Yo do 1 6: Updﬂ.te 95+1 = Ht — g
6: Uright < (14 )vrighe : 7. return xo + g(67)01
7: else : ] .
8 Vpight — U, Vst — (1 — a)v | More than 4 times faster than Decision-attack
9: while f(xzg + v 5:0) # yo do : MNIST CIFARLO
10: Viett < (1 — a)vge [
. et ( . ) eft I Avg Lo #queries Avg Lo # queries
11: ## Binary Search within [vj. f¢, Vright] I :
12: while v.;gpt — Viepr > € do I 23158 30,103  0.2850 55,552
) o o , 9 : Decision-attack (black-box)  2.0052 58,508 0.2213 140,572
13 Umia < (Urignt + Viest)/ ' 1.8668 192,018 02122 316,791
14:  if f(xg + vmia®) = yo then : : i : >
- o e Y0 ! 1.8522 46,248  0.2758 61,869
> | Hleft 7 Umid | Opt-attack (black-box) 1.7744 57,741 02369 141,437
to:else | 17114 73293  0.2300 186,753
17 Uright = Umid | C&W (white-box) 1.4178 - 0.1901 -
18: return v,;qpny I

Cheng etal., Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach. ICLR 2019
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B |, Adversarial Examples in Image Captioning

Original Top-3 inferred captions:

on top of a bed.

2. A brown teddy bear
sitting on top of a bed.

3. Alarge brown teddy bear
laying on top of a bed.

Chen et al., Attacking Visual Language Grounding with Adversarial Examples: A Case
Study on Neural Image Captioning. ACL 2018

I
A clock onfl . A e
a pOIe in : 3: A bus is parked on the side of a street. .
frontofal |
bUiIding i Targeted Adversarial Keywords:
° | k d “tub”, “bathroom” and “sink”
. . . . . : eywor S Adversarial Top-3 captions:
A typical neural image captioning system with a , attack itargeted keyword method)
CNN+RNN architecture. ,l " toilet and tub. '
_______________________________________________ - “ 2. A bathroom with a sink,
S \: toilet, and bathtub.
I 3. A bathroom with a tub, sink,
. I and toilet.
Experiments Success Rate  Avg. ||d]|2 RN
targeted Caption 95.8% 2.213 : Original Top-3 inferred captions:
! 1. Ared stop sign sitting on the
1 -keyWOI‘d 97 . 1 % 1 5 89 : side of a road
| .
2. A i h f
2-keyword 97.5% 2.363 : prsne
I e
3-keyword 96.0% 2.626 | Jargeted 2 T
C&W on CNN 22.4% 2.870 hon
[ attack Adversarial Top-3 captions:
I—FGSM on CNN 345 % 1 5 596 : 1. A brown teddy bear laying
l
I
I
|
I
I
I




I |, Adversarial Examples in Sequence-to-Sequence Models

w 1 am fine <EOL>

I

Sequence-to-Sequence Models
ot (https://github.com/farizrahman4u/seg2seq)

DATASET SUCCESS RATE BLEU # CHANGED SOURCE INPUT SEQ UNDER NATO THREAT TO END HIS PUNISHING OFFENSIVE AGAINST ETHNIC ALBANIAN SEP-
ARATISTS IN KOSOVO , PRESIDENT SLOBODAN MILOSEVIC OF YUGOSLAVIA HAS ORDERED
GIGAWORD 86.0% 0.828 2.17 MOST UNITS OF HIS ARMY BACK TO THEIR BARRACKS AND MAY WELL AVOID AN ATTACK BY
DUC2003 85 2% 0.774 2.90 THE ALLIANCE , MILITARY OBSERVERS AND DIPLOMATS SAY
ADV INPUT SEQ UNDER NATO THREAT TO END HIS PUNISHING OFFENSIVE AGAINST ETHNIC ALBANIAN SEPA-
"
DUC2004 84.2% 0.816 2.50 RATISTS IN KOSOVO , PRESIDENT SLOBODAN MILOSEVIC OF YUGOSLAVIA HAS jean-sebastien
. . . MOST UNITS OF HIS ARMY BACK TO THEIR BARRACKS AND MAY WELL AVOID AN ATTACK BY
Attacklng Text Summarization THE ALLIANCE , MILITARY OBSERVERS AND DIPLOMATS SAY.
SOURCE OUTPUT SEQ | MILOSEVIC ORDERS ARMY BACK TO BARRACKS
METHOD SUCCESS% BLEU # CHANGED ADV OUTPUT SEQ nato may not attack kosovo
NON-OVERLAP 89.4% 0.349 3.5 : : :
1-KEYWORD 100.0% 0.705 1.8 Cheng et al.,, Seg2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with

9 KEVYWORD 91.0 % 0.303 4.0 Adversarial Examples. AAAI 2020

3-KEYWORD 69.6% 0.205 5.3 /T JDANI
L~

Attacking Machine Translation




B || Adversarial Examples in Visual Question Answering

>

(zsTI=2MsaH)

What is the
woman feeding

the giraffe?

I
NALST 30

S|

MM
I

2048x14x14 B
— g
\ N I
18k x1dx14 7
n o >E
1 3| o 5] |t
meEtint ndE
D02 (=
o (R [x|¥
Mddetdytd o > -
A
/ i
B
[ |
2048 §
i, '
Carrot
2048 :

>
el

Questions Answers

Benign
image . W 4= Whereis the plane? VQA R
- Pt - unway

Adversarial
example

Benign
image

Adversarial
example

Fukui et al., Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding. EMNLP 2016

Zeng et al., Adversarial Attacks Beyond the Image Space. CVPR 2019
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B | Adversarial Examples in Reinforcement Learning

Original Frames

Attack the
value function

Attack the
policy network

o ()

Adversarial perturbation
injected into every frame

Adversarial perturbation
injected into every other
10 frames

\/

Kos & Song, Delving into adversarial attacks on deep policies. ICLR 2017
Sun et al., Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning. AAAI 2020
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Bl | Adversarial Examples in Speech Recognition

Attack , Adversarial Speech recognition
Faa situation ! example _
"it was the : Microphone
best of times, l
=> it was the Speaker | | ) ‘))) Q )
\ - worst of times" ! Speaker
+ \ ! Radio
= R — e |
= Radio 1 )) N
|
Al model | o
' Microphone o
1os Cello Suite No.1 (Bach) 0 To The Sky (Owl City)
—— —
= "it is a truth E o 6
> universally g
acknowledged :° ‘
that a single” ¢ ‘
I\. z 21 M 2
0 (A) (B) (© 0 O H 4‘/“ (F)

15.0 12.5 10.0 7.5 5.0 25 0.0 =25 18 16 14 12 10 8 6 4 2

Carlini et al., Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. IEEE Symposium on Security and Privacy Workshops 2018
Yakura & Sakuma, Robust Audio Adversarial Example for a Physical Attack. IJCAI 2019
Taori et al., Targeted adversarial examples for black box audio systems. IEEE Security and Privacy Wogkshops 2019
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li Adversarial Examples in Shallow Learning

5 5 Before attack (7 vs 1) After attack (7 vs 1) classification error Evolved against RBF
0.16 04 o &
- 6 1 2 3 4 5 6 7 8 9
014 validation error : RBF 0.16 0.06 0.12 0.79 0.01 -0.02 -0.06 -0.00 0.02 0.03
: — — —testing error MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 g
0.12 - 1 CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 " SVM-gauss  0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0 ob SVM-poly  0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.08 e SVM-poly4  0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00
SVM-sigmoid 0.04 0.00 0.02 0.79 0.00 0.06 0.00 0.01 0.05 0.02
0.06 2 SVM-linear  0.00 0.00 0.00 0.9 0.00 0.00 0.00 0.00 0.03 0.00
0.04 10 15 20 2
’ O o Evolved against MLP
0.02 5 10 15 20 25 5 10 15 20 25 0 200 400 0o 1 2 3 4 5 6 7 8 9
number of iterations 5 RBF 0.30 0.04 0.17 0.75 0.02 -0.03 -0.04 -0.01 -0.07 -0.00
-55 -55 MLP 0.96 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01
Before attack (9 vs 8) After attack (9 vs 8) classification error 10 CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
mean £ £ (hinge loss . 0.4 ENS 0.86 0.00 0.01 0.04 0.00 0.00 0.00 0.00 001 0.08
'g‘( 9 ) classification error validation error 15 SVM-gauss  0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01
5 5 c SVM-poly  0.04 0.00 0.01 0.91 0.00 0.00 0.00 0.00 002 0.02
0.145 0.3~ = ~testing error 2 SVM-poly4 0,03 0.00 0.01 0.93 0.00 0.00 0.00 0.00 0.01 0.01
SVM-sigmoid 0.49 0.00 0.03 0.30 0.00 0.04 0.00 001 0.10 0.02
0.14 aird 2 SVM-linear  0.25 0.02 0.10 0.30 0.02 0.05 0.02 003 0.18 0.06
02t 10 15 20 25
0.135 Evolved against CNN
0
0 1 2 3 4 5 6 7 8 9
0 0.13 0 0.1 5 RBF 0.12 0,05 0.15 0.89 0.01 -0.18 -0.02 0.02 0.10 -0.03
0.125 MLP 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00
° 0 10 CNN 0.94 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.12 5 10 15 20 25 5 10 15 20 25 0 b 2?0 ‘ 400 SVM-gauss  0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.115 number of iterations SVM»pﬂI) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
. o 2 SVM-poly4 0.0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Before attack (4 vs 0) After attack (4 vs 0) classification error SVM-sigmoid 0.04 0.00 0.02 0.86 0.00 0.03 0.00 0.00 0.04 0.01
—55 0 5 0.11 -55 0 5 0.02 0.4 25 SVM-linear  0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
- - validation error 10 15 20 2
. . . . . 03lL=~ = testing error Evolved against ENS
Fig. 7 Behavior of the gradient-based attack strategy on the Gaussian datasets, for the linear (top j : 0 o 1 2 3 4 s 6 7.8
B =]
row) and the RBF kernel (bottom row) with y = 0.5. The regularization parameter C was set to 1 RBF 030 0.05 0.18 0.76 -0.01 -0.06 -0.04 -0.03 -0.05 -0.00
: . Al : anfe hift of : p MLP 0.83 0.00 0.05 0.06 0.00 0.00 0.00 0.00 0.05 0.00
; ) oradus attac G ard . 3
in b(.)th cases. Th§ solid black line repres‘ef]ts 'Ehe gradual shift of th'e attack point x, [0\.Ml[’d alocal . peed b G onio T v 0 G0 ot DD0l0TE B
maximum. The hinge loss and the classification error are shown in colors, to appreciate that the ENS 0.96 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00
h' o l cQ d ca o d - H ati f h l, ﬁ ati Th ,l f . h f H 8 15, SVN1~§;I&|~.~. 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01
inge loss provides a g,o()? approximation of the classification error. e value ol such tunctions SVM-poly 0,02 0.00 0,01 0.94 0,00 0.00 0.00 0.00 001 0,02
for each point x € [—5,_5]— is computed by learning an SVM on %, U {x, y=—1 } and evaluating 20 SVM-poly4  0.01 0,00 0.00 0.96 0.00 0.00 0.00 0.00 0.01 0.01
s o - ) . , e ~ . N e e e ~ SVM-sigmoid 0.40 0.00 0.03 0.35 0.01 0.06 0.00 0.01 0.11 0.02
its performance on %,,. The SVM solution on the clean data %, and the training data itself, 5 10 15 20 25 5 10 15 20 25 0 200 400 SVM-linear  0.19 0.01 0.06 0.50 0.01 0.05 001 0.02 0.11 0.04

are reported for completeness, highlighting the support vectors (with black circles), the decision

number of iterations

25

hyperplane and the margin bounds (with black lines).

Figure 3: Model outputs for individual adversarial examples.

Vidnerova & Nerud., Vulnerability of Machine Learning Models to Adversarial Examples. ITAT, 2016
Biggio et al., Security evaluation of support vector machines in adversarial environments. Support Vector Machines App JTm_ﬁgml
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Classifier Input Classifier Output
N il Lo T— 2

.

W classified as turtle [ classified as rifle
B classified as other

Brown et al., Adversarial Patch. 2017
Athalye et al., Synthesizing Robust Adversarial Examples. ICML 2018

Eykholt et al., Physical Adversarial Examples for Object DetectorsgVOOT 2018
Thys, Ranst, Goedemé., Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detestiqn. 3@\ |
rt. E

Xu et al., Evading Real-Time Person Detectors by Adversarial WY Fciearch |
Sharif et al., A General Framework for Adversarial Examples with Objectives. ACM Transactions on Privacy and Security 2019



|, Why Do Adversarial Examples Matter?

B Whenever there is an Al model, there is (almost) a way to generate adversarial examples

Digital world

White-box
attack

Deep
learning

Shallow
learning

Black-box

7z
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I Key Problems in Adversarial Machine Learning

/
/
/
/

I How to generate
l .
| adversarial examples?

How to evaluate
model robustness? }

/ How to improve I/
model robustness? |



B || (Incomplete) List of Defense Strategies

Defensive Distillation Secondary Classification

Normalization

Feature Squeezing
Adversarial Training

Gradient Regularization

Activation Pruning Distributional Detection

Model Compression _
PCA Detection

Gradient Shattering _ _
Stochastic Gradients

//'\T JDAI



B |, Adversarial Training

Adversarial Correct

Add adversarial examples to the training set, with their correct labels
Robust optimization problem:

0" =argmin E,cy | max {(x+ d;Fp)

6 66[_67€}N
(One of the) strongest defense mechanism so far
Not scalable enough/ vulnerable to blind-spot attack/ high sample complexity , . .

Madry, et al., Towards Deep Learning Models Resistant to Adversarial Attacks. ICLR 2018



B Further Improves Adversarial Training

Adpversarial Distributional Training for Robust Deep Learning

Theoretically Principled Trade-off between Robustness and Accuracy

Zhijie Deng "' Yinpeng Dong”' Tianyu Pang! Hang Su' Jun Zhu'
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Convergence of Adversarial Training in
Overparametrized Neural Networks

Ruiqi Gao'-* Tianle Cai'-* Haochuan Li> Liwei Wang® Cho-Jui Hsiech? Jason D. Lee®
1School of Mathematical Sciences, Peking University
2Department of EECS, Massachusetts Institute of Technology
3Key Laboratory of Machine Perception, MOE, School of EECS, Peking University
4Department of Computer Science, University of California, Los Angeles
SDepartment of Electrical Engineering, Princeton University
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You Only Propagate Once: Accelerating Adversarial
Training via Maximal Principle
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B || Dynamic Adversarial Training

B First-Order Stationary Condition for constrained optimization (FOSC)

ky _ Lk k
c(x”) = max(x — x", Vx f(6,x"))

The lower the score, the better convergence quality of the adversarial example X

k

 Inner maximization: early (later) stages prefer low (high) convergence quality AEs

Algorithm 1 Dynamic Adversarial Training

Input: Network /g, training data S, initial model pa-
rameters 8°, step size 7,, mini-batch B, maximum FOSC
value ¢, training epochs 7", FOSC control epoch 1",
PGD step K, PGD step size v, maximum perturbation e.
fort=0to7 — 1do
Ct = Ina'X(Cmax —t- Cmax/Tl! O)
for each batch x% do
V=1 # control vector of all elements is 1
while >V > 0&k < K do
xg“ =xi+ V. a. Slon(V ((he(x
x5 = clip(xh, x% — €, x5 + ¢€)

5).9)

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. Let
A = Lg(68") — ming Lg(0). If the step size of the outer

minimization is set to n;, = 1 = min(1/L,\/A/Lo2T).

Then the output of Algorithm 1 satisfies

- o
Z IVLs(6")]3] < 46\/1:'& 4 2La:
- T 0

where L = (Lo Lo /1t + Lgg).

V = 15(c (le 5) <c)  #The element of V MNIST CIFAR-10
becomes 0 at which FOSC is smaller than c, Defense EGSM PGD-10 PGD-20 C&W.. EGSM PGD-10 PGD-20 C&W ..
end while Standard 96.12 95.73 95.73 97.20 65.65 65.80 65.60 66.12
O =0'—n,g(0") #g(0") : stochastic gradient | Curriculum 96.59 95.87 96.09 97.52 71.25 71.44 71.13 71.94
end for Dynamic 97.60 97.01 96.97 98.36 71.95 72.15 72.02 72.85
end for
JDAI

Wang et al., On the Convergence and Robustness of Adversarial Training. ICML 2019 ¢ N

G



B | Adversarial Training with Misclassified Examples

N
Answer the following question: are the adversarial examples generated from misclassified and 1
correctly classified examples, equally important for adversarial robustness?

(

475
Ras.0
wv
w1 42.5
c
5400
2375
o
& 350
o
D 325

30.0

475 47.5
~ Ruso Ras.0
———————— - B azs A azs
g - g
i 40.0 7 40.0
> =]
.8 37.5 .8 37.5
~=~ Perturb (PGD%) s~ u s* & 350 --- PGD¥ on 5" us* & 350 --- CEon s us*
Not perturb s* i} FGSM on s* @ + KL on s*
—— Not perturb s~ ﬁ 32.5 ~—— FGSM on s~ |2 325 —— +KLon s~
30.0 30.0
20 40 60 80 100 [o] 20 40 60 80 100 0 20 40 60 80 100

Training Epoch Training Epoch Training Epoch

(a) Not perturb (b) Inner maximization (c¢) Outer minimization

ming Ruise(hg) : = %(Eieéﬁ Rt (he,x;) + Zz'eS* 'R_(hg,xi)) |
ha hG :

=+ Vi1 {L(he(X) # i) + L(ho(xi) # he(X})) - L(ho(xi) # i)} 1

Treat misclassified examples separately |

Table 1: Loss function comparison with existing work. The adversarial example %’ is generated by
(10) for all defense methods except TRADES and MMA. The adversarial example in TRADES is
generated by maximizing its regularization term (KL-divergence), and the adversarial example in
MMA is generated by solving (10) with different perturbation limit (i.e., €).

Detense Method Loss Function

Standard CE(p(x',8),y)

ALP CE(p(f{’,G),y) +A- Hp()hclfe) —p(x,ﬂ)”%

CLP CE(p(x,0),y) + A - [p(X',8) — p(x,0)[)5

TRADES CE(p(x,8),y) + A - KL(p(x,0)||p(x,0))

MMA CE(p(X/,0),y) - L(ho(x) = y) + CE(p(x.8),y) - L(ho(x) # y)
MART BCE(p(%',6),y) + A - KL(p(x, 8)|[p(X, 8)) - (1 — p,(x,6))

Wang et al., Improving Adversarial Robustness Requires Revisiting Misclassified Examplg®ICLR 2-(1')%')

Algorithm 1 Misclassification Aware adveRsarial Training (MART)

1: Input: Training data {x;,y;}i=1

.....

n. outer iteration number T, inner iteration number 17,

maximum perturbation e, step size for inner optimization 77, step size for outer optimization 7o

3: fort=1,...,Tp do
4:  Uniformly sample a minibatch of training data B(*)
for x; € B(t) do

|

|

1

|

: 2: Initialization: Standard random initialization of hg

|

|

: 5

;6 X, =x;+e€-§withé ~U(-1,1)
7.
8

9: end for
10 X, x!
11: end for

13: end for

fors=1,...,7Trdo
X} ¢ g, (x,) (X} + 01 - sign(Vy CE(p(x}, ), 1:)))

I 14: Output: Robust classifier hg

# U 1s a uniform distribution

12 04010 cpo VoL(xi, yi, X 0)

#11(-) is the projection operator

Table 3: Black-box robustness (accuracy (%) on black-box test attacks) on MNIST and CIFAR-10.

I

|

I

I MNIST CIFAR-10

I

, Defense FGSM PGD! PGD?*® CW. | FGSM PGD! PGD?* CW,_
| Standard  96.12  95.73 9547 9634 | 7998 8027 8001 _ 80.85
| MMA 96.11 9594 9581  96.87 | 8028 8052 8048  81.32
, Dynamic  97.60 9625 9582 9703 | 8137 8171 81.38  82.05
i TRADES 9749 9603 9573 9720 | 8152  81.73 81.53 8211
I MART 97.77 9696 9697  98.36 | 8275 8293 8270  82.95

Y



|| Adversarial Robustness Leaderboard

e e e - R
! . , Leaderboard: CIFAR-10, £, = 8/255, Untargeted, AutoAttack
i ROBUSTBENCH Leaderboard FAQ Contribute Model Zoo g7 1 - , oo = 8/255, geted,
I I I Standard Robust Extra
I I Rank Method Architecture Venue
| | accuracy accuracy data
1 |
1 1 I Uncovering the Limits of Adversarial
1 1 | Training against Norm-Bounded
I 1 1 1 Adversarial Examples 91.10% 65.87% ‘WideResNet-70-16 arXiv, Oct 2020
. . We show the robust accuracy reported in the paper since
I A standardized benchmark for adversarial robustness (- S
| 1 AutoAttack performs slightly worse (65.88%).
|
1 . . . X ) | Uncovering the Limits of Adversarial
I The goal of RobustBench is to systematically track the real progress in adversarial robustness. There are already more than 2 ooop | Training against Norm-Bounded
papers on this topic, but it is still unclear which approaches really work and which only lead to overestimated robusiness. We starty 1 = Adversarial Examples 89.48% €2.76% WideResNet-28-10  arXiv, Oct 2020
| from benchmarking the £- and £y-robusiness since these are the most studied settings in the literature. We use AutoAttack, any | We show the robust accuracy reported in the paper since
I ensemble of white-box and black-box attacks, to standardize the evaluation (for details see our paper). Additionally, we open source; | Aufoattack performs slightty worse (62.80%).
the RobustBench library that contains models used for the leaderboard to facilitate their usage for downstream applications. 11
1 - Adversarial Weight Perturbation Helps _ . .
1 3 88.25% 60.04% WideResNet-28-10 NeurIPS 2020
1 1 Robust Generalization
|
I Up-to-date leaderboard based —J Unified access to 20+ state-of-the-art 'L DO&QET‘*OIE ‘l‘édih Rte““.‘ vHel_o 5 .55 i o Teie
. Adversaria. obustness:
" on 30+ recent papers = robust models via Model Zoo P
1 1 | 5 Unlabeled Da]:l L 1.)10‘_.:_ Adversarial 89.69% 59.53% WideResNet-28-10 NeurIPS 2019
I M . I obustness
odel Zoo Analysis I
I : | Uncovering the Limits of Adversarial
| Training against Norm-Bounded
. . . . . | 1 6 Adversarial Examples 85.29% 57.14% WideResNet-70-16 Xiv, Oct
! Check out the available models and our Colab tutorials. Check out our paper with a detailed analysis. 1 ; t ‘ z z B JetesserTon Fr, Bt 2020
1 v 1 We show the robust accuracy reported in the paper since
| 'pip install git+https://github.com/RobustBench/robustbench 70% ® Models without extra data 1 ! AutoAttack performs slightly worse (57.20%)
1 & ? ® Models with extra data 1 |
1 from rcbustbench.utils impert load model g 60% o T ) 1 1 7 HYDRA: Pl‘Ellllllg *‘\id“ ersa_rlalh Robust 88.98% 57.14% WideResNet-28-10 NeurIPS 2020
model = load model (model name='Carmon2019Unlabsled') o . B . . . . 1 Neural Networks
1 E 50% . : . 1
. . . . - -
1 from robustbench.data import load cifarl® § 40% L ] : 1 | Uncovering the Limits of Adversarial
I X test, y test = load cifarl0(n examples=100) e . 7 : 1 1 Training against Norm-Bounded
= = - - x 30% . ‘ 5 5
U 1 8 Adversarial Examples 85.04% 56.82% X WideResNet-34-20 arXiv, Oct 2020
1 inats 1 - o - 3 — 1 - - o -
| 'pip install git+https://github.com/ 31/auto-att E 20% . ! We show the robust accuracy reported in the paper since
1 from autoattack import AutoAttack S 1 | i e
adversary = AutoAttack(model, norm='Linf', eps=B/255) 3 10% I 1 AutoAttack performs slightly worse (56.86%).
I x adv = adversary.run standard evaluation(x test, y test) 0% L A s 1
- - - - - o - rpraaT bustness
1 ! g Improving Adversarial Robustnes 87.30% 56.29% WideResNet-28-10 ICLR 2020
Y o o ) o o 0 ) 1 Requires Revisiting Misclassified Examples
| S PO P P |
AR AR AR R A R R
I OﬁzL Dv\ 0“\\’ \\Q‘} DC\ ‘{{, \\QQ C}’Q ! | Adversarial Weight Perturbation Helps
< W C < ‘ke'Q G A 1 1 10 e Ps 85.36% 56.17% X WideResNet-34-10 NeurIPS 2020
| d ROJI Genem 1zmon

https://robustbench.github.io/
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I Key Problems in Adversarial Machine Learning
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B |, Robustness Evaluation  ~

Amount of \
Perturbation |

Unfortunately, finding an exact A\
for DNNs is NP-Complete
Can only approximately estimate it

Maximum Safe Perturbation

A@ -

Minimal Adversarial
Perturbation

Katz et al., Reluplex: An efficient SMT solver for
\ verifying deep neural networks. ICCAV 2017

Decision boundary \
\




BB, Robustness Evaluation ~

Amount of \
Perturbation |

Upper
Bound

Empirical Robustness

Upper bound of A
No certification

May exist adversarial examples
with smaller distortion

A Maximum Safe
Perturbation

,» Adversarial
Aart example

Decision boundary \
\




BB |, Robustness Evaluation S

Amount of \
Perturbati . g
erturbation | Certified Robustness

\ Lower bound of A

Any perturbations within
green region cannot cause
misclassification

Upper
Bound

A Maximum Safe Adversarial

Perturbation

Lower
Bound

Decision boundar
40 y \\ AT I



B, Robustness Estimation: CLEVER Score

~

B CLEVER: Cross Lipschitz Extreme Value for nEtwork \
Robustness |
m First attack-independent robustness metric that can be
applied to any neural network classifier \

= e e e e e e e M M e e M M e e mmm M M e Mmm M M e Mmm M e e M M e e Gmm M M e M M e e M M e e S e e

I Theorem 3.1 (Formal guarantee on lower bound 3.). Let zg € R% and f : R? — RE be a multi-

, ' class classifier with continuously differentiable components f; and let ¢ = argmax; <, < g fi(xo) be.

| the class which f predicts for xq. Forall § € R? with :

fe(zo) — fi(@o) (l):

Ly ’ :
L argmax << i fi(xo+0) = ¢ holds n'irh -|- ==1,1<p,q<ocand LJ is the Lipschitz constant
| for the function f.(x) — fj(x) in £, norm.

CLEVER score =
Minimal distortion A

161, < min

fe(®o)—fj(xo)
L}

L} = max ||Vg(x)

Remark: 37 = min; . is a lower bound of minimum distortion.

¢» Where g(xo) = f.(xo) — fj(x0)

______________________________________________________ L §

"T JDF\I

Weng, et al. Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approagh. ICLR 2018



[ Robustness Estimation: CLEVER Score

m Efficiently estimate the Lipschitz constant by Demo: http://bigcheck.mybluemix.net/
sampling around input + extreme value theory

Algorithm 1: CLEVER-t, compute CLEVER score for targeted attack

Input: a K-class classifier f(ax), data example xo with predicted class ¢, target class j, batch size
Ny, number of samples per batch Vg, perturbation norm p, maximum perturbation R

Result: CLEVER Score i € R, for target class j You chose an image with a low CLEVER score

Congratulations, you earned $600 more than your original amount!

178 178 EiE

aw <— MLE of location parameter of reverse Weibull distribution on S

in(94(®0)

o)
: f(;:,_z ;{_0}1, f(fj:\;b:ofC(x) Fi(®). a p—1r and it results in a new digit that increases your original check amount.
3 for & «< 1 to N, do
4 randomly select a point (%) € B,(zq, R)
s compute b < [[Vg(x**)]|, via back propagation ORIGINAL CHECK CHECK GIVEN TO BANK THE BANK CREDITS
6 end
7
8
9

-
=

Algorithm 2: CLEVER—u, compute CLEVER score for un-targeted attack NEW DIGIT
Input: Same as Algorithm 1, but without a target class j
1 tl‘lois‘;ll}_: (let,(I;Z\I/{Elj ;cé:o;fi z € R, for un-targeted attack o o o o o
2 | pj < CLEVER-t(f,xo,¢, J, Ny, Ns,p, R)
3 end
a4 v < minj{pu;} )
B CLEVER score enables robustness comparison between LS B O B
° different models 0.49 0.75 017 0.81 1.01
- different datasets CLEvER scones p o

- different neural network architectures
- different defense mechanisms

Weng, et al. Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approagh. ICLR 2018

JDAI
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B, Robustness Evaluation Metrics

CROWN
Zhang et al., NeurlPS 2018

Neurify
Wang et al., NeurlPS 2018

CLEVER

Weng et al., ICLR 2018

DeepZ
Singh et al., NeurlPS 2018

b o b

CNN-Cert
Boopathy et al., AAAI 2019

o b

\J, \I/ -
Fast-Lin
Weng, et al,, ICML 2018

\I/ \J,

DeepPoly

Singh et al., POPL 2019



I | Robustness Verification: Nearest Neighbor Classifiers

are NP-complete. How about nearest neighbor classifiers?

Robustness verification for ReLU network (Katz et al., 2017) and tree ensemble (Kantchelian et al., 2016)

Finding the minimum perturbation to make it closest to X;
, 1
eV) = méin §H<SH2 st. [[z4+ 60— xjH2 <l|lz4+d— x,-\|2,V/' #£J

A quadratic programming problem with linear constraint,

O(n) quadratic problems, each QP has O(n)

variables to solve, total time complexity >O(n?)
Speed up the algorithm by

hich | I il ti ivabl B greedy coordinate ascent algorithm
which 1s polynomia 'm‘i’ solvaple. B a screening rule to remove variables in each
e¥) = min 5;\5”2 st. AW+ bU) >0 dual QP problem
0 B removing unimportant subproblems
: : Pl z—x (12 without solving them
where Afr’:) = Xj — X;, bl.o) — lz=xl 2”2 Xl 9
—— 1-NN —+— ConvNet —#— RandSmooth
Algorithm 1: Computing minimum adversarial perturbation 100 peara—————— | = 100
. 4 w
Input: Target instance z, database {(x;,y;)}"_;. —~ =
S th 80 = 801
1 Initial € = 00 ; = s
2 Sort subproblems {DW} ;. by ascending distances of ||z — x; ; 2 o <
3 for each j (according to the sorted order) do % £ 607
4 if not screenable via (9) then o 40 e |
5 Solve the subproblem via greedy coordinate ascent with screening rule (8); b5 - 40
6 Update € if we get a smaller value; g 2071 % 2o
7 | end 0- S
s end 00 05 10 15 20 25 00 05 1.0 15 20 25
£ perturbation £, perturbation
. . . )
The first rObUStl:‘ess verification Wang et al.,, Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Pers&{.q\/e_l]nwkl
for nearest neighbor models .




Il | Robustness Verification: Distance Metric Learning

The first adversarial verification method and the first certified defense for distance metric learning.

Compute a lower bound of the minimal adversarial
perturbation of Mahalanobis K-NN
Theorem 1 (Robustness verification for Mahalanobis K-NN). Given a Mahalanobis K-NN classifier

parameterized by a neighbor parameter K, a training dataset S and a positive semi-definite matrix
M, for any instance (Zies, Yresr) We have

€ (Tsest, Ysess M) > kthmin kthmax €(z;, @;, @py; M), (10)
j:y_j#ymr VYi=Ysest

where kth max and kthmin select the k-th maximum and k-th minimum respectively with k =
(K+1)/2.
dM(ZL', CE_) - dM(a:ﬁ :I:+)

whereé(x™,x~,x; M) = .
2y/(xt —x-)TMTM(xt —z~)

Train a robust Mahalanobis distance with small
certified and empirical robust errors

Algorithm 1: Adversarially robust metric learning (ARML)

Input: Training data S, number of epochs 7.

Output: Positive semi-definite matrix M .
Initialize G and M as identity matrices ;

et

fort=0...T—1do

W N

Update G with the gradient
EzyesVal ('é (randnear},(w), randneary,(x), ; G’TG’) );

4 | Update M with the constraint M = G' G,

5 end

Table 2: Certified robust errors (left) and empirical robust errors (right) of Mahalanobis K-NN. The

- - 4 . - = best (minimum) robust errors among all methods are in bold.
‘ Certified robust errors Empirical robust errors
A [ | A A (] A A (=] A
f,-radius | 0.000 0.500 1.000 1500 2.000 2.500 | 0.000 0500 1.000 1.500 2.000 2.500
Euclidean 0.038 0.134 0360 0618 0.814 0975|0031 0.063 0.104 0.155 0204 0.262
MNIST NCA 0.030 0.175 0.528 0.870 0986 1.000 | 0.027 0.063 0.120 0216 0.330 0.535
= A o A =) A S LMNN 0.040 0.669 1.000 1.000 1.000 1.000 | 0.036 0.121 0336 0.775 0972 1.000
ITML 0.106 0731 0.943 1.000 1.000 1.000 | 0.084 0218 0355 0510 0.669 0.844
LFDA 0.237 1.000 1.000 1.000 1.000 1.000 | 0215 1.000 1.000 1.000 1.000 1.000
(a) Euclidean (b) NCA [15] (¢) ARML (Ours) ARML (Ours) | 0.034 0.101 0276 0.537 0.760 0.951 | 0.032 0.055 0.077 0.109 0.160 0.213

Figure 1: Decision boundaries of 1-NN with different Mahalanobis distances.

ARML is more robust both provably (in terms of the certified

Wang et al.,, Provably Robust Metric Learning. NeurlPS 2020 /_— 1

robust error) and empirically (in terms of the empirical robust error).

JOANI




B |, Adversarial ML Problems from Industry's Point of View

B Accuracy is not the sole metric to grade an Al model, neither is robustness
B The industry needs accurate, effective, robust, and sometimes fair and interpretable Al models.

B Scalability is one of the key problems

B Defense in the real-world
m Robustness of robust models

B Plug and Play robust module is necessary for protecting Al models that have been deployed
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We Strive to Build Trustworthy Al
Welcome to join us!

yijinfeng@jd.com JDAI
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