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Among the biggest issues of DL research and applications

• Scale to larger models and bigger data

• Bring down training time from days to hours

• Separate low-level system implementations from ML modeling
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DNN training
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Data parallel training
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Parameter server approach

Parameter Server

Pros: mature implementation (2015–), fault tolerance
Cons: many-to-one communication is no scalable
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Ring Allreduce

Started by Distributed PaddlePaddle (Baidu)
Popularized by Horovod (Linux Foundation AI)

Pros: mature implementation (2018–), bandwidth optimality
Cons: total latency grows linearly
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Distributed Tensorflow vs Horovod
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2018 ACM Gordon Bell Prize

• Awarded to NERSC-led team at ORNL and LBNL
• Exascale deep learning for climate analysis
• Running Horovod over 27k+ V100 GPUs, achieving 90.7% scaling

efficiency, 1.13 exaflops peak
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• Communication framework for PyTorch
• Just a few lines of Python
• Supports MPI and NCCL
• Higher throughput than Hovovod
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Exact vs approximate SGD

Data-parallel formulation: Let Di be agent i’s local training data,

minimize
x

n∑
i=1

Eξi∼DiF (x; ξi).

Mini-batch SGD: Let Bki be the mini-batch of agent i at iteration k,

xk+1 = xk − αk

n

n∑
i=1

1
|Bki |

∑
ξi∈Bk

i

∇F (xk; ξi)

︸ ︷︷ ︸
mini-batch grad at i

.

Neighbor-averaging SGD: Let xi be agent i’s local copy, W be a weight
matrix, for i = 1, . . . , n,

xk+1
i =

n∑
j=1

Wij

(
xkj − αk(mini-batch grad at j)

)
.
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Weight matrix W

Given y1, . . . , yn of n nodes, write xi =
∑

j
Wijyj as

x = Wy = W

— yT1 —
· · ·

— yTn —

 .

Sparser W means less (thus faster) communication.

Smaller ρ := ‖W − 1
n

11T ‖ means better approximation to exact averaging.

We also require: W1 = 1, 1TW = 1T , and W has eigenvalues:

λ1 = 1 > |λ2| ≥ · · · ≥ |λn| > −1.

We have ρ = max(|λ2|, |λn|).
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Examples

• W = 1
n

11T has ρ = 0, but every node communicates from and to all
other nodes.

• Grid W = Conv2D

 1/5
1/5 1/5 1/5

1/5

 has ρ ≈ 0.868. Every node

connects to four other nodes.
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• Left: bilateral ring W = circ(1/3, 1/3, 1/3, . . . ) has ρ = 1
3 + 2

3 cos(2π/n).
Every node connects directly to two other nodes.

• Right: exp2 ring W has ρ = 1− 2/(2 + blog2(n− 1)c) for even n. Every
node connects to blog2(n− 1)c other nodes.
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Fixed vs dynamic neighbor averaging

Fixed Neighbor-averaging SGD:

xk+1
i =

n∑
j=1

Wij

(
xkj − αk(mini-batch grad at j)

)
.

Dynamic Neighbor-averaging SGD:

xk+1
i =

n∑
j=1

W
(k)
ij

(
xkj − αk(mini-batch grad at j)

)
.
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Dynamic exp2-ring

Take n = 16 for example. Break a 16-node exp2-graph into four subgraphs. To
each subgraph, assign a unique W with weights 1/2, 1/2 for the active nodes.

In every subgraph, every node communicates one other node. Computing Wy
takes O(1) time.
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8-node example

W (1) =


0.5 0.5 0 0 0 0 0 0
0 0.5 0.5 0 0 0 0 0

· · · · · ·
0 0 0 0 0 0 0.5 0.5

0.5 0 0 0 0 0 0 0.5



W (2) =


0.5 0 0.5 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0

· · · · · ·
0.5 0 0 0 0 0 0.5 0
0 0.5 0 0 0 0 0 0.5



W (3) =


0.5 0 0 0 0.5 0 0 0
0 0.5 0 0 0 0.5 0 0

· · · · · ·
0 0 0.5 0 0 0 0.5 0
0 0 0 0.5 0 0 0 0.5


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Exact averaging achieved by finite dynamic neighbor
averaging

Theorem: When n = 2τ for τ ∈ Z, dynamic exp-2 averaging satisfies

W (τ)W (τ−1) · · ·W (1) = 1
n

11T

Furthermore, for any p = 2, . . . , τ ,

W (p−1) · · ·W (1)W (τ) · · ·W (p) = 1
n

11T .

This W -sequence is communication optimal among all averaging matrices.
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Higher throughput

Define: n nodes, M -sized message, B bandwidth, L latency.

Bandwidth Cost Latency Total Cost
Parameter server O(nM/B) O(L) O(n+ 1)

Ring allreduce O(2M/B) O(2nL) O(1 + n)
Static exp2 averaging O(log(n)M/B) O(log(n)L)2 Õ(1 + 1)

Dynamic exp2 averaging O(M/B) O(L) O(1 + 1)

Neighbor averaging is much cheaper than any allreduce per round.

2Assume no conflict or racing when receiving messages from neighbors.
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Training convergence rate

Let: σ2 be variance of gradient noise

Rate for non-convex loss, iid data
Allreduce SGD O

(
σ√
nT

+ 1
T

)
Neighbor-averaging SGD O

(
σ√
nT

+ σ2/3ρ2/3

T2/3(1−ρ)1/3 + 1
(1−ρ)T

)
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Large-scale training for image classification

• Model: ResNet-50 (∼25.5M parameters)
• Dataset: ImageNet-1K (1000 classes)
• Size: 1,281,167 training images and 50,000 validation images
• GPUs: 8× 8

Method Epochs/Hours to 76%.

Allreduce SGD 68 / 5.57
Neighbor-averaging SGD 76 / 4.23
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Periodic allreduce

y
(k)
i = x

(k)
i − γ∇Fi(x

(k)
i ; ξ(k+1)

i )

x
(k+1)
i =

{
1
n

∑n

j=1 y
(k)
j If mod(k + 1, H) = 0∑

j
Wijy

(k)
j If mod(k + 1, H) 6= 0

Selecting H < 1
1−ρ can provably accelerate Neighbor-averaging SGD.
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Large-scale training for image classification

• Model: ResNet-50 (∼25.5M parameters)
• Dataset: ImageNet-1K (1000 classes)
• Size: 1,281,167 training images and 50,000 validation images
• Hardware: 32× 8 GPUs

Method Epochs/Hours to 76%.

Allreduce SGD 94 / 1.74
Neighbor-averaging SGD 91 / 1.20
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Large-scale BERT training for language modeling

• Model: BERT-Large (∼330M parameters)
• Dataset: Wikipedia (2500M words) and BookCorpus (800M words)
• Hardware: 8× 8 GPUs

Method Final Loss Wall-clock Time (hrs)

Allreduce SGD 1.75 59.02
Neighbor-averaging SGD SGD 1.77 30.4
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How to use BlueFog



DNN example

BlueFog has a high-level API that wraps around any torch optimizer.
Example:

import torch

import bluefog.torch as bf

bf.init()

...

optimizer = optim.SGD(model.parameters(), lr=lr*bf.size())

optimizer = bf.DistributedNeighborAllreduceOptimzer( \

optimizer, model=model)

...

# Torch training code

BlueFog also provides optimizers: Distributed Allreduce, Distributed
Hierarchical Neighbor Allreduce, etc.
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SPMD (single program, multiple data)

One code for all nodes; different nodes have different data and unique ranks.

# hello_world.py

import bluefog.torch as bf

bf.init()

print("I am rank {} in size {}".format(bf.rank(), bf.size()))

> bfrun -np 2 python hello_world.py

I am rank 1 in size 2

I am rank 0 in size 2
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Neighbor averaging

Example: compute the average of ranks of the nodes

import torch

import bluefog.torch as bf

bf.init()

x = torch.Tensor([bf.rank()])

for _ in range(100):

x = bf.neighbor_allreduce(x)

print("rank {} has x={}".format(bf.rank(), x))

Defaults:

• bf.init() creates a static exp2 graph
• neighbor-averaging weights are set to 1

neighbors+1 for every incoming
neighbors and the node itself
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> bfrun -np 10 python neighbor_avg.py

rank 0 has x=tensor([4.5000])

rank 3 has x=tensor([4.5000])

rank 9 has x=tensor([4.5000])

rank 1 has x=tensor([4.5000])

rank 7 has x=tensor([4.5000])

rank 4 has x=tensor([4.5000])

rank 2 has x=tensor([4.5000])

rank 6 has x=tensor([4.5000])

rank 5 has x=tensor([4.5000])

rank 6 has x=tensor([4.5000])
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Neighbor averaging using dynamic subgraphs

Example: Default dynamic exp2 averaging

1 dynamic_neighbors = topology_util.GetDynamicSendRecvRanks(

2 bf.load_topology(), bf.rank())

3

4 for _ in range(maxite):

5 to_neighbors, from_neighbors = next(dynamic_neighbors)

6

7 avg_weight = 1/(len(from_neighbors) + 1)

8

9 xi = bf.neighbor_allreduce(xi, name=’x’,

10 self_weight=avg_weight,

11 neighbor_weights={r: avg_weight for r in from_neighbors},

12 send_neighbors=to_neighbors)

You can replace GetDynamicSendRecvRanks() with your own.
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Decentralized gradient descent

To approximate solve

minimize
x

α

n∑
i=1

fi(xi) subject to x1 = · · · = xn,

we can apply decentralized gradient descent:

xk+1 = Wxk − α∇f(xk).

Implementation using static exp2:

# DGD recursion

for k in range(maxite):

xi = bf.neighbor_allreduce(xi) - alpha*ComputeGrad(fi,xi)
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Blocking and asynchrony

Each node has two threads: communication thread and computation thread

• non-blocking: allow concurrent threads to save time
• blocking: computation starts after communication completes

Synchronization is similar concept but applies to operations across different
nodes. All collective communications are synchronous.

Left: nonblocking but synchronized; Right: blocking, may or may not sync’d

By default, BlueFog is blocking and synchronized, but it also supports
non-blocking and asynchronous operations
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To save time, we ask neighbor allreduce Wxk not to block computation
∇f(xk), so they can run concurrently.

1 for k in range(maxite):

2 handle = bf.neighbor_allreduce_nonblocking(xi)

3 gradi = ComputeGrad(fi, xi)

4 avg_x = bf.wait(handle)

5 xi = avg_x - alpha*gradi

Since Line 5 must wait for the result of Wxk.
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EXTRA

EXTRA was the first method that solves

minimize
x

n∑
i=1

fi(xi) subject to x1 = · · · = xn

with a constant α. One form of this method is{
x1 = Wx0 − α∇f(x0),

xk+1 = W (2xk − xk−1)− α(∇f(xk)−∇f(xk−1)), k = 1, 2, · · ·

The code structure is similar to DGD. Non-blocking communication can
accelerate the code.
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Tracking

DIGing is a tracking-based method. For static W , DIGing is a special case of
EXTRA. However, DIGing works for dynamic W .{

xk+1 = W (k)xk − αyk

yk+1 = W (k)yk +∇f(xk+1)−∇f(xk)

(yk)k a tracking sequence converging to limk
1
n

∑n

i=1∇fi(x
k) if it exists.

xi = np.zeros((d,1))

yi = fi_grad_prev = ComputeGrad(fi, xi)

for k in range(maxite):

self_weight, recv_weights = ComputeWeights(k, bf.rank())

xi = bf.neighbor_allreduce(xi, self_weight, recv_weights) \

- alpha*yi

gi = ComputeGrad(fi, xi)

yi = bf.neighbor_allreduce(gi, self_weight, recv_weights) \

+ gi - gi_prev

gi_prev = gi.copy()
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Linear speedup in throughput on CPU
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Linear speedup in running time on CPU
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Availability

Open source at https://github.com/Bluefog-Lib/bluefog

Contributors: Bicheng Ying, Kun Yuan, Hanbin Hu, Ji Liu, Wotao Yin

Thank you!
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