Faster Learning over Networks and BlueFog¹

Bicheng Ying (Google), Kun Yuan (Alibaba), Hanbin Hu (UCSB) Ji Liu (Baidu), **Wotao Yin** (UCLA)

The 18th China Symposium on Machine Learning and Applications

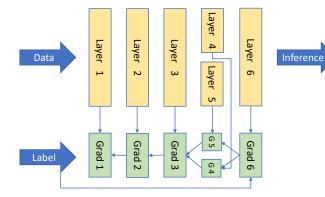
November 7, 2020

¹Open source project https://github.com/Bluefog-Lib/bluefog

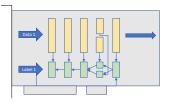
Among the biggest issues of DL research and applications

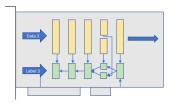
- Scale to larger models and bigger data
- Bring down training time from days to hours
- Separate low-level system implementations from ML modeling

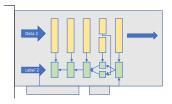
DNN training

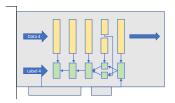


Data parallel training

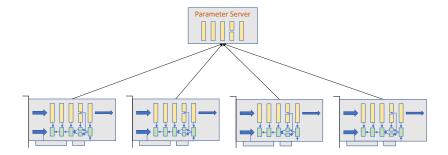




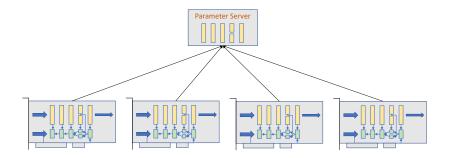




Parameter server approach



Parameter server approach



Pros: mature implementation (2015–), fault tolerance **Cons**: many-to-one communication is no scalable

Ring Allreduce

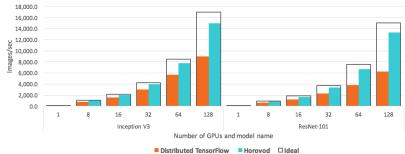
Started by Distributed PaddlePaddle (Baidu) Popularized by Horovod (Linux Foundation AI)

Ring Allreduce

Started by Distributed PaddlePaddle (Baidu) Popularized by Horovod (Linux Foundation AI)

Pros: mature implementation (2018–), bandwidth optimality **Cons:** total latency grows linearly

Distributed Tensorflow vs Horovod



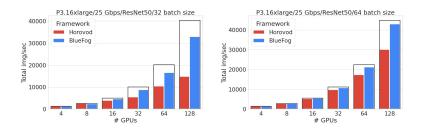
Training with synthetic data on NVIDIA[®] Pascal[™] GPUs

2018 ACM Gordon Bell Prize

- Awarded to NERSC-led team at ORNL and LBNL
- Exascale deep learning for climate analysis
- Running Horovod over 27k+ V100 GPUs, achieving 90.7% scaling efficiency, 1.13 exaflops peak

- Communication framework for PyTorch
- Just a few lines of Python
- Supports MPI and NCCL
- Higher throughput than Hovovod

- Communication framework for PyTorch
- Just a few lines of Python
- Supports MPI and NCCL
- Higher throughput than Hovovod



Exact vs approximate SGD

Data-parallel formulation: Let D_i be agent *i*'s local training data,

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} \mathbb{E}_{\xi_i \sim D_i} F(x; \xi_i).$$

Exact vs approximate SGD

Data-parallel formulation: Let D_i be agent *i*'s local training data,

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} \mathbb{E}_{\xi_i \sim D_i} F(x; \xi_i).$$

Mini-batch SGD: Let B_i^k be the mini-batch of agent *i* at iteration *k*,

$$x^{k+1} = x^k - \frac{\alpha^k}{n} \sum_{i=1}^n \underbrace{\frac{1}{|B_i^k|} \sum_{\substack{\xi_i \in B_i^k \\ \text{mini-batch grad at } i}} \nabla F(x^k; \xi_i)}_{\text{mini-batch grad at } i}.$$

Exact vs approximate SGD

Data-parallel formulation: Let D_i be agent *i*'s local training data,

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} \mathbb{E}_{\xi_i \sim D_i} F(x; \xi_i).$$

Mini-batch SGD: Let B_i^k be the mini-batch of agent *i* at iteration *k*,

$$x^{k+1} = x^k - \frac{\alpha^k}{n} \sum_{i=1}^n \underbrace{\frac{1}{|B_i^k|} \sum_{\xi_i \in B_i^k} \nabla F(x^k; \xi_i)}_{\text{mini-batch grad at } i}.$$

Neighbor-averaging SGD: Let x_i be agent *i*'s local copy, W be a weight matrix, for i = 1, ..., n,

$$x_i^{k+1} = \sum_{j=1}^n W_{ij} \left(x_j^k - \alpha^k (\text{mini-batch grad at } j) \right).$$

Weight matrix W

Given y_1,\ldots,y_n of n nodes, write $x_i=\sum_j W_{ij}y_j$ as

$$\mathbf{x} = W \mathbf{y} = W \begin{bmatrix} - & y_1^T & - \\ & \cdots & \\ - & y_n^T & - \end{bmatrix}.$$

Weight matrix W

Given y_1,\ldots,y_n of n nodes, write $x_i=\sum_j W_{ij}y_j$ as

$$\mathbf{x} = W\mathbf{y} = W \begin{bmatrix} - & y_1^T & - \\ & \ddots & \\ - & y_n^T & - \end{bmatrix}$$

Sparser W means less (thus faster) communication.

Smaller $\rho := \|W - \frac{1}{n} \mathbf{1} \mathbf{1}^T\|$ means better approximation to exact averaging.

Weight matrix W

Given y_1,\ldots,y_n of n nodes, write $x_i=\sum_j W_{ij}y_j$ as

$$\mathbf{x} = W\mathbf{y} = W \begin{bmatrix} - & y_1^T & - \\ & \ddots & \\ - & y_n^T & - \end{bmatrix}$$

Sparser W means less (thus faster) communication.

Smaller $\rho := \|W - \frac{1}{n} \mathbf{1} \mathbf{1}^T\|$ means better approximation to exact averaging.

We also require: $W\mathbf{1} = \mathbf{1}$, $\mathbf{1}^T W = \mathbf{1}^T$, and W has eigenvalues:

$$\lambda_1 = 1 > |\lambda_2| \ge \cdots \ge |\lambda_n| > -1.$$

We have $\rho = \max(|\lambda_2|, |\lambda_n|)$.

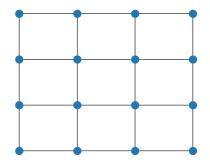
Examples

• $W = \frac{1}{n} \mathbf{1} \mathbf{1}^T$ has $\rho = 0$, but every node communicates from and to all other nodes.

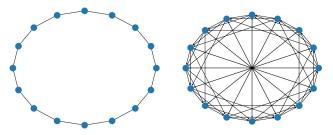
Examples

- $W = \frac{1}{n} \mathbf{1} \mathbf{1}^T$ has $\rho = 0$, but every node communicates from and to all other nodes.
- Grid $W = \text{Conv2D}\left(\begin{bmatrix} 1/5 \\ 1/5 & 1/5 \\ 1/5 & 1/5 \end{bmatrix} \right)$ has $\rho \approx 0.868$. Every node

connects to four other nodes.



• Left: bilateral ring $W = \operatorname{circ}(1/3, 1/3, 1/3, ...)$ has $\rho = \frac{1}{3} + \frac{2}{3}\cos(2\pi/n)$. Every node connects directly to two other nodes.



• **Right:** exp2 ring W has $\rho = 1 - 2/(2 + \lfloor \log_2(n-1) \rfloor)$ for even n. Every node connects to $\lfloor \log_2(n-1) \rfloor$ other nodes.

Fixed vs dynamic neighbor averaging

Fixed Neighbor-averaging SGD:

$$x_i^{k+1} = \sum_{j=1}^n W_{ij} \left(x_j^k - \alpha^k (\text{mini-batch grad at } j) \right).$$

Dynamic Neighbor-averaging SGD:

$$x_i^{k+1} = \sum_{j=1}^n W_{ij}^{(k)} \left(x_j^k - \alpha^k (\text{mini-batch grad at } j) \right).$$

Dynamic exp2-ring

Take n = 16 for example. Break a 16-node exp2-graph into four subgraphs. To each subgraph, assign a unique W with weights 1/2, 1/2 for the active nodes.

In every subgraph, every node communicates one other node. Computing $W\mathbf{y}$ takes O(1) time.

8-node example

$$W^{(1)} = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 \\ & & & \ddots & \ddots & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 \\ & & & \ddots & \ddots & & \\ 0.5 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0 & 0.5 \end{bmatrix}$$
$$W^{(3)} = \begin{bmatrix} 0.5 & 0 & 0 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 & 0 \\ & & & \ddots & \ddots & & \\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 \\ & & & \ddots & \ddots & & \\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 \end{bmatrix}$$

Exact averaging achieved by finite dynamic neighbor averaging

Theorem: When $n = 2^{\tau}$ for $\tau \in \mathbb{Z}$, dynamic exp-2 averaging satisfies

$$W^{(\tau)}W^{(\tau-1)}\cdots W^{(1)} = \frac{1}{n}\mathbf{1}\mathbf{1}^{T}$$

Furthermore, for any $p=2,\ldots,\tau$,

$$W^{(p-1)}\cdots W^{(1)}W^{(\tau)}\cdots W^{(p)} = \frac{1}{n}\mathbf{1}\mathbf{1}^{T}.$$

This W-sequence is communication optimal among all averaging matrices.

Higher throughput

Define: n nodes, M-sized message, B bandwidth, L latency.

	Bandwidth Cost	Latency	Total Cost
Parameter server	O(nM/B)	O(L)	O(n+1)
Ring allreduce	O(2M/B)	O(2nL)	O(1+n)
Static exp2 averaging	$O(\log(n)M/B)$	$O(\log(n)L)^2$	$\tilde{O}(1+1)$
Dynamic exp2 averaging	O(M/B)	O(L)	O(1+1)

Neighbor averaging is much cheaper than any allreduce per round.

²Assume no conflict or racing when receiving messages from neighbors.

Training convergence rate

Let: σ^2 be variance of gradient noise

	Rate for non-convex loss, iid data
Allreduce SGD	$O\left(\frac{\sigma}{\sqrt{nT}} + \frac{1}{T}\right)$
Neighbor-averaging SGD	$O\left(\frac{\sigma}{\sqrt{nT}} + \frac{\sigma^{2/3}\rho^{2/3}}{T^{2/3}(1-\rho)^{1/3}} + \frac{1}{(1-\rho)T}\right)$

Large-scale training for image classification

- Model: ResNet-50 (~25.5M parameters)
- Dataset: ImageNet-1K (1000 classes)
- Size: 1,281,167 training images and 50,000 validation images
- GPUs: 8×8

Method	Epochs/Hours to 76%.
Allreduce SGD	68 / 5.57
Neighbor-averaging SGD	76 / 4.23

Periodic allreduce

$$\begin{split} & \pmb{y}_{i}^{(k)} = \pmb{x}_{i}^{(k)} - \gamma \nabla F_{i}(\pmb{x}_{i}^{(k)}; \pmb{\xi}_{i}^{(k+1)}) \\ & \pmb{x}_{i}^{(k+1)} = \begin{cases} \frac{1}{n} \sum_{j=1}^{n} \pmb{y}_{j}^{(k)} & \text{If } \operatorname{mod}(k+1, H) = 0 \\ \sum_{j} W_{ij} \pmb{y}_{j}^{(k)} & \text{If } \operatorname{mod}(k+1, H) \neq 0 \end{cases} \end{split}$$

Selecting $H < \frac{1}{1-\rho}$ can provably accelerate Neighbor-averaging SGD.

Large-scale training for image classification

- Model: ResNet-50 (~25.5M parameters)
- Dataset: ImageNet-1K (1000 classes)
- Size: 1,281,167 training images and 50,000 validation images
- Hardware: 32×8 GPUs

Method	Epochs/Hours to 76%.
Allreduce SGD	94 / 1.74
Neighbor-averaging SGD	91 / 1.20

Large-scale BERT training for language modeling

- Model: BERT-Large (~330M parameters)
- Dataset: Wikipedia (2500M words) and BookCorpus (800M words)
- Hardware: 8×8 GPUs

Method	Final Loss	Wall-clock Time (hrs)
Allreduce SGD	1.75	59.02
Neighbor-averaging SGD SGD	1.77	30.4

How to use BlueFog

DNN example

BlueFog has a high-level API that wraps around any torch optimizer.

Example:

```
import torch
import bluefog.torch as bf
bf.init()
...
optimizer = optim.SGD(model.parameters(), lr=lr*bf.size())
optimizer = bf.DistributedNeighborAllreduceOptimzer( \
    optimizer, model=model)
...
# Torch training code
```

BlueFog also provides optimizers: Distributed Allreduce, Distributed Hierarchical Neighbor Allreduce, etc.

SPMD (single program, multiple data)

One code for all nodes; different nodes have different data and unique ranks.

```
# hello_world.py
import bluefog.torch as bf
bf.init()
print("I am rank {} in size {}".format(bf.rank(), bf.size()))
```

> bfrun -np 2 python hello_world.py

I am rank 1 in size 2

```
I am rank 0 in size 2
```

Neighbor averaging

Example: compute the average of ranks of the nodes

```
import torch
import bluefog.torch as bf
bf.init()
x = torch.Tensor([bf.rank()])
for _ in range(100):
    x = bf.neighbor_allreduce(x)
print("rank {} has x={}".format(bf.rank(), x))
```

Defaults:

- bf.init() creates a static exp2 graph
- neighbor-averaging weights are set to ¹/_{neighbors+1} for every incoming neighbors and the node itself

> bfrun -np 10 python neighbor_avg.py

- rank 0 has x=tensor([4.5000])
- rank 3 has x=tensor([4.5000])
- rank 9 has x=tensor([4.5000])
- rank 1 has x=tensor([4.5000])
- rank 7 has x=tensor([4.5000])
- rank 4 has x=tensor([4.5000])
- rank 2 has x=tensor([4.5000])
- rank 6 has x=tensor([4.5000])
- rank 5 has x=tensor([4.5000])
- rank 6 has x=tensor([4.5000])

Neighbor averaging using dynamic subgraphs

Example: Default dynamic exp2 averaging

```
dynamic neighbors = topology util.GetDynamicSendRecvRanks(
            bf.load topology(), bf.rank())
3
   for in range(maxite):
4
      to_neighbors, from_neighbors = next(dynamic_neighbors)
5
6
      avg weight = 1/(len(from neighbors) + 1)
7
8
      xi = bf.neighbor_allreduce(xi, name='x',
Q
         self weight=avg weight,
10
         neighbor_weights={r: avg_weight for r in from_neighbors},
11
         send neighbors=to neighbors)
12
```

You can replace GetDynamicSendRecvRanks() with your own.

Decentralized gradient descent

To approximate solve

minimize
$$\alpha \sum_{i=1}^{n} f_i(x_i)$$
 subject to $x_1 = \dots = x_n$,

we can apply decentralized gradient descent:

$$\mathbf{x}^{k+1} = W\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k).$$

Implementation using static exp2:

```
# DGD recursion
for k in range(maxite):
    xi = bf.neighbor_allreduce(xi) - alpha*ComputeGrad(fi,xi)
```

Blocking and asynchrony

Each node has two threads: communication thread and computation thread

- non-blocking: allow concurrent threads to save time
- blocking: computation starts after communication completes

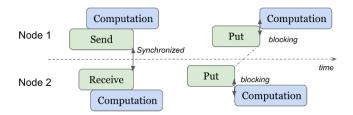
Synchronization is similar concept but applies to operations across different nodes. All collective communications are synchronous.

Blocking and asynchrony

Each node has two threads: communication thread and computation thread

- non-blocking: allow concurrent threads to save time
- blocking: computation starts after communication completes

Synchronization is similar concept but applies to operations across different nodes. All collective communications are synchronous.



Left: nonblocking but synchronized; Right: blocking, may or may not sync'd

By default, BlueFog is blocking and synchronized, but it also supports non-blocking and asynchronous operations

To save time, we ask neighbor all reduce $W\mathbf{x}^k$ not to block computation $\nabla f(\mathbf{x}^k)$, so they can run concurrently.

```
for k in range(maxite):
       handle = bf.neighbor_allreduce_nonblocking(xi)
2
       gradi = ComputeGrad(fi, xi)
3
       avg_x = bf.wait(handle)
4
       xi = avg_x - alpha*gradi
```

Since Line 5 must wait for the result of $W\mathbf{x}^k$.

5

EXTRA

EXTRA was the first method that solves

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x_i) \qquad \text{subject to } x_1 = \dots = x_n$$

with a constant $\boldsymbol{\alpha}.$ One form of this method is

$$\begin{cases} \mathbf{x}^1 = W\mathbf{x}^0 - \alpha \nabla f(\mathbf{x}^0), \\ \mathbf{x}^{k+1} = W(2\mathbf{x}^k - \mathbf{x}^{k-1}) - \alpha(\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{k-1})), & k = 1, 2, \cdots \end{cases}$$

The code structure is similar to DGD. Non-blocking communication can accelerate the code.

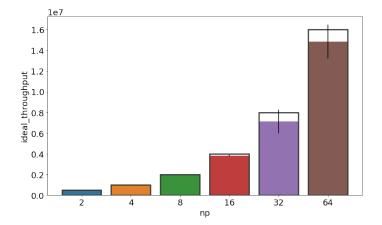
Tracking

DIGing is a tracking-based method. For static W, DIGing is a special case of EXTRA. However, DIGing works for dynamic W.

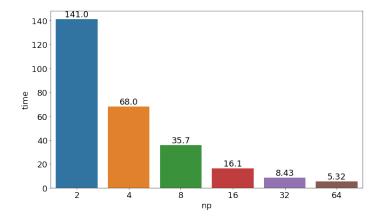
$$\begin{cases} \mathbf{x}^{k+1} = W^{(k)}\mathbf{x}^k - \alpha \mathbf{y}^k \\ \mathbf{y}^{k+1} = W^{(k)}\mathbf{y}^k + \nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k) \end{cases}$$

 $(\mathbf{y}^k)_k$ a tracking sequence converging to $\lim_k \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^k)$ if it exists.

Linear speedup in throughput on CPU



Linear speedup in running time on CPU



Availability

Open source at https://github.com/Bluefog-Lib/bluefog

Contributors: Bicheng Ying, Kun Yuan, Hanbin Hu, Ji Liu, Wotao Yin

Thank you!