
Faster Learning over Networks and BlueFog1

Bicheng Ying (Google), Kun Yuan (Alibaba), Hanbin Hu (UCSB)
Ji Liu (Baidu), Wotao Yin (UCLA)

The 18th China Symposium on Machine Learning and Applications

November 7, 2020

1Open source project https://github.com/Bluefog-Lib/bluefog
1 / 36

https://github.com/Bluefog-Lib/bluefog

Among the biggest issues of DL research and applications

• Scale to larger models and bigger data

• Bring down training time from days to hours

• Separate low-level system implementations from ML modeling

2 / 36

DNN training

Data

Label

Layer 1

Layer 2

Layer 3

Layer 4
Layer 5

Inference

G
rad

 6
Layer 6

G
rad

 3

G
rad

 2

G
rad

 1

G
 5

G
 4

3 / 36

Data parallel training

Data 1

Label 1

Data 2

Label 2

Data 3

Label 3

Data 4

Label 4

4 / 36

Parameter server approach

Parameter Server

Pros: mature implementation (2015–), fault tolerance
Cons: many-to-one communication is no scalable

5 / 36

Parameter server approach

Parameter Server

Pros: mature implementation (2015–), fault tolerance
Cons: many-to-one communication is no scalable

5 / 36

Ring Allreduce

Started by Distributed PaddlePaddle (Baidu)
Popularized by Horovod (Linux Foundation AI)

Pros: mature implementation (2018–), bandwidth optimality
Cons: total latency grows linearly

6 / 36

Ring Allreduce

Started by Distributed PaddlePaddle (Baidu)
Popularized by Horovod (Linux Foundation AI)

Pros: mature implementation (2018–), bandwidth optimality
Cons: total latency grows linearly

6 / 36

Distributed Tensorflow vs Horovod

7 / 36

2018 ACM Gordon Bell Prize

• Awarded to NERSC-led team at ORNL and LBNL
• Exascale deep learning for climate analysis
• Running Horovod over 27k+ V100 GPUs, achieving 90.7% scaling

efficiency, 1.13 exaflops peak

8 / 36

• Communication framework for PyTorch
• Just a few lines of Python
• Supports MPI and NCCL
• Higher throughput than Hovovod

9 / 36

• Communication framework for PyTorch
• Just a few lines of Python
• Supports MPI and NCCL
• Higher throughput than Hovovod

9 / 36

Exact vs approximate SGD

Data-parallel formulation: Let Di be agent i’s local training data,

minimize
x

n∑
i=1

Eξi∼DiF (x; ξi).

Mini-batch SGD: Let Bki be the mini-batch of agent i at iteration k,

xk+1 = xk − αk

n

n∑
i=1

1
|Bki |

∑
ξi∈Bk

i

∇F (xk; ξi)

︸ ︷︷ ︸
mini-batch grad at i

.

Neighbor-averaging SGD: Let xi be agent i’s local copy, W be a weight
matrix, for i = 1, . . . , n,

xk+1
i =

n∑
j=1

Wij

(
xkj − αk(mini-batch grad at j)

)
.

10 / 36

Exact vs approximate SGD

Data-parallel formulation: Let Di be agent i’s local training data,

minimize
x

n∑
i=1

Eξi∼DiF (x; ξi).

Mini-batch SGD: Let Bki be the mini-batch of agent i at iteration k,

xk+1 = xk − αk

n

n∑
i=1

1
|Bki |

∑
ξi∈Bk

i

∇F (xk; ξi)

︸ ︷︷ ︸
mini-batch grad at i

.

Neighbor-averaging SGD: Let xi be agent i’s local copy, W be a weight
matrix, for i = 1, . . . , n,

xk+1
i =

n∑
j=1

Wij

(
xkj − αk(mini-batch grad at j)

)
.

10 / 36

Exact vs approximate SGD

Data-parallel formulation: Let Di be agent i’s local training data,

minimize
x

n∑
i=1

Eξi∼DiF (x; ξi).

Mini-batch SGD: Let Bki be the mini-batch of agent i at iteration k,

xk+1 = xk − αk

n

n∑
i=1

1
|Bki |

∑
ξi∈Bk

i

∇F (xk; ξi)

︸ ︷︷ ︸
mini-batch grad at i

.

Neighbor-averaging SGD: Let xi be agent i’s local copy, W be a weight
matrix, for i = 1, . . . , n,

xk+1
i =

n∑
j=1

Wij

(
xkj − αk(mini-batch grad at j)

)
.

10 / 36

Weight matrix W

Given y1, . . . , yn of n nodes, write xi =
∑

j
Wijyj as

x = Wy = W

— yT1 —
· · ·

— yTn —

 .

Sparser W means less (thus faster) communication.

Smaller ρ := ‖W − 1
n

11T ‖ means better approximation to exact averaging.

We also require: W1 = 1, 1TW = 1T , and W has eigenvalues:

λ1 = 1 > |λ2| ≥ · · · ≥ |λn| > −1.

We have ρ = max(|λ2|, |λn|).

11 / 36

Weight matrix W

Given y1, . . . , yn of n nodes, write xi =
∑

j
Wijyj as

x = Wy = W

— yT1 —
· · ·

— yTn —

 .

Sparser W means less (thus faster) communication.

Smaller ρ := ‖W − 1
n

11T ‖ means better approximation to exact averaging.

We also require: W1 = 1, 1TW = 1T , and W has eigenvalues:

λ1 = 1 > |λ2| ≥ · · · ≥ |λn| > −1.

We have ρ = max(|λ2|, |λn|).

11 / 36

Weight matrix W

Given y1, . . . , yn of n nodes, write xi =
∑

j
Wijyj as

x = Wy = W

— yT1 —
· · ·

— yTn —

 .

Sparser W means less (thus faster) communication.

Smaller ρ := ‖W − 1
n

11T ‖ means better approximation to exact averaging.

We also require: W1 = 1, 1TW = 1T , and W has eigenvalues:

λ1 = 1 > |λ2| ≥ · · · ≥ |λn| > −1.

We have ρ = max(|λ2|, |λn|).

11 / 36

Examples

• W = 1
n

11T has ρ = 0, but every node communicates from and to all
other nodes.

• Grid W = Conv2D

 1/5
1/5 1/5 1/5

1/5

 has ρ ≈ 0.868. Every node

connects to four other nodes.

12 / 36

Examples

• W = 1
n

11T has ρ = 0, but every node communicates from and to all
other nodes.

• Grid W = Conv2D

 1/5
1/5 1/5 1/5

1/5

 has ρ ≈ 0.868. Every node

connects to four other nodes.

12 / 36

• Left: bilateral ring W = circ(1/3, 1/3, 1/3, . . .) has ρ = 1
3 + 2

3 cos(2π/n).
Every node connects directly to two other nodes.

• Right: exp2 ring W has ρ = 1− 2/(2 + blog2(n− 1)c) for even n. Every
node connects to blog2(n− 1)c other nodes.

13 / 36

Fixed vs dynamic neighbor averaging

Fixed Neighbor-averaging SGD:

xk+1
i =

n∑
j=1

Wij

(
xkj − αk(mini-batch grad at j)

)
.

Dynamic Neighbor-averaging SGD:

xk+1
i =

n∑
j=1

W
(k)
ij

(
xkj − αk(mini-batch grad at j)

)
.

14 / 36

Dynamic exp2-ring

Take n = 16 for example. Break a 16-node exp2-graph into four subgraphs. To
each subgraph, assign a unique W with weights 1/2, 1/2 for the active nodes.

In every subgraph, every node communicates one other node. Computing Wy
takes O(1) time.

15 / 36

8-node example

W (1) =


0.5 0.5 0 0 0 0 0 0
0 0.5 0.5 0 0 0 0 0

· · · · · ·
0 0 0 0 0 0 0.5 0.5

0.5 0 0 0 0 0 0 0.5



W (2) =


0.5 0 0.5 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0

· · · · · ·
0.5 0 0 0 0 0 0.5 0
0 0.5 0 0 0 0 0 0.5



W (3) =


0.5 0 0 0 0.5 0 0 0
0 0.5 0 0 0 0.5 0 0

· · · · · ·
0 0 0.5 0 0 0 0.5 0
0 0 0 0.5 0 0 0 0.5



16 / 36

Exact averaging achieved by finite dynamic neighbor
averaging

Theorem: When n = 2τ for τ ∈ Z, dynamic exp-2 averaging satisfies

W (τ)W (τ−1) · · ·W (1) = 1
n

11T

Furthermore, for any p = 2, . . . , τ ,

W (p−1) · · ·W (1)W (τ) · · ·W (p) = 1
n

11T .

This W -sequence is communication optimal among all averaging matrices.

17 / 36

Higher throughput

Define: n nodes, M -sized message, B bandwidth, L latency.

Bandwidth Cost Latency Total Cost
Parameter server O(nM/B) O(L) O(n+ 1)

Ring allreduce O(2M/B) O(2nL) O(1 + n)
Static exp2 averaging O(log(n)M/B) O(log(n)L)2 Õ(1 + 1)

Dynamic exp2 averaging O(M/B) O(L) O(1 + 1)

Neighbor averaging is much cheaper than any allreduce per round.

2Assume no conflict or racing when receiving messages from neighbors.
18 / 36

Training convergence rate

Let: σ2 be variance of gradient noise

Rate for non-convex loss, iid data
Allreduce SGD O

(
σ√
nT

+ 1
T

)
Neighbor-averaging SGD O

(
σ√
nT

+ σ2/3ρ2/3

T2/3(1−ρ)1/3 + 1
(1−ρ)T

)

19 / 36

Large-scale training for image classification

• Model: ResNet-50 (∼25.5M parameters)
• Dataset: ImageNet-1K (1000 classes)
• Size: 1,281,167 training images and 50,000 validation images
• GPUs: 8× 8

Method Epochs/Hours to 76%.

Allreduce SGD 68 / 5.57
Neighbor-averaging SGD 76 / 4.23

20 / 36

Periodic allreduce

y
(k)
i = x

(k)
i − γ∇Fi(x

(k)
i ; ξ(k+1)

i)

x
(k+1)
i =

{
1
n

∑n

j=1 y
(k)
j If mod(k + 1, H) = 0∑

j
Wijy

(k)
j If mod(k + 1, H) 6= 0

Selecting H < 1
1−ρ can provably accelerate Neighbor-averaging SGD.

21 / 36

Large-scale training for image classification

• Model: ResNet-50 (∼25.5M parameters)
• Dataset: ImageNet-1K (1000 classes)
• Size: 1,281,167 training images and 50,000 validation images
• Hardware: 32× 8 GPUs

Method Epochs/Hours to 76%.

Allreduce SGD 94 / 1.74
Neighbor-averaging SGD 91 / 1.20

22 / 36

Large-scale BERT training for language modeling

• Model: BERT-Large (∼330M parameters)
• Dataset: Wikipedia (2500M words) and BookCorpus (800M words)
• Hardware: 8× 8 GPUs

Method Final Loss Wall-clock Time (hrs)

Allreduce SGD 1.75 59.02
Neighbor-averaging SGD SGD 1.77 30.4

23 / 36

How to use BlueFog

DNN example

BlueFog has a high-level API that wraps around any torch optimizer.
Example:

import torch

import bluefog.torch as bf

bf.init()

...

optimizer = optim.SGD(model.parameters(), lr=lr*bf.size())

optimizer = bf.DistributedNeighborAllreduceOptimzer(\

optimizer, model=model)

...

Torch training code

BlueFog also provides optimizers: Distributed Allreduce, Distributed
Hierarchical Neighbor Allreduce, etc.

24 / 36

SPMD (single program, multiple data)

One code for all nodes; different nodes have different data and unique ranks.

hello_world.py

import bluefog.torch as bf

bf.init()

print("I am rank {} in size {}".format(bf.rank(), bf.size()))

> bfrun -np 2 python hello_world.py

I am rank 1 in size 2

I am rank 0 in size 2

25 / 36

Neighbor averaging

Example: compute the average of ranks of the nodes

import torch

import bluefog.torch as bf

bf.init()

x = torch.Tensor([bf.rank()])

for _ in range(100):

x = bf.neighbor_allreduce(x)

print("rank {} has x={}".format(bf.rank(), x))

Defaults:

• bf.init() creates a static exp2 graph
• neighbor-averaging weights are set to 1

neighbors+1 for every incoming
neighbors and the node itself

26 / 36

> bfrun -np 10 python neighbor_avg.py

rank 0 has x=tensor([4.5000])

rank 3 has x=tensor([4.5000])

rank 9 has x=tensor([4.5000])

rank 1 has x=tensor([4.5000])

rank 7 has x=tensor([4.5000])

rank 4 has x=tensor([4.5000])

rank 2 has x=tensor([4.5000])

rank 6 has x=tensor([4.5000])

rank 5 has x=tensor([4.5000])

rank 6 has x=tensor([4.5000])

27 / 36

Neighbor averaging using dynamic subgraphs

Example: Default dynamic exp2 averaging

1 dynamic_neighbors = topology_util.GetDynamicSendRecvRanks(

2 bf.load_topology(), bf.rank())

3

4 for _ in range(maxite):

5 to_neighbors, from_neighbors = next(dynamic_neighbors)

6

7 avg_weight = 1/(len(from_neighbors) + 1)

8

9 xi = bf.neighbor_allreduce(xi, name=’x’,

10 self_weight=avg_weight,

11 neighbor_weights={r: avg_weight for r in from_neighbors},

12 send_neighbors=to_neighbors)

You can replace GetDynamicSendRecvRanks() with your own.

28 / 36

Decentralized gradient descent

To approximate solve

minimize
x

α

n∑
i=1

fi(xi) subject to x1 = · · · = xn,

we can apply decentralized gradient descent:

xk+1 = Wxk − α∇f(xk).

Implementation using static exp2:

DGD recursion

for k in range(maxite):

xi = bf.neighbor_allreduce(xi) - alpha*ComputeGrad(fi,xi)

29 / 36

Blocking and asynchrony

Each node has two threads: communication thread and computation thread

• non-blocking: allow concurrent threads to save time
• blocking: computation starts after communication completes

Synchronization is similar concept but applies to operations across different
nodes. All collective communications are synchronous.

Left: nonblocking but synchronized; Right: blocking, may or may not sync’d

By default, BlueFog is blocking and synchronized, but it also supports
non-blocking and asynchronous operations

30 / 36

Blocking and asynchrony

Each node has two threads: communication thread and computation thread

• non-blocking: allow concurrent threads to save time
• blocking: computation starts after communication completes

Synchronization is similar concept but applies to operations across different
nodes. All collective communications are synchronous.

Left: nonblocking but synchronized; Right: blocking, may or may not sync’d

By default, BlueFog is blocking and synchronized, but it also supports
non-blocking and asynchronous operations

30 / 36

To save time, we ask neighbor allreduce Wxk not to block computation
∇f(xk), so they can run concurrently.

1 for k in range(maxite):

2 handle = bf.neighbor_allreduce_nonblocking(xi)

3 gradi = ComputeGrad(fi, xi)

4 avg_x = bf.wait(handle)

5 xi = avg_x - alpha*gradi

Since Line 5 must wait for the result of Wxk.

31 / 36

EXTRA

EXTRA was the first method that solves

minimize
x

n∑
i=1

fi(xi) subject to x1 = · · · = xn

with a constant α. One form of this method is{
x1 = Wx0 − α∇f(x0),

xk+1 = W (2xk − xk−1)− α(∇f(xk)−∇f(xk−1)), k = 1, 2, · · ·

The code structure is similar to DGD. Non-blocking communication can
accelerate the code.

32 / 36

Tracking

DIGing is a tracking-based method. For static W , DIGing is a special case of
EXTRA. However, DIGing works for dynamic W .{

xk+1 = W (k)xk − αyk

yk+1 = W (k)yk +∇f(xk+1)−∇f(xk)

(yk)k a tracking sequence converging to limk
1
n

∑n

i=1∇fi(x
k) if it exists.

xi = np.zeros((d,1))

yi = fi_grad_prev = ComputeGrad(fi, xi)

for k in range(maxite):

self_weight, recv_weights = ComputeWeights(k, bf.rank())

xi = bf.neighbor_allreduce(xi, self_weight, recv_weights) \

- alpha*yi

gi = ComputeGrad(fi, xi)

yi = bf.neighbor_allreduce(gi, self_weight, recv_weights) \

+ gi - gi_prev

gi_prev = gi.copy()

33 / 36

Linear speedup in throughput on CPU

34 / 36

Linear speedup in running time on CPU

35 / 36

Availability

Open source at https://github.com/Bluefog-Lib/bluefog

Contributors: Bicheng Ying, Kun Yuan, Hanbin Hu, Ji Liu, Wotao Yin

Thank you!

36 / 36

https://github.com/Bluefog-Lib/bluefog

	How to use BlueFog

	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

