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Uncertainty Modeling and Inference

# Uncertainty in Data/Environment: Ubiquitous, sometimes Adversarial!

Road conditions

AlexNet: lionfish, confidence 81.3%
VGG-16: lionfish, confidence 93.3%
ResNet-18: lionfish, confidence 95.6%

[Dong et al., CVPR (2018, 2019, 2020); Pang et al., ICML (2018, 2019), ICLR 2020; Cheng et al., NeurIPS 2019]
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Uncertainty Modeling and Inference

# Uncertainty of Models: need to concern, especially when models are huge!
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Uncertainty Modeling and Inference

# Uncertainty of Models: need to concern, especially when models are huge!

a The output of DNN p(y | x) doesn’t well capture model uncertainty (over-optimistic)!

Over-confident

D
R -

|

Uncertain prediction: reject? Or Transform

[Gal & Ghahramani, Dropout as a Bayesian Approximation, ICML 2016]




Bayesian (Probabilistic) Machine Learning

# The core is Bayes’ rule: prior knowledge, uncertainty inference

posterior likelihood model prior
\ /
?lD) = p(D10)m(6) Thomas Bayes (1702 — 1761
D p(D) omas Bayes ( — )

#Bayes‘ Theorem in the 21st Century (Year 2013 is the 250" Anniversary of Bayes’ theorem)
a Bradley Efron, Science 7 June 2013: Vol. 340 no. 6137 pp. 1177-1178

) . REVIEW
4 “There are two potent arrows in the

statistician’s quiver; there is no need to

go hunting armed with only one.”

Probabilistic machine learning
and artificial intelligence

Zoubin Ghahramani'

How can a machine learn from experience?

istic

csh W to represent and
ta lysis, machine learning,
S and artificial intelligence. This Review provides an introduction to this framework, andd.ls
ate-of-the-art advances in the field P
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Deep Resolution of Bayesian ML

Type—2
(DNN -> Bayes)

Type—1
(Bayes —> DNN)
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Deep Resolution of Bayesian ML
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(a)

@fzs.meta_bayesian_net ("vae", reuse_variables=True)
def build_wvae(N, D):

bn = zs.BayesianNet ()

z_mean = tf.zeros ([N, D])

z = bn.normal('z', z_mean, std=1., group_ndims=1)

h = tf.layers.dense(z, 500,
activation=tf.nn.relu)

¥_logits = tf.layers.dense(h, 784)

bn.bernculli('x', x_logits, group_ndims=1)

return bn

(b)

pro gramming

SGVB .sgvb()
elbo()

Reinforce .reinforce()
klpq() Importance Sampling .importance()

SGVB .sgvb()

iw_objective()
VIMCO .vimco()
TREICHSI RIS SCHY
Hamiltonian Monte Carlo HMC ()
(Preconditioned) SGLD SGLD(), PSGLD()
Stochastic Gradient
MCMC SGHMC SGHMC ()
SGNHT SGNHT()




Modeling

(How to do Bayesian inference for DNNs?

How to learn hierarchically structured Bayesian models?)




Marriage between Bayesian Methods and Neural Networks
4 Dates back to 1990’s ...

Bayesian Methods
for Adaptive Models

Thesis by
David J.C, Mac Kay

In Partial Fulfilment of the Requirements
for the Degree of
Doctor of Philosophy

David MacKay John J. Hopfield
Fellow of Royal Society Dirac Medal
Albert Einstein World Award of Science

California Institute of Technology
Pasadena, California

Bayes embodies Occam’s Razor and Apply to Bayesian neural networks

@© 1992
(Submitted December 10, 1991)




Marriage between Bayesian Methods and Neural Networks
4 Dates back to 1990’s ...

Bavesian Learning for Neural Networks
Radford M. Neal

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy.
Graduate Department of Computer Science,
in the University of Toronto
Convocation of March 1995

Abstract

Two features distinguish the Bayesian approach to learning models from data. First, beliefs -

derived from background knowledge are used to select a prior probability distribution for
the model parameters. Second, predictions of future observations are made by integrating R.M. Neal G. Hinton

the model's predictions with respect to the posterior parameter distribution obtained by Lindley Award 2018Turing Award
updating this prior to take account of the data. For neural network models, both these

aspects present difficulties — the prior over network parameters has no obvious relation to

our prior knowledge, and integration over the posterior is computationally very demanding. /




Bayesian Neural Networks (BNNs)

& Two—layer Bayesian neural networks, zero-mean Gaussian prior
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# Converge to Gaussian Processes (GPs) when the number of hidden units gets infinity [Neal, PhD
thesis, 1995]

# Generally, Bayesian neural networks improve generalization, avoid overfitting!

MacKay, Gaussian Process: a Replacement for Supervised Neural Networks?1997
Y. P P
Neal, Bayesian Learning for Neural Networks. 1995
Y g




Dropout as an Approximate Bayesian Inference

#DropoutTraining (Hinton, 2012)
Variational posterior over the parameters

W, = I\'Ir - diug{[z;_i];‘-‘l}

z; j ~ Bemoulli(p;) fori =1,...,L, j =1,...,, Ki;

Minimize the KL—divergence between q and
the true posterior of dGP

- { g(w)log p(Y|X, w)dw + KL(g(w)||p(w)).

r =m. * a(Wv)

4 MC-Dropout: estimate the predictive uncertainty
E:;[y' [2*) {{}"* }T{F* ” T 1IL"

f|
l‘ gt | & it i
+ TE}"’ [, Wi, oo W) F(x*, W5 oy WT)

t

[Gal & Ghahramani, Dropout as a Bayesian Approxiamtion, ICML 2016]




Bayesian Methods for Inferring Architectures
# Nonparametric Bayesian neural networks (Adams et al., 2010, AISTATS Best Paper)

e D80 96

Ma=1,8=1
# of layers %%tro
# of units at each layer O Q b)a=10=3
Edges between units mﬂb %%“b*o o 00000
Type of hidden units ©) a= %’ B=1
(discrete or
continuous?) g %
% o (ool e Ne
Cascading Indian Buffet Process (IBP) da=1,0=2
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Deep Bayesian Learning

4 Use DNNss to fit (learn) the complex relationships between random variables

Unsupervised training

fDNN >

on natural images

Boundary

Initial conditions

conditions

Parameters

Frequency

Ll

Stochastic realization D, |

/ Multiple runs

Output value D

(Hartig et al., 2011)

#Two types: Explicit models (e.g., VAE, Flow-based Models), Implicit models (e.g., GAN)




Flow-based Models

# A generative process with invertible (or bijective) function g:

z ~p(z)

x = g(z) @

# The inference network for the latent variable is:

z=f(x) = g7 (x) <

# The density: (a) Inference (b) Sampling

0
pG) = p(f o) det L2

# Desirae of the function: easy determinant of Jacobian, easy inverse

[Dinh, Krueger, Bengio. Nice: non-linear independent components estimation, workshop at ICLR 2015]




An Example of the Invertible Function

& A simple idea: split x into two parts and define # Then the determinant-Jacobian 1!
Y1 = Tq # The inverse is
Yo = To + m(zq) r1 =Y
o m is an arbitrarily complex function (e.g., ReLU networks) T2 = y2 — m(y1)

# Define the invertible transform function as a composition of simple functions

o Thus, the variable change is a sequence, called a flow (the sequence on density change is a

normalizing flow)

fi(20) fzzz D) ~Ji(2)
. *® - © .+ -

zo ~ po(zo) Z; ~ pz(z'z) Zf ~ PK(ZK)




Bottleneck Problem in Flow++

;:il Invertible transformation step Augmented dimensions

D Transformed data . Internal hidden layers

Invertibility imposes constraints on architectures!
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[Chen, Lu, Chenli, Zhu, Tian. VFlow: More Expressive Generative Flows with Variational Data Augmentation. ICML 2020] /




VFlow: more Expressive Generative Flows through Variational
Data Augmentation

learn a generative flow p(x, z) in the augmented data space jointly with the augmented data distribution

u~N(@O,I)

fo y = concat([x, z])

du
........ logp(x,z) =logp(u) + log det(d_y)

logp(x) = Eg(zx) [logp(x, z) — log q(z|x)]

TR max By g(apx) l0g (%, 23 8) — log (2]x; )]

Provably better than generative flows! Also subsumes VAEs as a special case.

[Chen, Lu, Chenli, Zhu, Tian. VFlow: More Expressive Generative Flows withVariational Data Augmentation. ICML 2020]




Results on Toy 2D Data

# VFlow significantly . . .
outperforms Glow under - .
similar model size (e.g., . -
3-step) . .

(a) Data (-3.47)

(b) 3-step, 10-dim VFlow
(-3.51)

# The 3-layer, 10-

dimensional VFlow even -
outperforms a much

larger 20-step Glow

(c) 3-step Glow (-3.66) (d) 20-step Glow (-3.52)
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Results on Toy 2D Data
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Figure 4. Impact of the dimensionality on the toy dataset.
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Figure 3. Visualization of learnt transformation on toy data. Top row: 2-step Glow. Bottom row: 2-step, 3-dimensional VFlow. Log-
likelihood is shown in parenthesis. We sample € and visualize the transformed density in x, h; and € space. The density is estimated from
samples by kernel density estimation, and we show the 50% probability contour / isosurface for each mode in different color.

[Chen, Lu, Chenli, Zhu, Tian. VFlow: More Expressive Generative Flows withVariational Data Augmentation. ICML 2020]

/




Results on CIFAR-10

Table 1. Density modeling result on the CIFAR-10 dataset.

Model bpd
Glow (Kingma & Dhariwal, 2018)  3.35
FFJORD (Grathwohl et al., 2019) 3.40
Residual Flow (Chen et al., 2019)  3.28
MintNet (Song et al., 2019) 3.32
Flow++ (Ho et al., 2019) 3.08
VFlow 2.98

Table 3. Parameter efficiency.

Model bpd Parameters Dy B
3-channel Flow++ 3.08 31.4M 96 10
6-channel VFlow 2.98 37.8M 96 10
6-channel VFlow 3.03 16.5M 64 10
6-channel VFlow 3.08 11.9M 56 10

Table 2. Impact of dimensionality on the CIFAR-10 dataset.

Model bpd Parameters Dy B

3-channel Flow++ 3.21 4.02M 32 13
4-channel VFlow 3.15 4.03M 32 11
6-channel VFlow 3.12 4.01M 32 10

—— 3-channel
4-channe
3.30 — 6-channel

3.25

bpd

3.20 1

3.15 A

3.10 T T T 1 T 1 T
0 200 400 600 800 1000 1200 1400

epoch

Figure 6. Bpd on training (light) and testing (dark) dataset of
Flow++ and VFlow under a 4-million parameter budget. Here
bpd is only a upper bound because we evaluate it with ELBO as
Eq. (7) instead of the marginal likelihood.

[Chen, Lu, Chenli, Zhu, Tian. VFlow: More Expressive Generative Flows withVariational Data Augmentation. ICML 2020]




Algorithms

(How to compute posteriors efficiently? How to learn parameters?)




Two Types of Algorithms
Variational Method

(Too much math!!!)

p(zii.r -
. N
i{?:\p‘z] € some famj}y/

mgn KL(g(z; ¢)lip(zlx))

Variational True
posterior posterior

[Wainwright & Jordan, 2008]

/DNN

Efficient, but with Approximation Error

in general

Monte Carlo Methods
(Many dynamics!!!)
1 1
095¢ 1 095¢
Leverage
09 { 09¢ 1 geometry to
improve efficiency
0.85 {1 085 :
l ‘ of MCMC [GC11]

Db ——— 0atb——
01 02 03 04 01 02 03 04
dg =G~ 'pdt
dp=-V,Udt - %v,, log |G|dt — épdt — %vq [p" G~ 'pldt +N(0,2CGdt)

1
d¢ =(ﬁpTG71p —1)dt

Accurate, but Low Efficiency
in Speed and Particles




“Explicitly” Define Variational Distribution ¢ via an Encoder
# Variational Auto-Encoders (VAE, Kingma & Welling, 2013)

q(zlx; ¢) = p(z|x; 6)
ELBO: L(H; ¢; X) — Eq(z|x;qb) [IOgP(Xlzi 6)] o Eq(z|x;qb) [lOgCI(Z|X; ¢)]

PA 4
-
-
-
-
-
-
e
-

h DNN D N N — generation path

!1 — - inference path

0 Jointly optimize the parameters of decoder and encoder networks 8, ¢: SGD




Variational inference with Implicit ¢

# Can we do variational inference when q is an implicit distribution?

L(H: ¢, X) — Eq(z|x;qb) [log p(X|Z; 0)] _ Eq(z|x;qb) [log CI(Z|X; (p)]

a The objective can be estimated via Monte Carlo, but we can’t computer gradients!

# A fundamental task: Can we directly estimate the gradient (score) function from samples

of some unknown density?

g(x) = Vylog q(x)

1

|

[A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi et al., ICML 2018]




A Spectral Approach to Gradient Estimation for Implicit Distributions

Space of square-integrable We proved that (under mild assumptions)
functionsw.r.t.q
A Ve(x) >
Vx; log g(x Z [E V5 ;(x ] i(x)
g,-(x) = Vy, log Q(X) j=1

This orthonormal basis can be constructed by

V(%) Vi(x) | By spectral decomposition of a p.d. kernel

/ k(x,y)i(y)a(y)dy = pji(x)

[A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi et al., ICML 2018]




A Spectral Approach to Gradient Estimation for Implicit Distributions

# Approximate the eigenfunctions by Nystrom method [Nystrom, 1930]

#Truncate the series with a finite number of basis functions, according to large eigenvalues

Space of square-integrable
functionsw.r.t.q

v Ye(x) Monte C\,arlo N‘y/stréqapproximation
J o -
gi(x) = Vyx, log q(x) V. logq(x) = — Z [Eqvxj.gbj(x)J ¥j(x)
I Jj=1
| Spectral Stein Gradient Estimator
Vi (x) ¥j(x) E Bij
__________ t - JI//,.

[A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi et al., ICML 2018]




A Spectral Approach to Gradient Estimation for Implicit Distributions

Theorem (Error Bound) Given mild assumptions, the error

f|gr |2 (x) dx

Our estimator  True gradient

IS bounded by

1 C C
J2(O (—)+O< ))JrJO( )+ gill2,0(1)),
p |\ 7 ATy AVNIY |gill7 O(1y)

Estimation error Approximation error
due to truncation

where A = mini<j<y |uj - Mj+1\

[A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi et al., ICML 2018]
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A Spectral Approach to Gradient Estimation for Implicit Distributions

Variational Inference with
Implicit Distributions

(b) True posterior  (c¢) VI (factorized) (d) HMC (e) KIVI
0.65
o 0.60 |
=
sl ¥ £ 0.55
‘\ T ! Jq a }; '.g
eﬂ._ *Y qk.ﬁ g
l % ‘4 0.50
l&l :w
. : 'A - ‘ ' + E. s : ‘
(b) Imp11c1t VAE, w/o entropy  (c) Implicit VAE, Spectral 0.45
Spectral KMC Stein™
Improving Deep Generative Models Gradient-free Hamiltonian Monte Carlo

[A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi et al., ICML 2018] /




Nonparametric Score Estimators
A Uniftying Theory with Improved Results

#Main Resultl: a table summary of existing estimators under the unifying

framework

Table 1. Existing nonparametric score estimators, their kernel
types, and regularization schemes. ¢ is from k(X,y) = ¢(x — y).

ALGORITHM KERNEL REGULARIZER
SSGE k(x,y)L4 | PO
Stein k(x,y)l4 Liosop(A+0)7"
KEF ~V%p(x —y) A+0o)!
NKEF —V2p(x—y) ligsoy(A+0)7 !

[Nonparametric Score Estimators. Zhou et al., ICML 2020]




Nonparametric Score Estimators
A Uniftying Theory with Improved Results

#Main Result2: the convergence rate of the estimator

_—11 o~ __T
— R _rtl/2

o Improves over (Shi et al., ICML 2018)

a Recover previous results of kernel exponential family (KEF) (Sriperumbudur et al.,

2017)
a Provide a bound for Li & Turner (2018)

[Nonparametric Score Estimators. Zhou et al., ICML 2020]




More Algorithms on Posterior Inference

Variational Inference:

a Variance reduction and quasi-Newton for particle-based variational inference (Zhu, Liu, Zhu, ICML 2020)

o SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models (Luo et al., ICLR 2020,
spotlight)

o Understanding and Accelerating Particle-based Variational Inference (Liu et al., ICML 2019)

a Scalable Training of Inference Networks for Gaussian-Process Models (Shi, Khan, Zhu, ICML 2019)

o Riemannian Stein Variational Gradient Descent for Bayesian Inference (Liu, Zhu, AAAI 2018)

a Kernel Implicit Variational Inference (Shi, Sun, Zhu, ICLR 2018)
MCMC:

o Understanding MCMC Dynamics as Flows on the Wasserstein Space (Liu, Zhuo, Zhu, ICML 2019)
a Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference (Li et al.,

Machine Learning, 2020)
o Function space particle optimization for Bayesian neural networks (Wang et al., ICLR 2019)
Learning Unnormalized Models:
a To Relieve Your Headache of Training an MREF, Take AdVIL (Li et al., ICLR 2020)
o A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models (Wang et al., AISTATS 2020)
a Efficient learning of generative models via finite-difference score matching (Pang et al., NeurIPS 2020)




Probabilistic Programming Library

(how to auto/semi-auto implement Bayesian deep learning models?)




DNN Programming

Differential programming

“® TensorFlow

PYTOLRCH

- O ™ —{<¢
x i< _B__.g:::::ii::_._______ﬁ__‘j/

-—

B —
u _

Learning a mapping from x to y

ZHUSUAN

latest

-
( search docs
N

& Read the Docs

mmm) Deep Probabilistic Programming (Deep PPL)

Docs » Welcome to ZhuSuan € Edit on GitHub

Welcome to ZhuSuan

Yoy

ZhuSuan is a python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
deep learning. ZhuSuan is built upon Tensorflow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and
supervised tasks, ZhuSuan provides deep learning style primitives and algorithms for building probabilistic models and applying Bayesian inference. The

supported inference algorithms include:

« Variational inference with programmable variational posteriors, various objectives and advanced gradient estimators (SGVB, REINFORCE, VIMCO, etc.).

« Importance sampling for learning and evaluating models, with programmable proposals.
« Hamiltonian Monte Carlo (HMC) with parallel chains, and optional automatic parameter tuning.

Installation

ZhuSuan is still under development. Before the first stable release (1.0), please clone the GitHub repository and run

pip install .

github.com/thu-ml/zhusua

"



https://github.com/thu-ml/zhusuan

“ZhuSuan” Deep Probabilistic Programming

hnprovedrnodehng]anguage

def build model(...):

bn = zs.BayesianNet()

X = bn.normal(“x”, x_mean,

std=...)
y = bn.deterministic(“y”,

tf.any op(x))
Or Yy = tf.any op(x)

return bn

ONOCIO 00

Model build function

Create a Bayesian Net

Add stochastic node, e.g., a Gaussian
variable x

Add deterministic nodes, can use any
Tensorflow operation

Return the built Bayesian Net

*e

cHUSUAN
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“ZhuSuan” Deep Probabilistic Programming

New model reuse strategy

Just need a decorator @zs .meta_bayesian_net to the model-building function

@zs.meta_bayesian_net(scope=“model”, reuse variables=True)

def build model(...):

The returned is a reusable zs .MetaBayesianNet object, just call observe() to assign observed values to
any subset of random variables

Wy U

zs.MetaBayesianNet zs.BayesianNet

bn = meta_bn.observe(x=x obs, y=y obs) github.com/thu-ml/zhusuan

cHUSUAN

/



https://github.com/thu-ml/zhusuan

“ZhuSuan” Deep Probabilistic Programming

New Algorithms: Stochastic gradient MCMC

SGVB .sgvb()
elbo()

Reinforce .reinforce()
klpq() Importance Sampling .importance()

SGVB .sgvb()

iw_objective()
VIMCO .vimco()
Hamiltonian Monte Carlo HMC ()
(Preconditioned) SGLD SGLD(), PSGLD()
Stochastic Gradient
MCMC SGHMC SGHMC( )
SGNHT SGNHT ()

*e

cHUSUAN

github.com/thu-ml/zhusuan A//



https://github.com/thu-ml/zhusuan

Examples: Bayesian Logistic Regression

:

N
—

(a)

import zhusuan as zs

import tensorflow as tf

@zs.meta_bayesian_net (scope="blr")

def build blr(x, alpha, D):
bn = zs.Bayesianlet ()
w = bn.normal ('w', mean=tf.zeros([D]),

std=alpha, group_ndims=1)
y_logilt = tf.reduce_sum/(
tf.expand dims (w, 0)*x, axis=1)

bn.bernoulli('y', v_logit)
return bn

(b)

*e

cHUSUAN




Example: Variational Auto-Encoder ZHUSUAN

activation=tf.nn.relu)

P
? fzs.meta_bayesian_net ("vae", reuse_variables=True)
‘vl def build_wae (N, D): @zs.reuse_wvariables("vae_g")
//, bn = zs.BayesianNet () \\\T def build g net(h_dim, =z _dim):
z_mean = tf.zeros ([N, DI) 2 bn = zs.BayesianNet ()
z = bn.normal ('z', z_mean, std=1., group_ndims=1) h = tf.layers.dense(x, h_dim,
\.—N.J

/ h = tf.layers.dense(z, 500, \v
= tf.1 s.d h, di
activation=tf.nn.relu) 1 fmean ayer ense ( z_dim)
1 i+ fF 1 q h 784 z_logstd = tf.layers.dense(h, z_dim)
¥_loglts = .layers.dense (h, ) bn.normal ('z', z_mean, logstd=z_logstd,
o . L
N bn.bernoulli('x', x_logits, group_ndims=1) group_ndims=1)
) return bn

return bn

(a) (b) (a) (b)




“ZhuSuan” Deep Probabilistic Programming

More models

@ w fuy
K i ) f I
D document — word = D| ® v NN 3 ‘
V K @ .

Variational Auto-encoder
for structured data generation, discrete representation

learning, semi-supervised learning, etc.
\5 \5/ \5/

/Gf\

Topic Models; Probabilistic Matrix Factorization
for text analysis, Recommendor Sys.

Bayesian Neural Networks Deep Belief Nets Gaussian Processes
for uncertainty in deep nets Unsupervised pre-training Nonlinear regression problems
for DNNs

github.com/thu-ml/zhusuan



https://github.com/thu-ml/zhusuan

[
a®
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o Open—sourced in GitHub:

latest

“ZhuSuan” Deep Probabilistic Programming

ZHUSUAN

https:// github.com/ thu-ml/zhusuan

| Search docs
LY

Build the model
Reuse the model
Inference and learning

Generate images

Run gradient descent

ZhuSuan: A Library for Bayesian Deep Learning
J. Shi, J. Chen, ]. Zhu, S. Sun,Y. Luo,Y. Gu,Y. Zhou
arXiv preprint, arXiv:1709.05870 , 2017

Online Documents:
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Variational Autoencoders

Variational Auto-Encoders (VAE) [VAEKW 13] is one of the most widely used deep generative models. In this tutorial, we show how to implement VAE in
ZhuSuan step by step. The full script is at examples/variational_autoencoders/vae.py.

The generative process of a VAE for modeling binarized MNIST data is as follows:

\[\begin{splitlz &\sim \mathrm{N}(z|0, [} \\ x_{logits} &= f_{NN}(z) \\ x &\sim \mathrm{Bernoulli}{x|\mathrm{sigmoid}(x_{logits})}\end{split]\]
This generative process is a stereotype for deep generative models, which starts with a latent representation (\(z\)) sampled from a simple distribution (such
as standard Normal). Then the samples are forwarded through a deep neural network (\(f_{NNJ\)) to capture the complex generative process of high
dimensional observations such as images. Finally, some noise is added to the output to get a tractable likelihood for the model. For binarized MNIST, the
observation noise is chosen to be Bernoulli, with its parameters output by the neural network.

Build the model

In ZhuSuan, a model is constructed using BayesianNet , which describes a directed graphical model, i.e., Bayesian networks. The suggested practice is to wrap
model construction into a function ( we shall see the meanings of these arguments soon):

import zhusuan as zs

def build_gen{x_dim, z_dim, n, n_particles=1):
bn = zs.Bayesianhet()

Following the generative process, first we need a standard Normal distribution to generate the latent representations (\(z\)). As presented in our graphical
model, the data is generated in batches with batch size n , and for each data, the latent representation is of dimension z_din . So we add a stochastic node

by on.normz1 to generate samples of shape [n, =_din :

£z~ N(zf8, I)
z_mean = tf.zeros([n, z_dim])
z = bn.normal{"z", z_mean, std=1., group_ndims=1, n_samples=n_particles)

The method bn.norrz1 is a helper function that creates a norma1 distribution and adds a stochastic node that follows this distribution to the Bayesiannet

instance. The returned : isa StochasticTensor , which is Tensor-like and can be mixed with Tensors and fed into almost any Tensorflow primitives.

To learn more about pistribution and BayesianNet . Please refer to Basic Concepts in ZhuSuan.
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Examples

(what problems can be solved by Bayesian deep learning?)




Examples: Air Quality Prediction

# Bayesian inference for a baseline model with LSTM and attention

o Calculate the uncertainty of prediction

o Decrease the prediction error of the baseline model

4 Function-space particle—based variational inference

MSE (NO,)
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[Function space particle optimization for Bayesian neural networks. Wang et al., ICLR 2019]




Examples: Semi-supervised Learning

Advance previous state-of-the-art results First GAN-based model to generate
on natural images (CIFAR10) substantially data in a specific class in SSL
Error Rate (%)
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Triple Generative Adversarial Nets (Li et al., NIPS 2017)
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				Error Rate
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Example: Learning with Rejection

# Leverage deep generative models to
transter “rejected” samples into high—

confidence region

-~ Reject?
ric;, v*;)

1 1

Classifier

GWIN

Generative Well-intentioned Networks (GWIN)
(Cosentino & Zhu, NeurIPS 2019)
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Examples: Adversarial Robustness

" 4
Learn a deep network tc B, vs ¥
map the data -
. : .
into a 5|mplt_a MoG o o B
distribution .
watie,,
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Adversarial Noises (MM-LDA) D ! Q 3 4 S G ? 3 ? HF..’ .1%*.5@

«  Theoretically show optimal robustness
« Algorithmically train MM-LDA network using SGD to minimize cross-entropy loss
No extra cost, as compared to vanilla DNN

Max-Mahalanobis Linear Discriminant Analysis Networks (Pang et al., ICML 2018) -




Summary

# Uncertainty Models and Inference is Critical for Al Systems
4 Bayesian Machine Learning provides a Powertful Language

#“ZhuSuan” Provides a User—Friendly Library for Deep Probabilistic

Pro gramming

4 Examples
a Sequential prediction, semi-supervised learning, few-shot learning

0 Bayesian methods improve adversarial robustness




Thank You!
[m] = [m]

R

W ]. Zhu, C. Chen, W. Hu, B. Zhang, Big Learning with Bayesian Methods.
National Science Review, 4(4): 627-651,2017

W ]. Zhu. Probabilistic Machine Learning: Models, Algorithms and a
Programming Library. Proc. of the 27th International Joint Conference on Artificial
Intelligence, Early Career. Pages 5754-5759.
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