
Posistive-Unlabeled Learning via Optimal Transport and Margin Distribution

Nan Cao , Teng Zhang∗ , Xuanhua Shi and Hai Jin
National Engineering Research Center for Big Data Technology and System

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology, China

{nan cao, tengzhang, xhshi, hjin}@hust.edu.cn

Abstract
Positive-unlabeled (PU) learning deals with the cir-
cumstances where only a portion of positive in-
stances are labeled, while the rest and all nega-
tive instances are unlabeled, and due to this con-
fusion, the class prior can not be directly available.
Existing PU learning methods usually estimate the
class prior by training a nontraditional probabilistic
classifier, which is prone to give an overestimation.
Moreover, these methods learn the decision bound-
ary by optimizing the minimum margin, which is
not suitable in PU learning due to its sensitivity to
label noise. In this paper, we enhance PU learning
methods from the above two aspects. More specifi-
cally, we first explicitly learn a transformation from
unlabeled data to positive data by entropy regular-
ized optimal transport to achieve a much more pre-
cise estimation for class prior. Then we switch to
optimizing the margin distribution, rather than the
minimum margin, to obtain a label noise insensi-
tive classifier. Extensive empirical studies on both
synthetic and real-world data sets demonstrate the
superiority of our proposed method.

1 Introduction
In ordinary supervised learning, training a classifier usually
requires labeled instances from all classes, which may be
impractical or need additional steps which will incur unaf-
fordable cost in many real-world scenarios. For example,
in personalized advertising tasks, the pages that are visited
and clicked by the user can be treated as positive instances.
However, the rest huge amount of unexplored pages may
not be uninteresting, thus they can not be simply labeled
as negative instances. Such problems lead to the research
of positive-unlabeled (PU) learning [Elkan and Noto, 2008;
Bekker and Davis, 2020], where training a classifier can only
access a portion of positive instances while the remaining un-
labeled data could be either positive or negative.

Due to the importance of such framework, it has attracted
lots of interest from the machine learning community. So far,
the development of PU learning can be roughly classified into
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three stages. The algorithms in the first stage [Liu et al., 2002;
Li and Liu, 2003; Tao et al., 2008; Chaudhari and She-
vade, 2012] take the separability and smoothness assump-
tions, and adopt a two-step strategy in which reliable negative
instances are identified first, followed by a traditional (semi)-
supervised learning approach. The algorithms in the second
stage [Mordelet and Jean Philippe, 2014; Shao et al., 2015;
Du Plessis et al., 2015b] directly treat PU learning as a bi-
ased learning problem, in which the unlabeled instances are
viewed as noisy negative instances. In the last stage, the
algorithms [Bekker and Davis, 2017; Kiryo et al., 2017;
Zhang et al., 2019; Chang et al., 2021] usually incorporate
class prior to learn an unbiased classifier.

Existing PU learning algorithms either suffer an overesti-
mation of class prior or simply assume it is given ahead of
time. To obtain a more precise class prior, ℓ1 divergence be-
tween the positive data and the whole data is employed to
penalize the overestimation of class prior [Du Plessis et al.,
2015a]. Besides, kernel mean embedding has also been in-
troduced to characterize the matching degree between these
two distributions [Chang et al., 2021]. Different from these
methods, we explicitly learn a transformation from unla-
beled data to positive data by entropy regularized optimal
transport (OT) [Kantorovitch, 1958; Frogner et al., 2015;
Peyré et al., 2019], which brings us a much more precise es-
timation of class prior. Moreover, most PU learning methods
learn the decision boundary through optimizing the minimum
margin, which is not suitable in PU learning because it is very
sensitive to label noise. In this paper, we optimize the margin
distribution (MD) [Zhang and Zhou, 2014], rather than the
minimum margin, to obtain a label noise insensitive classifier
enjoying much better generalization performance. To sum-
marize, our contributions are

• It achieves a much more precise estimation of class prior
by leveraging the entropy regularized OT.

• It utilizes the margin distribution optimization to allevi-
ate the inevitable label noise in PU learning.

• It shows significantly better generalization performance
on both synthetic and real-world data sets.

The rest of the paper is organized as follows. We first intro-
duce some basic preliminaries, and then present the proposed
methods. After that, we detail the optimization procedure,
followed by the empirical studies. Finally we conclude the
paper with future works.
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2 Preliminaries
We first present some notations utilized throughout the pa-
per. The scalars are denoted by normal font letters (e.g., x,
X). The boldface letters (e.g., x, X) denote the vectors and
matrices respectively. The upper case letters with mathcal
font (e.g., S) indicate the sets. In particular, [m] is defined as
the integer set {1, 2, . . . ,m}.

Without loss of generality, for PU learning data set S =
{(xi, yi)}i∈[p]∪{xj}j∈[m]\[p], we assume the first p instances
are positive, i.e., yi = 1 for any i ∈ [p] ≜ P , while the re-
maining u = m − p instances are unlabeled, i.e., yj is un-
known for any j ∈ [m] \ [p] ≜ U . The class prior is denoted
by π = P(y = 1) in unlabeled data, and the mixed class-wise
unlabeled data density can be formulated as

P(x;π) = πP(x|y = 1) + (1− π)P(x|y = −1) (1)

2.1 Optimal Transport
OT is a useful mathematical tool to evaluate the difference
between pairs of probability distributions. It is the cost of
transforming the source distribution to the target distribution.
It has also been proven to be a well defined distance and can
integrate with metric learning [Song et al., 2017] to better
exploit the rich geometric structure on the space of prob-
ability distributions, which has been applied in many ma-
chine learning methods [Ho et al., 2017; Blondel et al., 2018;
Titouan et al., 2019]. To make the computation efficient, the
entropy regularized version of OT is proposed. It encourages
dense transport coefficients and can help distinguish the in-
stances sampling from different class distributions.

As shown in Figure 1(a), dots and crosses are from two
class distributions. We randomly choose some red crosses
as empirical target distributions and the rest with all dots as
empirical source distributions, then utilize entropy regular-
ized OT to transport source to target. In Figure 1(b), we con-
nect the source instance with the target instance for which the
largest transport coefficient exceeds the prespecified thresh-
old. It can be seen that the blue crosses are connected with
the red crosses while the blue dots are not. Thus we can iden-
tify the underlying crosses by checking the largest transport
coefficient.

2.2 Optimal Margin Distribution Learning
Margin is one of the most essential concepts in machine
learning. It indicates the confidence of the prediction re-
sults. Recent studies on margin theory [Gao and Zhou, 2013]
demonstrate that margin distribution is crucial to generaliza-
tion, and gives rise to a novel statistical learning framework
named optimal margin distribution machine (ODM) [Zhang
and Zhou, 2019]:

min
w,ξi,ϵi

1

2
∥w∥2 − βγ̄ + α

∑
i∈[m]

ξ2i + ϵ2i
m

s.t. γ̄ − ξi ≤ γ(xi, yi) ≤ γ̄ + ϵi, ∀i ∈ [m]

where γ(xi, yi) is the margin of xi, γ̄ is the margin mean, α
and β are trading-off hyperparameters. The first regulariza-
tion term ∥w∥2/2 controls the model complexity. The sum-
mation of slack variables ξi and ϵi in the last term is exactly
the margin variance.

Source instances
Source instances

Target instances (Positive)

(a) Original data distribution

Source instances

Source instances

Target instances

(b) OT transportation plan

Figure 1: An illustration of entropy regularized optimal transport

PositiveUnlabeled PositiveUnlabeled Negative

(a) Supervised learning task

PositiveUnlabeled PositiveUnlabeled Negative

(b) PU learning task

Figure 2: An illustration of optimizing minimum margin and margin
distribution in PU learning task

Since more stable performance than the minimum margin
based counterparts, ODM has been extended to many gen-
eral learning settings [Zhang and Zhou, 2017; Zhang and
Zhou, 2018a; Zhang and Zhou, 2018b; Zhang et al., 2020;
Zhang and Jin, 2021; Cao et al., 2021]. Figure 2 illustrates
the differences between ODM and SVM when solving the su-
pervised and PU learning tasks respectively. For supervised
learning, both hmin and hdis achieve good performance. How-
ever, for PU learning, optimizing minimum margin only fo-
cuses on a small proportion of instances, which may result
in multiple low-density decision boundaries, e.g., h′

min1 and
h′

min2 , and a wrong selection will lead to a degenerated perfor-
mance. Meanwhile, optimizing the whole margin distribution
can help us avoid such a dilemma.

3 Class Prior Estimation by Regularized OT
The proposed estimation algorithm consists of two steps. In
the first step, we utilize entropy regularized OT to identify
the possible positive and negative instances in unlabeled data.
Specifically, we treat positive instances as empirical target
distribution pt, while unlabeled instances as empirical source
distribution ps. All instances are assigned with equal mass
density. Assume C = [Cij ]u×p is the cost matrix with the
(i, j)-th entry Cij = exp(−∥xi−xj∥2

/2δ2) indicating the cost
of transporting one unit mass from [ps]i to [pt]j , where δ is
the width hyperparameter. Then the transportation from unla-
beled instances to positive instances with minimum cost can
be formalized as:

min
T

tr(C⊤T)− η · Ω(T) s.t. T1 = ps, T
⊤1 = pt (2)
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where T = [Tij ]u×p is the optimal transport matrix, Ω(T) =
−
∑

ij Tij(log Tij−1) is the entropy regularization term, and
η is the trading-off hyperparameter. The problem of Eq. (2)
have already been well studied and the unique solution can
be obtained by the Sinkhorn-Knopp algorithm [Cuturi, 2013].
When we obtain transport matrix T, we set a threshold σ to
identify the reliable instances. Specifically, for each unla-
beled instance xi, we treat it as a candidate positive instance
if the maximal transport coefficient maxj Tij ≥ σ, and vice
versa. The intuition is that the underlying positive instances
of unlabeled set and the positive data share the same distribu-
tion, thus the most likely positive instances will be firstly and
concentratedly transported to the nearest positive instances.

In the second step, we utilize the discovered possible posi-
tive and negative instances to estimate the class prior. For PU
learning, the distribution of unlabeled data can be approxi-
mately represented by a convex combination of positive and
negative distributions as Eq. (1). Suppose the candidate pos-
itive instances are {xj | j ∈ Cp} and the candidate negative
instances are {xk | k ∈ Cn}. Then the class prior π can be
estimated by minimizing the following distance between the
unlabeled instance mean and the mixture of candidate posi-
tive and negative instance mean:

min
π̂

∥∥∥∥∥∥ 1u
∑
i∈U

xi −
π̂

|Cp|
∑
j∈Cp

xj −
1− π̂

|Cn|
∑
k∈Cn

xk

∥∥∥∥∥∥
2

(3)

Eq. (3) can also be optimized in some reproducing ker-
nel Hilbert space (RKHS), i.e., all instances are embedded
to this RKHS first via the inducing kernel mapping ϕ(·), and
then minimize the distance in this new feature space. In addi-
tion, Eq. (3) is a convex quadratic programming (QP), which
can be easily solved via off-the-shelf QP solvers. The overall
optimization procedure is summarized in Alg. 1. It is worth
noting that we also return the candidate labels y(0)

u for unla-
beled instances to initialize the later optimization procedure.

4 Training with Margin Distribution
In this section, we detail the training of classifier.

4.1 Proposed Method
We first build a kNN-based graph G(V, E), where V is the
vertex set consisted of instances in S , and E is the edge set
representing the similarity between pairs of instances. We
utilize G(V, E) to exploit the relation between feature space
and label space, and identify the ground-truth labels. We
denote A = [Aij ]m×m as adjacency matrix of G(V, E),
and Aij = exp(∥xi−xj∥2

/2δ2) if xi and xi are linked, and
Aij = 0 otherwise, and Ā = D−1/2AD−1/2 as normalized
adjacency matrix, where Dii =

∑
j Aij . We use Ā to exploit

relations between instances, and obtain:

min
w,ξ,ϵ,y

∥w∥2

2
+

∑
i∈[m]

αi
ξ2i + µϵ2i
m(1− θ)2

+ τ
∑

i,j∈[m]

Āij(yi − yj)
2

s.t. 1− θ − ξi ≤ yiw
⊤ϕ(xi) ≤ 1 + θ + ϵi, i ∈ P (4)

1− θ − ξj ≤ |yjw⊤ϕ(xj)| ≤ 1 + θ + ϵj (5)

Algorithm 1 Class prior estimation

1: Input: PU data set S , regularization hyperparameter η,
threshold σ.

2: Calculate the cost matrix C.
3: Obtain T by solving Eq. (2).
4: Find the candidate instances in unlabeled data.
5: Calculate the class prior π̂ by solving Eq. (3).
6: Output: class prior π̂, candidate labels y(0)

u .

∑
j

I(yj = 1) = uπ̂, j ∈ U

where only {yi}i∈U are optimization variables while {yi}i∈P
are fixed, {αi}i∈P and {αi}i∈U indicate trade-off parame-
ters for labeled and unlabeled data, I(·) is the indicator func-
tion. In the above formulation, the second term as well as the
Eq. (4) restrict margin variance of labeled positive instances,
Eq. (5) imposes on the unlabeled instances to be accurately
classified with less margin deviations. The final term is a
smooth regularization letting the similar instances be more
likely to have similar labels. Moreover, the final constraint
ensures a proportion π̂ of unlabeled instances to be positive.

4.2 Optimizing Classifier
If the labels of unlabeled data are available, our method re-
duces to the binary classification ODM [Zhang and Zhou,
2019]. Furthermore, because y is integer variable, it is dif-
ficult to optimize it together with w, ξ, ϵ. Thus we resort to
the alternating optimization method.

Notice that y appears both in the objective function and
the constraints, which makes the optimization difficult. To
handle this problem, we apply the variable splitting technique
by introducing an auxiliary variable q = [q1, . . . , qm], and
Eq. (4) becomes

min
w,ξ,ϵ,y,q

1

2
∥w∥2 +

∑
i∈[m]

αi
ξ2i + µϵ2i
m(1− θ)2

+ τ
∑

i,j∈[m]

Āij(qi − qj)
2 + λ

∑
i∈[m]

I(yi ̸= qi) (6)

s.t. 1− θ − ξi ≤ yiw
⊤ϕ(xi) ≤ 1 + θ + ϵi∑

i∈[m]

I(yi = 1) = uπ̂ + p, i ∈ [m]

where the last term is set to make y and q as similar as pos-
sible and λ is a balancing parameter. Then, we need to solve
the three subproblems in terms of w, y, and q respectively.

Optimizing w. Fixing ξ, ϵ, y and q, we have

min
w

1

2
∥w∥2

s.t. 1− θ − ξi ≤ yiw
⊤ϕ(xi) ≤ 1 + θ + ϵi, i ∈ [m]

(7)

Notice that the Eq. (7) is a convex quadratic programming
(QP), which can be easily solved via off-the-shelf QP solvers.
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Optimizing ξ, ϵ and y. Fixing w and q, we have

min
y,ξ,ϵ

∑
i∈[m]

αi
ξ2i + µϵ2i
m(1− θ)2

+ λ
∑
i∈[m]

I(yi ̸= pi)

s.t. 1− θ − ξi ≤ yiw
⊤ϕ(xi) ≤ 1 + θ + ϵi (8)∑

i∈[m]

I(yi = 1) = uπ̂ + p, i ∈ [m]

First we denote ξi,yi = max(0, 1− θ− yiw
⊤ϕ(xi)), ϵi,yi =

max(0, yiw
⊤ϕ(xi)− 1− θ), and li,yi = ξ2i,yi

+ µϵ2i,yi
, then

we define the cost matrix B = [Bij ]m×2 to distinguish the
loss of positive and unlabeled data. For positive data, we set
the i-th row [Bi1, Bi2] = [E, li,1] where E is a large constant
such as 103 specified in advance, while for unlabeled data, we
set [Bi1, Bi2] = [li,−1, li,1]. Furthermore, we denote Y =
[Yij ]m×2 as the one-hot encoding of y. We also define Q =
[Qij ]m×2 in the same way. Then Eq. (8) can be rewritten as

min
Y

∑
i∈[m]

∑
j∈[2]

αi

m
Yij

(αi

m
Bij − λQij

)
s.t.

∑
j∈[2]

Yij = 1, i ∈ [m] (9)

∑
i∈[m]

Yi2 = uπ̂ + p, Yij ∈ {0, 1}

Eq. (9) can be converted to a linear programming (LP) by
relaxing Yij ∈ {0, 1} as Yij ∈ [0, 1] and solved by off-the-
shelf LP solvers. Then the optimal yi can be set as 1 if Yi1 <
Yi2 and −1 otherwise.
Optimizing q. Fixing w, ξ, ϵ and y, we have:

min
q

τ
∑

i,j∈[m]

Āij(qi − qj)
2 + λ

∑
i∈[m]

I(yi ̸= qi)

Notice that the indicator function is discontinuous and diffi-
cult to optimize, we use ℓ2 norm as a surrogate, and we have:

min
q

τ
∑

i,j∈[m]

Āij∥qi − qj∥2 + λ
∑
i∈[m]

∥yi − qi∥2 (10)

The closed form solution of Eq. (10) is

Q =
λ

τ + λ

(
I− τ

τ + λ
Ā

)−1

Y

We can obtain qi according to Qij in a similar way as yi.
Alg. 2 shows the whole optimization procedures.

5 Experiments
In this section, we empirically show the effectiveness of our
proposed method.

5.1 Data Sets and Settings
We perform experiments on both synthetic and real-world
data sets. For real-world data sets, we utilize eight data sets
from the UCI Machine Learning Repository. Their basic
statistics are listed in Table 1.

Algorithm 2 Classifier training

1: Input: PU data set S , kNN based graph G(V, E),
ODM hyperparameters µ, θ, αi, trading-off hyperparam-
eters λ, τ , estimated class prior π̂, maximum iteration
number T .

2: Initialize: t = 0, w = 0, yu = qu = y
(0)
u ,

[Bi,1, Bi,2] = [E, 0] for any i ∈ P , [Bi,1, Bi,2] =
[1/2, 1/2] for any i ∈ U .

3: while t < T and not converge do
4: Update w, ξ and ϵ by fixing Y, Q and solve Eq. (7).
5: Update coefficient matrix B.
6: Update Y and Q by solving Eq. (9) and Eq. (10).
7: if converge then
8: Break.
9: end if

10: end while
11: Output: w.

Data sets #Ins. #Fea. #Pos. #Neg.

Australian 753 14 370 383
Diabetes 768 8 268 500
Banknote 1,372 5 762 610
Kr-vs-kp 3,196 37 1,669 1,527
Spambase 4,601 58 1,813 2,788
Musk 6,598 178 1,017 5,581
Mushroom 8,124 23 3,916 4,208
House 20,640 9 8,914 11,726

Table 1: Experimental data sets with their basic statistics

For synthetic data sets, we construct two Gaussian distri-
butions centers set at (0, 0) and (3, 3), and the covariance ma-
trixes of them are set to [ 1 0

0 1 ] and
[

1 −0.8
−0.8 1

]
. It contains 400

labeled positive instances and 1000 unlabeled instances.
To demonstrate the superiority of our proposed PUOTMD,

we compare it with three PU learning methods which also in-
tegrate class prior estimation algorithms EN [Elkan and Noto,
2008], PE [Du Plessis Marthinus and Sugiyama, 2014], and
CAPU [Chang et al., 2021], and six more PU learning meth-
ods WLR [Lee and Liu, 2003], PULD [Zhang et al., 2019],
UPU [Du Plessis et al., 2015b], nnPU [Kiryo et al., 2017],

π EN PE CAPU PUOTMD

0.3 .582±.037 .379±.024 .389±.103 .307±.031
.917±.015• .953±.017• .951±.019• .978±.014

0.5 .679±.241 .582±.016 .551±.022 .519±.037
.901±.011• .922±.014• .938±.017• .949±.018

0.7 .803±.047 .763±.019 .719±.015 .753±.011
.890±.035• .908±.021• .943±.011 .949±.018

Table 2: Class prior estimation and classification accuracy on syn-
thetic data sets. The best results are shown in bold. •/◦ indicates
that the performance of PUOTMD is significantly better/worse than
the compared method (pairwise t-test at 0.05 significance level).
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Data set π EN PE CAPU PUOTMD Data set π EN PE CAPU PUOTMD

0.3 .459±.024 .388±.018 .352±.015 .355±.013 0.3 .558±.027 .406±.017 .383±.015 .388±.023
.787±.029• .807±.024• .827±.017• .838±.019 .739±.029• .789±.016◦ .872±.013 .871±.019

Australian 0.5 .648±.027 .599±.024 .588±.014 .574±.016 Spambase 0.5 .679±.022 .586±.018 .565±.013 .513±.017
.755±.031• .801±.021• .807±.016• .819±.021 .766±.028• .765±.021• .838±.025• .897±.015

0.7 .781±.018 .761±.023 .739±.015 .715±.019 0.7 .815±.019 .769±.016 .785±.014 .684±.032
.708±.019• .724±.028• .758±.021• .761±.022 .711±.026• .757±.023• .825±.024• .863±.024

0.3 .589±.032 .438±.027 .331±.013 .325±.014 0.3 .449±.029 .337±.024 .348±.013 .258±.018
.507±.029• .634±.022• .739±.018• .755±.019 .871±.032• .890±.018• .915±.019 .924±.019

Diabetes 0.5 .735±.021 .613±.012 .609±.026 .567±.027 Musk 0.5 .627±.025 .574±.021 .553±.021 .521±.013
.622±.024• .642±.022• .702±.017• .722±.024 .851±.027• .876±.028• .873±.023• .915±.029

0.7 .894±.014 .759±.017 .767±.023 .754±.014 0.7 .798±.023 .753±.017 .779±.019 .769±.024
.624±.025• .657±.023• .672±.019• .701±.026 .821±.019• .842±.022• .838±.024• .864±.031

0.3 .503±.036 .413±.024 .358±.028 .315±.018 0.3 .397±.014 .331±.021 .294±.019 .281±.019
.881±.037• .928±.021• .949±.019 .943±.016 .918±.023• .921±.019• .928±.015 .937±.021

Banknote 0.5 .688±.031 .597±.027 .552±.017 .479±.027 Mushroom 0.5 .593±.023 .544±.014 .531±.018 .442±.017
.823±.029• .879±.027• .902±.029• .934±.019 .887±.019• .902±.023• .912±.026 .901±.018

0.7 .869±.034 .752±.016 .776±.017 .674±.027 0.7 .819±.028 .753±.019 .749±.013 .732±.025
.837±.029• .893±.021 .889±.024• .897±.019 .869±.027• .883±.022• .901±.021 .903±.019

0.3 .505±.034 .389±.021 .369±.019 .351±.015 0.3 .491±.019 .337±.022 .387±.027 .358±.017
.783±.029• .816±.017• .821±.023• .841±.019 .907±.013• .923±.017 .911±.016• .911±.013

Kr-vs-kp 0.5 .617±.027 .576±.022 .579±.019 .543±.021 House 0.5 .632±.038 .597±.017 .562±.019 .538±.014
.734±.034• .772±.017• .789±.024• .801±.026 .838±.024• .849±.025• .870±.022• .887±.023

0.7 .834±.019 .786±.019 .754±.021 .779±.028 0.7 .869±.028 .798±.019 .742±.013 .776±.024
.718±.031• .744±.017• .759±.018 .738±.026 .801±.027• .838±.023• .849±.018• .863±.020

Table 3: Class prior estimation and classification accuracy on real-world data sets. For each class prior, the first row shows estimated class
prior value, while the second row is the classification accuracy. The best results are shown in bold. •/◦ indicates that the performance of
PUOTMD is significantly better/worse than the compared method (pairwise t-test at 0.05 significance level).

PUSB [Kato et al., 2018], and LDCE [Shi et al., 2018], which
adopt different strategies to deal with PU learning problems
and they all require a precisely given class prior to train the
classifiers. The experiments are conducted with class prior
from {0.3, 0.5, 0.7}. All data sets are randomly divided into
training and test set with ratio 7:3, and we randomly select la-
beled and unlabeled instances according to select completely
at random (SCAR) assumption [Bekker and Davis, 2020],
i.e., the labeled instances are i.i.d. sampled from positive data
distribution. We repeat the experiments ten times and record
the average value and standard deviations of performance.

All hyperparameters of the baselines are tuned in the same
way reported in the references. For CAPU and LDCE, their
two trade-off hyperparameters are tuned from {2−5, . . . , 25}
and {10−3, . . . , 103} respectively. The balancing hyperpa-
rameters in PULD are tuned from {10−3, . . . , 103}. As for
our proposed method, we set the number of nearest neigh-
bors N = 10, and the width of RBF kernel is selected
from {2−10, 2−9, . . . , 23}. We tune ODM hyperparameters
µ and θ from the set {0.1, 0.2, . . . , 0.9}, the threshold σ is
set as min{1, 10/p}, and the balancing hyperparameters are
selected from {10−3, . . . , 103}.

5.2 Results
We first compare it with three PU learning methods EN, PE,
and CAPU on synthetic data sets without giving class prior.
The results are shown in Table 2. It can be seen that when
class prior is 0.3 and 0.5, PUOTMD not only achieves a more

precise class prior estimation but also produces a better clas-
sifier. When class prior is 0.7, PUOTMD only loses to CAPU
in terms of class prior estimation, but still achieves the best
classification accuracy.

We also conduct experiments on real-world data sets.
Again we compare it with EN, PE, and CAPU without pro-
viding class prior. The results are shown in Table 3. It can
be seen that EN is very prone to overestimate the class prior
and thus getting the worst performance among the baselines.
Our proposed PUOTMD achieves a more accurate class prior,
which verifies the effectiveness of our proposed entropy reg-
ularized OT estimation method. Moreover, it outperforms
other baselines on Diabetes in all class prior settings. In
most cases, PUOTMD achieves both better class prior estima-
tion and classification accuracy, but under the circumstance
of less accurate estimation of class prior, PUOTMD can also
achieve better classification accuracy, e.g., on House when
class prior is 0.7.

Table 4 exhibits the classification accuracy of nine meth-
ods on eight data sets with given class priors. It can be seen
that on Banknote, Spambase, and Musk, PUOTMD out-
performs other methods in all class prior settings, and on
other data sets, PUOTMD also performs better in most cases.
Compared to PULD and EN, which adopt minimum margin
framework, PUOTMD wins on Diabetes and Australian un-
der all class prior settings, while on other data sets, it per-
forms significantly better than EN in almost all the class prior
settings, and beats PULD when class prior is 0.7. These
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Data set π WLR PULD UPU nnPU CAPU PUSB EN LDCE PUOTMD

.3 .773±.022• .826±.015• .841±.009 .822±.009• .854±.013 .795±.007• .824±.009• .811±.017• .843±.004
Australian .5 .731±.021• .790±.022• .815±.016• .816±.015 .811±.021 .779±.009• .818±.007• .779±.022 • .829±.007

.7 .677±.027• .746±.017• .769±.015• .781±.017• .802±.025• .721±.015• .775±.011• .732±.027• .812±.007

.3 .705±.019• .741±.019• .719±.013• .707±.007• .775±.008◦ .743±.013• .742±.013• .732±.018• .763±.009
Diabetes .5 .679±.022• .722±.011• .681±.019• .689±.013• .743±.012 .718±.017• .683±.017• .709±.016• .752±.011

.7 .631±.027• .708±.023• .643±.018• .677±.009• .711±.015• .689±.028• .639±.017• .652±.022• .724±.013

.3 .952±.012• .959±.013• .955±.009• .969±.011 .965±.027• .951±.007• .964±.009• .966±.017 .971±.009
Banknote .5 .924±.015• .945±.006 .931±.014• .940±.007• .938±.017• .927±.016• .933±.013• .937±.008• .953±.007

.7 .891±.017• .908±.005• .897±.013• .906±.005• .903±.031• .891±.015• .909±.017• .902±.013• .929±.016

.3 .813±.018• .849±.015 .832±.014• .824±.012• .847±.022 .827±.019• .837±.014• .822±.017• .856±.013
Kr-vs-kp .5 .796±.021• .826±.012 .811±.011• .803±.015• .819±.017 .813±.016• .811±.019• .803±.015• .824±.011

.7 .778±.020• .801±.009• .781±.018• .783±.014• .798±.016• .783±.024• .789±.021• .782±.022• .809±.016

.3 .879±.024• .902±.011• .889±.017• .873±.016• .906±.004• .876±.007• .821±.017• .891±.017 .912±.007
Spambase .5 .841±.029• .887±.016 .807±.029• .828±.012• .883±.009• .852±.009• .801±.021• .853±.019• .901±.005

.7 .802±.023• .872±.010• .784±.027• .809±.015• .841±.011• .817±.007• .772±.029• .831±.027• .873±.012

.3 .938±.014• .938±.009 .925±.009• .932±.007• .922±.008• .931±.014• .933±.011• .901±.011• .947±.009
Musk .5 .921±.017 .911±.014• .907±.013• .901±.011• .899±.014• .914±.013• .901±.008• .874±.023• .929±.005

.7 .877±.016• .881±.012• .878±.018• .872±.015 .878±.012• .871±.021• .883±.011• .841±.017• .891±.011

.3 .924±.013• .952±.005 .923±.011• .945±.009 .952±.015 .938±.014• .947±.017• .934±.013• .958±.005
Mushroom .5 .901±.011• .939±.012• .911±.012• .921±.007• .941±.009 .925±.011 .931±.017 .917±.014• .933±.003

.7 .889±.019• .923±.016• .883±.014• .902±.007• .917±.013• .912±.011• .909±.013• .891±.011• .922±.007

.3 .917±.019• .941±.009 .915±.011• .908±.021• .935±.028 .948±.015 .932±.007• .922±.009• .958±.013
House .5 .882±.015• .933±.014 .873±.017• .881±.018• .898±.026• .917±.009• .909±.011• .875±.021• .929±.012

.7 .841±.023• .883±.013• .822±.021• .839±.024• .906±.024• .885±.013• .897±.012 .831±.017• .908±.016

.3 8/0/0 4/4/0 7/1/0 6/2/0 3/4/1 7/1/0 8/0/0 6/2/0
w/t/l .5 7/1/0 4/4/0 8/0/0 7/1/0 4/4/0 7/1/0 7/1/0 8/0/0

.7 8/0/0 8/0/0 8/0/0 7/1/0 8/0/0 8/0/0 7/1/0 8/0/0

Table 4: Classification accuracy on eight data sets. In each class prior scenario, the best result on each data set is shown in bold. •/◦ indicates
that the performance of PUOTMD is significantly better/worse than the compared method (pairwise t-test at 0.05 significance level). The
win/tie/loss counts for PUOTMD are summarized in the last three rows.

verify that PUOTMD possesses better generalization perfor-
mance than the minimum margin based PU learning methods.
As for other baselines, PUOTMD only loses to CAPU in Di-
abetes when class prior is 0.3, and performs significantly
better in most cases.

From the above experimental results, we can see that, in
general, PU learning tasks where class prior is not given, our
entropy regularized OT method estimates class prior more
accurately, and achieves better classification performance.
When class prior is available, our PUOTMD gets better clas-
sification accuracy in most cases, and shows better general-
ization performance than minimum margin based methods.

6 Conclusions

In this paper, we propose a novel PU learning method named
PUOTMD, which consists of estimating class priors and
training classifiers. Specifically, we first leverage the entropy
regularized OT to adaptively discover the reliable positive
and negative instances in unlabeled data, then utilize the mix-
ture proportion estimation to produce an accurate class prior.
Next, we jointly optimize the margin distribution and the la-
bels of unlabeled data. Finally, we perform extensive experi-
ments to verify its superiority. In the future, we will conduct
theoretical analysis on our proposed method.
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