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Abstract
We investigate online Markov Decision Pro-
cesses (MDPs) with adversarially changing loss
functions and known transitions. We choose
dynamic regret as the performance measure, de-
fined as the performance difference between the
learner and any sequence of feasible changing
policies. The measure is strictly stronger than
the standard static regret that benchmarks the
learner’s performance with a fixed compared pol-
icy. We consider three foundational models of on-
line MDPs, including episodic loop-free Stochas-
tic Shortest Path (SSP), episodic SSP, and infinite-
horizon MDPs. For the three models, we propose
novel online ensemble algorithms and establish
their dynamic regret guarantees respectively, in
which the results for episodic (loop-free) SSP are
provably minimax optimal in terms of time hori-
zon and certain non-stationarity measure.

1. Introduction
Markov Decision Processes (MDPs) are widely used to
model decision-making problems, where a learner interacts
with the environments sequentially and aims to improve
the learned strategy over time. The MDPs model is very
general and encompasses a variety of applications, including
games (Silver et al., 2016), robotic control (Schulman et al.,
2015), autonomous driving (Kendall et al., 2019), etc.

In this paper, we focus on the online MDPs framework with
adversarially changing loss functions and known transitions,
which has attracted increasing attention in recent years due
to its generality (Even-Dar et al., 2009; Zimin & Neu, 2013;
Rosenberg & Mansour, 2019a; Jin et al., 2020a; Chen et al.,
2021a). Let T be the total time horizon. The general pro-
cedures of the online MDPs are as follows: at each round
t ∈ [T ], the learner observes the current state xt and decides
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a policy πt : X × A → [0, 1], where πt(a|x) is the prob-
ability of taking action a ∈ A at state x ∈ X . Then, the
learner draws and executes an action at from πt(·|xt) and
suffers a loss ℓt(xt, at). The environments subsequently
transit to the next state xt+1 according to the transition ker-
nel P (·|xt, at). We focus on the full-information setting
where the entire loss function is revealed to the learner. The
standard measure for online MDPs is the regret defined as
the performance difference between learner’s policy and
that of the best fixed policy in hindsight, namely,

REGT =

T∑
t=1

ℓt (xt, πt(xt))−min
π∈Π

T∑
t=1

ℓt (xt, π(xt)) , (1)

where Π is a certain policy class. There are many efforts
devoted to optimizing the measure, yielding fruitful re-
sults (Even-Dar et al., 2009; Neu et al., 2012; Zimin &
Neu, 2013; Neu et al., 2014; Rosenberg & Mansour, 2019a;
2021; Chen et al., 2021a). However, one caveat in the per-
formance measure in Eq. (1) is that the measure only bench-
marks the learner’s performance with a fixed strategy, so it
is usually called the static regret in the literature. The fact
makes the static regret metric not suitable to guide the algo-
rithm design for online decision making in non-stationary
environments, which is often the case in many real-world
decision-making applications such as online recommenda-
tions and autonomous driving. In particular, in online MDPs
model the loss functions encountered by the learner can be
adversarially changing, it is thus unrealistic to assume the
existence of a single fixed strategy that can perform well
over the horizon. To this end, in this paper we introduce the
dynamic regret as the metric to guide the algorithm design
for online MDPs, which competes the learner’s performance
against a sequence of changing policies, defined as

D-REGT (π
c
1:T ) =

T∑
t=1

ℓt(xt, πt(xt))−
T∑
t=1

ℓt(xt, π
c
t (xt)),

(2)
where πc1, . . . , π

c
T is any sequence of compared policies in

the policy class Π, which can be chosen with the complete
foreknowledge of the online loss functions. We use πc1:T as
a shorthand of the compared policies. An upper bound of
dynamic regret usually scales with a certain variation quan-
tity of the compared policies denoted by PT (πc1, . . . , π

c
T )

that can reflect the non-stationarity of environments.
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Table 1: Summary of our main results. For three models of online MDPs (episodic loop-free SSP, episodic SSP, and infinite-
horizon MDPs), we establish their dynamic regret guarantees. Our obtained dynamic regret bounds immediately recover
the best known static regret presented in the last column, when choosing a fixed compared policy and the non-stationarity
measure PT or P̄K then equals to zero. Note that all our results are achieved by parameter-free algorithms in the sense that
they do not require the knowledge of unknown quantities related to the environmental non-stationarity.

MDP Model Ours Result (dynamic regret) Previous Work (static regret)

Episodic loop-free SSP (Section 2) Õ(H
√
K(1 + PT )) [Theorem 1] Õ(H

√
K) (Zimin & Neu, 2013)

Episodic SSP (Section 3) Õ(
√
BK(H∗ + P̄K) + P̄K) [Theorem 3] Õ(

√
Hπ∗DK) (Chen et al., 2021a)

Infinite-horizon MDPs (Section 4) Õ(
√
τT (1 + τPT ) + τ2PT ) [Theorem 6] Õ(

√
τT ) (Zimin & Neu, 2013)

The dynamic regret measure in Eq. (2) is in fact very gen-
eral due to the flexibility of compared policies. For ex-
ample, it immediately recovers the standard regret notion
defined in Eq. (1) when choosing the single best com-
pared policy in hindsight, namely, choosing πc1:T = π∗ ∈
argminπ∈Π

∑T
t=1 ℓt(xt, π(xt)). Hence, any dynamic re-

gret upper bound directly implies a static regret upper
bound by substituting a fixed compared policy. Another
typical choice is setting the compared policies as the se-
quence of the best policy of each round, namely, choosing
πct = π∗

t ∈ argminπ∈Π ℓt(xt, π(xt)), and the resulting
dynamic regret measure is sometimes referred to as the
worst-case dynamic regret in the literature (Zhang et al.,
2018). It is noteworthy to emphasize that the dynamic regret
measure in Eq. (2) does not assume prior information of the
compared policies, which is certainly also unknown to the
online algorithms. As a result, the measure is also called
universal dynamic regret (or general dynamic regret) in the
sense that the regret bound holds for any feasible compared
policies. Both static regret and the worst-case dynamic re-
gret are two special cases of the universal dynamic regret
by configuring different choices of compared policies.

In this paper, focusing on the dynamic regret measure pre-
sented in Eq. (2), we investigate three foundational and
well-studied models of online MDPs: (i) episodic loop-
free Stochastic Shortest Path (SSP) (Zimin & Neu, 2013),
(ii) episodic SSP (Rosenberg & Mansour, 2021; Chen et al.,
2021a), and (iii) infinite-horizon MDPs (Even-Dar et al.,
2009). The first two SSP models belong to episodic MDPs,
in which the learner interacts with environments in episodes
and the goal is to reach a goal state with minimum total
loss. The distinction lies in that the learner is guaranteed
to reach the goal state within a fixed number of steps in
the loop-free SSP model; by contrast, the horizon length in
general SSP model depends on the learner’s policies, which
could potentially be infinite (if the goal is not reached).
In infinite-horizon MDPs, there is no goal state and the
horizon can be never end and the goal of the learner is to
minimize the average loss over time. For all those three

models, we propose novel online algorithms and provide
the corresponding expected dynamic regret guarantees. We
also establish several lower bound results and show that the
obtained upper bounds for episodic loop-free SSP and gen-
eral SSP are minimax optimal in terms of time horizon and
non-stationarity measure. Notably, all our algorithms are
parameter-free in the sense that they do not require know-
ing the non-stationarity quantity ahead of time. Table 1
summarizes our main results.

Technical contributions. Similar to prior studies of
non-stationary online learning (Hazan & Seshadhri, 2009;
Daniely et al., 2015; Zhang et al., 2018; Zhao et al., 2020b),
our proposed algorithms fall into the online ensemble frame-
work with a meta-base two-layer structure. While the frame-
work is standard in modern online learning, several im-
portant new ingredients are required to achieve minimax
dynamic regret guarantees for online MDPs. We highlight
the main technical challenges and contributions as follows.

• For all three models, algorithms are performed over
the “occupancy measure” space, so dynamic regret
inevitably scales with the variation of occupancy mea-
sures induced by compared policies, making it neces-
sary to establish relationships between the variation of
occupancy measures and that of compared policies.

• Achieving the minimax dynamic regret bound for
episodic (non-loop-free) SSP is one of the most chal-
lenging parts of this paper due to the complicated struc-
ture of this model and also the requirement of han-
dling dual uncertainties of unknown horizon length
and unknown non-stationarity. This motivates a novel
groupwise scheduling for base-learners and a new
weighted entropy regularizer for the meta-algorithm.
Additionally, appropriate correction terms in the feed-
back loss and carefully designed step sizes for both
base-algorithm and meta-algorithm are also important.

• For learning in infinite-horizon MDPs, we present a
reduction to the problem of minimizing dynamic regret
of the switching-cost expert problem, which is new to
the best of our knowledge.
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Notations. We present several general notations used
throughout the paper. We use ℓ ∈ Rd[a,b] to denote a vector
whose each element satisfies ℓi ∈ [a, b] for i ∈ [d]. For a
vector a ∈ Rd, a2 denotes the vector (a21, . . . , a

2
d)

⊤ ∈ Rd.
Besides, ei ∈ Rd denotes the i-th standard basis vector. For
a convex function ψ, its induced Bregman divergence is
defined as Dψ(u,w) = ψ(u) − ψ(w) − ⟨∇ψ(w), u − w⟩.
Given two policies π and π′, ∥π−π′∥1,∞ = maxx∥π(·|x)−
π′(·|x)∥1. Õ(·) omits the logarithmic factors on horizon T .

Organization. The rest of the paper is organized as fol-
lows. In Section 2 and Section 3, we establish the minimax
dynamic regret for episodic loop-free and general SSP re-
spectively. In Section 4, we provide dynamic regret bound
for infinite-horizon MDPs. Section 5 concludes the paper
and discusses the future work. We defer the related works
to Appendix A and proofs to remaining appendices.

2. Episodic Loop-free SSP
This section presents our results for episodic loop-free SSP,
a foundational and conceptually simple model of online
MDPs. We first introduce the problem setup, and then
establish the minimax dynamic regret bound.

2.1. Problem Setup

An episodic online MDP is specified by a tuple M =
(X, g,A, P, {ℓk}Kk=1), where X and A are the finite state
and action spaces, g /∈ X is the goal state, P : X × A ×
X ∪ {g} → [0, 1] is the transition kernel, K is the num-
ber of episodes and ℓk ∈ R|X||A|

[0,1] is the loss function in
episode k ∈ [K]. An episodic loop-free SSP is an instance
of episodic online MDP and further satisfies the following
conditions: state space X ∪ {g} can be decomposed into
H+1 non-intersecting layers denoted by X0, . . . , XH−1, g
such that X0 = {x0} and g are singletons, and transitions
are only possible between the consecutive layers. Notice
that the total horizon is T = KH .

The learning protocol of episodic loop-free SSP proceeds in
K episodes. In each episode k ∈ [K], environments decide
a loss ℓk : X ×A→ [0, 1], and simultaneously the learner
starts from state x0 and moves forward across consecutive
layers until reaching the goal state g. We focus on the full-
information setting, i.e., the loss is revealed to the learner
after the episode ends. Notably, no statistical assumption is
imposed on the loss sequence, which means the online loss
functions can be chosen in an adversarial manner.

Occupancy measure. Existing studies reveal the im-
portance of the concept “occupancy measure” in han-
dling online MDPs (Zimin & Neu, 2013; Rosenberg
& Mansour, 2019a), which deeply connects the prob-
lem of online MDPs with online convex optimization.

Given a policy π and transition kernel P , the occu-
pancy measure qπ ∈ R|X||A|

[0,1] is defined as the probabil-
ity of visiting state-action pair (x, a) by executing the
policy π, i.e., qπ(x, a) = Pr

[
xl(x) = x, al(x) = a|P, π

]
,

where l(x) is the index of the layer that x belongs
to. For an episode loop-free SSP instance M , its oc-
cupancy measure space is defined as ∆(M) = {q ∈
R|X||A|

[0,1] |
∑
x∈Xl

∑
a∈A q(x, a) = 1,∀l = {0} ∪

[H − 1] and
∑
x′∈Xl(x)−1

∑
a′∈A P (x|x′, a′)q(x′, a′) =∑

a∈A q(x, a),∀x ∈ X \ {x0}}, For any occupancy
measure q ∈ ∆(M), it induces a policy π such that
π(a|x) ∝ q(x, a), ∀x ∈ X, a ∈ A. Existing study
shows that there exists a unique induced policy for all
occupancy measures in ∆(M) and vice versa (Zimin &
Neu, 2013). Then, the expected loss of any policy π at
episode k can be written as E

[∑H−1
l=0 ℓk(xl, al | P, π)

]
=∑H−1

l=0

∑
x∈Xl

∑
a∈A q

π(x, a)ℓt(x, a) = ⟨qπ, ℓk⟩, where
the expectation is taken over the randomness of the policy
and transition kernel. Note the total horizon T of episodic
loop-free SSP can be divided into K episodes, each with
horizon length H , i.e., T = KH . Denote by πk,l the pol-
icy at layer l ∈ {0} ∪ [H − 1] in episode k ∈ [K], the
policy sequence π1, . . . , πT in Eq. (1) can be represented
by π1,0, . . . , π1,H−1, π2,0, . . . , πK,H−1. We use the nota-
tion πk as a shorthand of πk,0:H−1 for notational simplicity.
Then we can rewrite the expected static regret in Eq. (1) as
E [REGK ] =

∑K
k=1⟨qπk , ℓk⟩ −minq∈∆(M)

∑K
k=1⟨q, ℓk⟩.

Dynamic regret. Similar to the derivation for static regret,
we can also rewrite the expected dynamic regret in Eq. (2)
into a form with respect to the occupancy measure as

E [D-REGK(πc1:K)] =

K∑
k=1

⟨qπk , ℓk⟩ −
K∑
k=1

⟨qπ
c
k , ℓk⟩, (3)

where qπ
c
k is the occupancy measure of the compared policy

πck for all k ∈ [K]. The non-stationarity measure is naturally
defined as PT =

∑K
k=2

∑H−1
l=0 ∥πck,l − πck−1,l∥1,∞.

2.2. Dynamic Regret

Before presenting our algorithm for dynamic regret, we
first briefly review the O-REPS algorithm of Zimin & Neu
(2013) developed for minimizing the static regret. The key
idea of O-REPS is to perform online mirror descent over the
occupancy measure space ∆(M), specifically, at episode
k + 1, the learner updates the prediction by

qk+1 = argmin
q∈∆(M)

η⟨q, ℓk⟩+Dψ(q, qk),

where η > 0 is step size, ψ(q) =
∑
x,a q(x, a) log q(x, a)

is the standard negative entropy. Zimin & Neu (2013) prove
O-REPS enjoys an O(H

√
K log (|X||A|)) static regret.
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By slightly modifying the algorithm, in following lemma
we show O-REPS over a clipped occupancy measure
space can achieve dynamic regret guarantees. Specifi-
cally, define the clipped space as ∆(M,α) = {q | q ∈
∆(M), and q(x, a) ≥ α,∀x, a} with 0 < α < 1 being the
clipping parameter, we prove that performing O-REPS over
∆(M,α) ensures the following dynamic regret.
Lemma 1. Set q1 = argminq∈∆(M,α) ψ(q). For any
compared policies πc1, . . . , π

c
K ∈ {π | qπ ∈ ∆(M,α)},

O-REPS over a clipped space ∆(M,α) ensures

K∑
k=1

⟨qk−qπ
c
k , ℓk⟩ ≤ ηT+

1

η

(
H log

|X||A|
H

+ P̄T log
1

α

)
,

where P̄T = P̄T (π
c
1, . . . , π

c
K) =

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 is

the path-length of occupancy measures.

To achieve a favorable dynamic regret, we need to set the
step size η optimally to balance time horizon T and the
path-length of occupancy measures P̄T . However, we ac-
tually do not have prior knowledge of P̄T even after the
horizon ends since the compared policies can be arbitrar-
ily chosen in the feasible set. Thus, we cannot apply the
standard adaptive step size tuning techniques such as dou-
bling trick or self-confident tuning (Auer et al., 2002) to
remove the dependence on P̄T . To address the issue, we
employ a meta-base two-layer structure to handle the uncer-
tainty (Zhang et al., 2018; Zhao et al., 2020b). Specifically,
we first construct a step size pool H = {η1, · · · , ηN} (N is
the number of candidate step sizes and is of order O(log T )
whose configuration will be specified later) to discretize
value range of the optimal step size; and then initialize mul-
tiple base-learners simultaneously, denoted by B1, · · · ,BN ,
where Bi returns her prediction qk,i by performing O-REPS
with step size ηi ∈ H; finally a meta-algorithm is used to
combine predictions of all base-learners and yield the final
output {qk}Kk=1. Below, we specify the details.

At episode k ∈ [K], the learner receives the decision qk,i
from each base-learner Bi,∀i ∈ [N ] and the weight vector
pk ∈ ∆N from meta-algorithm. Then the learner outputs the
decisions by qk =

∑N
i=1 pk,iqk,i, plays the policy π(a|x) ∝

q(x, a),∀x, a, and observes the loss function ℓk. After that,
the base-learner Bi updates by performing O-REPS over the
clipped space ∆(M,α) with step size ηi ∈ H, namely,

qk+1,i = argmin
q∈∆(M,α)

ηi⟨q, ℓk⟩+Dψ(q, qk,i),

where ηi ∈ H is the step size of the base-learner Bi.
The meta-algorithm aims to track the unknown best base-
learner. We employ Hedge algorithm (Freund & Schapire,
1997) that updates the weight pk+1 ∈ ∆N by pk+1,i ∝
exp(−ε

∑k
s=1 hs,i) where ε > 0 is the learning rate,

hk ∈ RN evaluates the performance of the base-learners
and is set as hk,i = ⟨qk,i, ℓk⟩ for i ∈ [N ].

Algorithm 1 DO-REPS
Input: step size pool H, learning rate ε, clipping param α.
1: Define ψ(q) =

∑
x,a q(x, a) log q(x, a).

2: Initialization: set q1,i = argminq∈∆(M,α) ψ(q) and
p1,i = 1/N,∀i ∈ [N ].

3: for k = 1 to K do
4: Receive qk,i from base-learner Bi for i ∈ [N ].
5: Compute occupancy measure qk =

∑N
i=1 pk,iqk,i.

6: Play the induced policy πk(a|x) ∝ q(x, a),∀x, a.
7: Update the weight by pk+1,i ∝ exp(−ε

∑k
s=1 hs,i)

where hk,i = ⟨qk,i, ℓk⟩,∀i ∈ [N ].
8: Each base-learner Bi updates prediction by

qk+1,i = argminq∈∆(M,α) ηi⟨q, ℓk⟩+Dψ(q, qk,i).
9: end for

Algorithm 1 summarizes our proposed Dynamic O-REPS
(DO-REPS) algorithm and the guarantee is as follows.
Theorem 1. Set the clipping parameter α = 1/T 2, the step
size pool H = {ηi = 2i−1

√
K−1 log(|X||A|/H) | i ∈

[N ]}, where N = ⌈ 1
2 log(1 +

4K log T
log(|X||A|/H) )⌉+ 1, and the

learning rate of meta-algorithm as ε =
√
(logN)/(HT ).

DO-REPS (Algorithm 1) satisfies

E[D-REGK(πc1:K)] ≤ O
(√

T (H log |X||A|+ P̄T log T )
)

≤ O
(
H
√
K(log |X||A|+ PT log T )

)
,

where P̄T =
∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 is the path-length

of occupancy measures and PT =
∑K
k=2

∑H−1
l=0 ∥πck,l −

πck−1,l∥1,∞ is the path-length of the compared policies.
Remark 1. Setting compared policies πc1:K = π∗ (then
PT = 0), Theorem 1 recovers the O(H

√
K log |X||A|)

minimax optimal static regret of Zimin & Neu (2013).

The proof can be found in Appendix C.3. Note that The-
orem 1 presents two dynamic regret bounds in terms of
either the path-length of occupancy measures P̄T or the
path-length of compared policies PT (see definition at the
end of Section 2.1). To achieve the latter one, we establish
the relationship of path-length variations between compared
policies and their induced occupancy measures. Indeed, we
prove that P̄T ≤ HPT in Lemma 6 of Appendix C.1.

We finally establish the lower bound in Theorem 2, which in-
dicates the minimax optimality of our attained upper bound
in terms of T and P̄T (up to logarithmic factors).
Theorem 2. For any online algorithm and any γ ∈ [0, 2T ],
there exists an episode loop-free SSP instance withH layers,
|X| states and |A| actions and a sequence of compared
policies πc1, . . . , π

c
K such that

P̄T ≤ γ and E[D-REGK ] ≥ Ω(
√
T (H + γ) log |X||A|)

under the full-information and known transition setting.
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3. Episodic SSP
In this section, we consider the episodic SSP, which does
not necessarily satisfy the loop-free structure and is thus
more general and difficult than the loop-free SSP studied
in Section 2. For this model, we first introduce the formal
problem setup and then establish minimax dynamic regret.

3.1. Problem Setup

An episodic SSP instance is defined by a tuple M =
(X, g,A, P, {ℓk}Kk=1), as the same as introduced in Sec-
tion 2.1, x0 ∈ X is the initial state and g /∈ X is the
goal state. The learning protocol proceeds in K episodes.
In each episode k ∈ [K], environments decide a loss
ℓk : X ×A→ [0, 1], and simultaneously the learner starts
from state x0 and moves to the next state until reaching the
goal state g. Thus, the horizon in each episode depends
on the learner’s policy and is unfixed and can be even infi-
nite, leading to inherent difficulties compared with episodic
loop-free SSP. The goal of the learner is to reach the goal
with the smallest cumulative loss. Again, we focus on the
full-information setting, namely, the entire loss is revealed
to the learner after the episode ends. Below we introduce
several key concepts and we refer the reader to the recent
work (Chen et al., 2021a) for more details.

Proper policy. A policy is called proper if playing it en-
sures that the goal state is reached within a finite number of
steps with probability 1 starting from any state, otherwise it
is called improper. The set of all proper policies is denoted
by Πproper. Following earlier studies (Rosenberg & Mansour,
2021; Chen et al., 2021a), we assume Πproper ̸= ∅.

Hitting time. Denote by Hπ(x) the expected hitting time
of g when executing policy π and starting from state x. If
π is proper, Hπ(x) is finite for any x ∈ X . Let Hπ ≜
Hπ(x0) be the hitting time of policy π from the initial
state x0 to simplify notation. Another useful concept in
SSP is the fast policy πf , defined as the (deterministic)
policy that achieves the minimum expected hitting time
starting from any state. The diameter of the SSP is defined
as D = maxx∈X minπ∈Πproper H

π(x) = maxx∈X H
πf

(x).
Note both πf and D can be computed ahead of time as the
transition kernel is known (Bertsekas & Tsitsiklis, 1991).

Cost-to-go function. Given a loss function ℓ and a policy
π, the induced cost-to-go function Jπ : X → [0,∞) is de-
fined as Jπ(x) = E[

∑I
i=1 ℓ(xi, ai)

∣∣P, π], where I denotes
the number of steps before reaching g of policy π and the
expectation is over the randomness of the stochastic policy
and transition kernel. Denote by Jπk the cost-to-go function
for policy π with respect to loss ℓk from the initial state x0.

Occupancy measure. For the episodic SSP, the occupancy
measure qπ ∈ R|X||A| is defined as the expected num-

ber of visits to (x, a) from x0 to g when executing π, i.e.,
qπ(s, a) = E[

∑I
t=1 1{xt = x, at = a} | P, π, x1 = x0].

Similar to the case in loop-free SSP, the inducted policy
of a given occupancy measure q : X × A → [0,∞)
can be calculated by π(a|x) ∝ q(x, a),∀x, a. It holds
that Hπ =

∑
x,a q

π(x, a). Based on the occupancy mea-
sure, we can rewrite the cost-to-go function Jπk as Jπk =

E[
∑Ik
i=1 ℓk(xi, ai) | P, πk] =

∑
x,a q

π(x, a)ℓk(x, a) =
⟨qπ, ℓk⟩, where Ik denotes the number of steps before
reaching g of policy π in episode k. Then the expected
static regret in Eq. (1) for episodic SSP can be written as
E [REGK ] = E

[∑K
k=1(J

πk

k − Jπ
∗

k )
]
= E

[∑K
k=1⟨qπk −

qπ
∗
, ℓk⟩

]
, where π∗ = argminπ∈Πproper

∑K
k=1 J

π
k . Two im-

portant quantities related to π∗ are commonly used in the
analysis: (i) its hitting time Hπ∗

from initial state x0; and
(ii) the cumulative loss

∑K
k=1 J

π∗

k during K episodes. The
cumulative loss of the best policy is smaller than the fast
policy, i.e.,

∑K
k=1 J

π∗

k ≤
∑K
k=1 J

πf

k ≤ DK, where the
last inequality holds due to the definition of the fast policy
and the boundedness of the loss range in [0, 1].

Dynamic regret. Similar to the derivation for static regret,
we can also rewrite the expected dynamic regret in Eq. (2)
into a form with respect to the occupancy measure as

E[D-REGK ] ≜ E
[ K∑

k=1

(J
πk
k −J

πc
k

k )

]
= E

[ K∑
k=1

⟨qπk−qπ
c
k , ℓk⟩

]
.

Similarly, we generalize the two crucial quantities to ac-
commodate changing comparators: the largest hitting time
starting from the initial state H∗ = maxk∈[K]H

πc
k and the

cumulative loss of compared policies BK =
∑K
k=1 J

πc
k

k =∑K
k=1⟨qπ

c
k , ℓk⟩. It is clear that BK ≤ H∗K. Notably, both

quantities H∗ and BK are unknown to the learner due to
involving the unknown compared policies. For the episodic
(non-loop-free) SSP, the non-stationarity measure is natu-
rally defined as PK =

∑K
k=2∥πck − πck−1∥1,∞.

3.2. Dynamic Regret

Before introducing our approach, we first review existing
works studying static regret and then show that several cru-
cial ingredients are required to achieve dynamic regret.

To resolve episodic (non-loop-free) SSP, Rosenberg &
Mansour (2021) propose to deploy Online Mirror De-
scent (OMD) over the parametrized occupancy measure
space. For an MDP instance M and a given horizon length
H , the parameterized space is defined as ∆(M,H) =

{q ∈ R|X||A|
≥0 |

∑
x,a q(x, a) ≤ H and

∑
a q(x, a) =∑

x′,a′ P (x|x′, a′)q(x′, a′),∀x ∈ X}. The authors prove

that OMD enjoys an Õ(H
√
K) static regret as long as

qπ
∗ ∈ ∆(M,H). Therefore, if the largest hitting time Hπ∗

were known ahead of time, a simple choice of H = Hπ∗

would attain the favorable static regret. However, such in-
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formation is in fact unavailable in advance, which motivates
a two-layer approach deal with this uncertainty.

Specifically, Chen et al. (2021a) maintain multiple base-
learners B1, . . . ,BN , where Bi works with an occupancy
measure space ∆(M,Hi) and a step size ηi and returns
her individual occupancy measure qik; and then a certain
meta-algorithm is employed to combine predictions of base-
learners to produce final decisions qk. Let Bi∗ be the
base-learner whose space size Hi∗ well approximates the
unknown Hπ∗

. Denote by LK =
∑K
k=1⟨qk, ℓk⟩, Li

∗

K =∑K
k=1⟨qi

∗

k , ℓk⟩, Lc
K =

∑K
k=1⟨qπ

c
k , ℓk⟩ 1 the cumulative loss

of final decisions, base-learner Bi∗ and the compared policy,
respectively. The overall regret can be decomposed as

E[REGK ] = E[(LK − Li
∗

K)] + E[(Li
∗

K − Lc
K)], (4)

where the two terms are called meta-regret (that captures
the regret overhead due to the two-layer ensemble) and
base-regret (that measures the regret of the unknown best
base-learner). To achieve a favorable regret, they pro-
pose two mechanisms to control base-regret and meta-
regret respectively. First, they pick the base-algorithm with
an Õ(Hi∗/ηi∗ + ηi∗L

c
K) small-loss static regret, which

ensures an Õ(
√
Hπ∗DK) base-regret by setting ηi =

O(
√
Hi/DK) as the cumulative loss of the best policy

in hindsight satisfies Lc
K ≤ DK. Second, they design

a small-loss type multi-scale online algorithm (roughly,
OMD with weighted entropy ψ̄(p) =

∑N
i=1

1
εi
pi log pi)

as the meta-algorithm to make meta-regret adaptive to
the individual loss range of experts, so that meta-regret
is at most Õ(1/εi∗ + εi∗Hi∗L

i∗

K). Combining the base-
regret we further have Li

∗

K ≤ Lc
K + Õ(

√
Hπ∗DK) ≤

DK + Õ(
√
Hπ∗DK) = Õ(DK) as Hπ∗ ≤ DK. So

an Õ(
√
Hπ∗DK) meta-regret is achievable by setting εi =

Õ(1/
√
HiDK), which in conjunction with the base-regret

yields an Õ(
√
Hπ∗DK) static regret.

However, it becomes more involved for dynamic regret.
First of all, in addition to the uncertainty of unknown hori-
zon length H∗, the base level also needs to deal with the
unknown environmental non-stationarity PK . Conceptu-
ally, this can be handled by maintaining more base-learners,
which will be specified later. Second and more importantly,
it is challenging to design a compatible meta-algorithm. To
see this, suppose we already have an Õ(

√
BK(PK +H∗))

small-loss dynamic regret for the base-algorithm, where
BK is the cumulative loss of compared policies as de-
fined at the end of Section 3.1, we then continue the above
recipe and see the issue in meta-regret. Indeed, the meta-
regret is at most Õ(1/εi∗ + εi∗Hi∗L

i∗

K), and by the base-
regret bound we have Li

∗

K ≤ Lc
K + base-regret ≤

1Here we define Lc
K in a general way to accommodate chang-

ing comparators, which will be later used in the dynamic regret
analysis. For static regret, it becomes Lc

K =
∑K

k=1⟨q
π∗

, ℓk⟩.

BK + Õ(
√
BK(PK +H∗)). The natural upper bound of

BK depends on H∗ (recall that BK ≤ H∗K) due to the
arbitrary choice of compared policies. An important tech-
nical caveat is that here we cannot simply assume the cost-
to-go functions of the compared policies {Jπ

c
k

k }1,...,K are
bounded by that of fast policy Jπ

f

k , in contrast to the static
regret analysis where we have

∑K
k=1 J

π∗

k ≤
∑K
k=1 J

πf

k

due to the optimality of the compared offline policy. Hence,
even with a multi-scale meta-algorithm, meta-regret will be
Õ(H∗

√
K) and become the dominating term, making final

dynamic regret linear in H∗ and thus suboptimal.

To address above issues in both base and meta levels, build-
ing upon the structure of Chen et al. (2021a), we propose a
novel two-layer approach to deal with the dual uncertainty of
unknown horizon length and unknown non-stationarity. To
achieve this, we introduce three crucial ingredients: group-
wise scheduling for base-learners, injecting corrections in
feedback loss of both base- and meta-algorithm, and a new
multi-scale meta-algorithm. Below, we first describe the
base-algorithm, then introduce the scheduling method that
instantiates a bunch of base-learners with different parame-
ter configurations, and finally design the meta-algorithm to
adaptively combine all the base-learners.

Base-algorithm. The base-algorithm performs OMD over a
clipped occupancy measure space. At each episode k ∈ [K],
the base-algorithm receives the loss ℓk and performs

qk+1 = argmin
q∈∆(M,H,α)

η⟨q, ℓk + ak⟩+Dψ(q, qk), (5)

where η > 0 is the step size, ∆(M,H,α) = {q ∈
∆(M,H) | q(x, a) ≥ α,∀x, a} is the clipped space with
α ∈ (0, 1), ψ is the standard negative-entropy regularizer.
Notably, we inject a correction term ak ∈ R|X||A| to the
loss, set as ak = 32ηℓ2k,∀k ∈ [K]. The purpose is to ensure
a small-loss dynamic regret and simultaneously introduce
an negative term that will be crucial to address the difficulty
occurred in controlling meta-regret (as mentioned earlier).
The base-algorithm enjoys the following guarantee.

Lemma 2. Set q1 = argminq∈∆(M,H,α) ψ(q) and η ≤ 1
64 ,

for any compared policies πc1:K ∈ {π | qπ ∈ ∆(M,H,α)},
Eq. (5) ensures

∑K
k=1⟨qk − qπ

c
k , ℓk⟩ is upper bounded by

1

η

(
P̄K log

H

α
+H

(
1+log(|X||A|H)

))
+32ηBK−16ηSK ,

where SK =
∑K
k=1⟨qk, ℓ2k⟩ and P̄K =

∑K
k=2∥qπ

c
k −

qπ
c
k−1∥1 is the path-length of occupancy measures.

Scheduling. Lemma 2 indicates that given a horizon length
H , it is crucial to set step size properly to achieve tight dy-
namic regret. Since H affects the base-learner’s feasible do-
main (i.e., the parametrized occupancy measure space), we
propose a groupwise scheduling scheme to simultaneously
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adapt to unknown non-stationarity P̄K and horizon length
H∗. Specifically, due to Hπf ≤ H∗ ≤ K, we first construct
a horizon length pool H = {Hi = 2i−1 ·Hπf | i ∈ [G]}
where G = 1 + ⌈log((K + 1)/Hπf

)⌉ to exponentially dis-
cretize the possible range; and for each Hi in the pool, we
further design a step size grid Ei = {ηi,j = 1/(32 · 2j) |
j ∈ [Ni]} where Ni = ⌈ 1

2 log (
4K

1+log (|X||A|Hi)
)⌉ to search

the optimal optimal step size associated with Hi. Overall,
we maintain N =

∑G
i=1Ni base-learners, each of which

associates with a specific space size and step size. More
precisely, let Bi,1:Ni

be a shorthand of the i-th group of
base-learners Bi,1, . . . ,Bi,Ni

, in which they use the same
space size Hi yet different step sizes (see the configuration
of Ei). Thus, the set of all base-learners can be denoted as
{B1,1:N1 , . . . ,Bi,1:Ni , . . . ,BG,1:NG

}. The decision of base-
learner Bi,j in episode k is denoted by qi,jk .

Meta-algorithm. The meta-algorithm requires a careful
design to achieve a favorable regret. We propose a new meta-
algorithm under the standard OMD framework, where addi-
tional designs are required including a novel weighted en-
tropy regularizer and an appropriate correction term. Specif-
ically, the meta-algorithm updates pk+1 ∈ ∆N by

pk+1 = argmin
p∈∆N

⟨p, hk + bk⟩+Dψ̄(p, pk), (6)

where hk ∈ RN is the loss of meta-algorithm, defined as
hi,jk = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni]. Moreover, there are
two important features in the design: (i) an injected correc-
tion term bk ∈ RN ; and (ii) a weighted entropy regularizer
ψ̄(p) =

∑N
i=1

1
εi
pi log pi to realize the multi-scale online

learning, where εi > 0 is a multi-scale learning rate for
i ∈ [N ]. Below we specify the details and motivation be-
hind such designs.

First, in meta level we inject a correction term bk ∈ RN as

bi,jk = 32εi,j(h
i,j
k )2, ∀i ∈ [G], j ∈ [Ni]. (7)

Let Bi∗,j∗ be the base-learner whose space size Hi∗ well
approximates the unknown H∗ and step size ηi∗,j∗ well
approximates the unknown optimal step size. Although in-
jecting a correction term for the meta-algorithm was also
used in (Chen et al., 2021a) to ensure a small-loss type
meta-regret of the form Õ(1/εi∗,j∗ + εi∗,j∗Hi∗L

i∗,j∗

K ), as
aforementioned, this will not lead to an optimal meta-regret
in our case due to the undesired upper bound of Li

∗,j∗

K .
Asides from that, our key novelty is to simultaneously ex-
ploit the correction term in the base level, which contributes
an additional negative term in the base-regret Õ((P̄K +

Hi∗)/ηi∗,j∗ + ηi∗,j∗BK − ηi∗,j∗
∑K
k=1⟨q

i∗,j∗

k , ℓ2k⟩). By a
careful design of step size ηi,j and learning rate εi,j , we can
successfully cancel the positive term εi∗,j∗Hi∗L

i∗,j∗

K in the
meta-regret by the negative term in the base-regret.

Algorithm 2 CODO-REPS
Input: horizon length pool H, step size grid Ei,∀i ∈ [G]

and clipping parameter α.
1: Define the weighted entropy ψ̄(p) as in Eq. (8).
2: Initialize qi,j1 = argminq∈∆(M,H,α) ψ(q) and pi,j1 ∝
ε2i,j ,∀i ∈ [G], j ∈ [Ni].

3: for k = 1, . . . ,K do
4: Receive qi,jk from base-learner Bi,j by Eq. (5).
5: Sample (ik, jk) ∼ pk, play the induced policy

πk(a|x) ∝ qik,jkk (x, a),∀x, a.
6: Define hi,jk = ⟨qi,jk , ℓk⟩, bi,jk = 32εi,j(h

i,j
k )2,∀i, j.

7: Update weight pk+1 ∈ ∆N by Eq. (6).
8: end for

Second, it is known that OMD with a weighted entropy
regularizer leads to a multi-scale expert-tracking algo-
rithm (Bubeck et al., 2019). In our case, we set the weighted
entropy regularizer ψ̄ : ∆N → R as

ψ̄(p) =

G∑
i=1

Ni∑
j=1

1

εi,j
pi,j log pi,j , with εi,j =

ηi,j
2Hi

. (8)

In above, ηi,j is the step size employed by the base-learner
Bi,j as specified earlier. Note that the weighted entropy
regularizer depends on both space size and step size such
that the final meta-algorithm can successfully handle the
groupwise scheduling over the base-learners.

Combining all above ingredients yields our COrrected
DO-REPS (CODO-REPS) algorithm, as summarized in Al-
gorithm 2. We have the following dynamic regret guarantee.

Theorem 3. Set the clipping parameter α = 1/K3, the
horizon length pool H = {Hi = 2i−1 · Hπf | i ∈ [G]}
where G = 1 + ⌈log((K + 1)/Hπf

)⌉ and the step size
grid Ei = {ηi,j = 1/(32 · 2j) | j ∈ [Ni]} where Ni =
⌈ 1
2 log (

4K
1+log (|X||A|Hi)

)⌉. CODO-REPS ensures

E[D-REGK ] ≤ Õ
(√

(H∗ + P̄K)(H∗ + P̄K +BK)
)
.

Remark 2. Setting compared policies πc1:K = π∗ (then
PT = 0 and BK =

∑K
k=1 J

π∗

k ), Theorem 3 implies an
Õ(

√
H∗BK) static regret, which gives a small-loss type

bound for the episodic SSP and is new to the literature
to the best of our knowledge. The bound is no worse the
minimax rate Õ(

√
H∗DK) of Chen et al. (2021a) asBK =∑K

k=1 J
π∗

k ≤ DK in the static case, and can be much better
than theirs when best policy behaves well.

We remark that the upper bound in Theorem 3 depends on
the path-length of occupancy measures P̄K rather than that
of compared policies PK . A natural question is how to
upper bound P̄K by PK (up to multiplicative dependence
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on H∗). However, we show this is generally impossible for
episode (non-loop-free) SSP in Theorem 7 of Appendix D.1.

Finally we show that the result in Theorem 3 is actually
minimax in terms of BK and P̄K up to logarithmic factors.
Theorem 4. For any online algorithm and any γ ∈ [0, 2T ],
there exists an episodic SSP instance with diameter D and a
sequence of compared policies πc1, . . . , π

c
K with the largest

hitting time H∗ such that

P̄K ≤ γ and E[D-REGK ] ≥ Ω(
√
DH∗K(1 + γ/H∗))

under the full-information and known transition setting.

4. Infinite-horizon MDPs
This section studies infinite-horizon MDPs. We begin with
the problem setup, then present a reduction to the switching-
cost expert problem and establish the dynamic regret bound.

4.1. Problem Setup

An infinite-horizon MDP instance is specified by a tuple
M = (X,A,P, {ℓt}∞t=1), where X,A,P are the same as
introduced in Section 2, ℓt ∈ R|X||A|

[0,1] is the loss function
at time t ∈ [T ]. Unlike episodic MDPs studied in previous
two sections, infinite-horizon MDPs have no goal state. The
learner aims to minimize the cumulative loss over a T -step
horizon in the MDP. We investigate the uniform mixing
MDPs (Even-Dar et al., 2009; Neu et al., 2010b).
Definition 1 (Uniform Mixing). There exists a constant τ ≥
0 such that for any policy π and any pair of distributions µ
and µ′ over X , we have ∥(µ−µ′)Pπ∥1 ≤ e−1/τ∥µ−µ′∥1.
The smallest τ is called the mixing time.

The uniform mixing assumption is standard and widely
adopted in online MDPs studies (Even-Dar et al., 2009; Neu
et al., 2010b; 2014). Nevertheless, the assumption could be
strong in some sense, and recent study trying to relax the
assumption by considering a larger class of communicating
MDPs (Chandrasekaran & Tewari, 2021). It would be in-
teresting to see whether our results can be extended to the
communicating MDPs, and we leave this as the future work.

Occupancy measure. For an infinite-horizon MDP, the
occupancy measure qπ ∈ R|X||A|

[0,1] is defined as the station-
ary distribution when executing policy π, i.e., qπ(x, a) =
limT→∞

1
T

∑T
t=1 1{xt = x, at = a}. For an infinite-

horizon MDP instance M , its occupancy measure space
is defined as ∆(M) = {q ∈ R|X||A|

[0,1] |
∑
x,a q(x, a) =

1 and
∑
a q(x, a) =

∑
x′,a′ P (x | x′, a′)q(x′, a′),∀x ∈

X}. For any occupancy measure q ∈ ∆(M), its induced
policy π can be obtained by π(a|x) ∝ q(x, a),∀x, a.

Dynamic regret. As defined in Eq. (2), the dynamic regret
benchmarks the learner’s performance against a sequence

of compared policies πc1:T , namely,

E[D-REGT ] = E
[ T∑
t=1

ℓt
(
xt, πt(xt)

)
−

T∑
t=1

ℓt
(
xt, π

c
t (xt)

)]
.

The non-stationarity measure for infinite-horizon MDPs is
naturally defined as PT =

∑T
t=2∥πct − πct−1∥1,∞.

4.2. Reduction to Switching-cost Expert Problem

In this part, we present a reduction to the switching-cost
expert problem for infinite-horizon MDPs. In fact, we have
the following theorem.

Theorem 5. For infinite-horizon MDPs, the expected dy-
namic regret against any compared policies πc1:T satisfies

E[D-REGT (π
c
1:T )] (9)

≤
T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+ τ ′

T∑
t=2

∥qt − qt−1∥1 + τ ′2PT + 4τ ′.

where τ ′ = τ + 1 is introduced to simplify the notation.

Therefore, it suffices to design an algorithm to minimize
the first two terms on the right-hand side of (9), as the last
two terms τ ′2PT + 4τ ′ are not related to the algorithm.
This essentially provides a generic regret reduction from
infinite-horizon MDPs to the switching-cost expert prob-
lem (Merhav et al., 2002). Specifically, for the expert prob-
lem, at each round t ∈ [T ], the learner chooses a decision
qt ∈ ∆N as a weight over all N experts, receives the loss
ℓt ∈ RN and suffers loss ⟨qt, ℓt⟩. In addition to the cumu-
lative loss

∑T
t=1⟨qt, ℓt⟩, the switching-cost expert problem

further takes the actions’ switch into account by adding
λ
∑T
t=2∥qt − qt−1∥1 as penalty, λ > 0 is the coefficient.

Our reduction also holds for the static regret (simply choos-
ing all compared policies as a fixed one), perhaps surpris-
ingly, there is no explicit reduction in the literature to the
best of our knowledge, though proof of Theorem 5 is sim-
ple and all the ingredients are already in the pioneering
work (Even-Dar et al., 2009). As another note, Agarwal
et al. (2019) study online non-stochastic control and give
a reduction to the switching-cost online learning problem
(or called online convex optimization with memory), while
their reduction does not apply to infinite-horizon MDPs.

4.3. Dynamic Regret

With the reduction on hand, we now consider the design
of a two-layer approach to optimize the dynamic regret of
the switching-cost expert problem. It turns out that a recent
result (Zhao et al., 2022) has resolved that expert problem,
building upon which we propose REgularized DO-REPS
(REDO-REPS) algorithm for infinite-horizon MDPs.
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As discussed before, it suffices to design an algorithm to
minimize the first two terms in (9), namely, the dynamic re-
gret in terms of the occupancy measure and a switching cost
term. Notice that the first term also appears in optimizing
dynamic regret of the episodic loop-free SSP (see Eq. (3)).
Thus, a natural idea is to run (Algorithm 1) over the occu-
pancy measure space ∆(M,α) = {q ∈ ∆(M) | q(x, a) ≥
α,∀x, a}. Specifically, we maintain N base-learners de-
noted by B1, . . . ,BN , where Bi generates the prediction qt,i
by performing O-REPS with a particular step size ηi in the
step size pool H; then the meta-algorithm combines all the
predictions to produce the final decision qt =

∑N
i=1 pt,iqt,i

and updates the weight pt. However, DO-REPS does not
take the switching cost into account, leading to undesired
behavior in this problem. To see this, it can be verified that
the one-step switching cost can be decomposed as

∥qt − qt−1∥1 ≤
∑N

i=1
pt,i∥qt,i − qt−1,i∥1 + ∥pt − pt−1∥1.

Summing over T , the second term in the right-hand side
is the meta-algorithm’s switching cost, which can be eas-
ily bounded by O(

√
T ) for common expert-tracking algo-

rithms. However, the first term is the weighted switching
cost of all base-learners, which could be very large and
even grow linearly with iterations due to the base-learners
with large step sizes. For example, when employing OMD
as the base-algorithm, the switching cost of Bi is of order
O(ηiT ). Then, the construction of step size pool requires
that ηN = O(1), leading to an O(T ) switching cost of the
base-learner BN , which ruins the overall regret bound. To
address this, inspired by the recent progress on OCO with
memory (Zhao et al., 2022), we add a switching-cost regu-
larization in evaluating each base-learner, i.e., the feedback
loss of the meta-algorithm ht ∈ RN is constructed as

ht,i = ⟨qt,i, ℓt⟩+ λ∥qt,i − qt−1,i∥1. (10)

Set λ = τ ′, it can be verified the first two terms
∑T
t=1⟨qt −

qπ
c
t , ℓt⟩+ τ ′

∑T
t=2∥qt − qt−1∥1 in (9) can be written as

∑T

t=1
(⟨pt, ht⟩ − ht,i) + τ ′

T∑
t=2

∥pt − pt−1∥1

+
∑T

t=1
⟨qt,i − qπ

c
t , ℓt⟩+ τ ′

∑T

t=2
∥qt,i − qt−1,i∥1.

We have decomposed the switching-cost dynamic regret
into two parts — the first part is the meta-regret over the
regularized loss ht that measures the regret overhead of the
meta-algorithm penalized by the switching cost, and the sec-
ond part is the base-regret of a specific base-learner Bi tak-
ing her switching cost into account. By slightly modifying
DO-REPS (Algorithm 1), we get REgularized DO-REPS
(REDO-REPS) algorithm as shown in Algorithm 3. The
key difference is the designed switching-cost-regularized
loss for meta-algorithm’s updates in Lines 7–8, such that the
overall two-layer approach enjoys nice following guarantee.

Algorithm 3 REDO-REPS
Input: step size pool H, learning rate ε, clipping param α.
1: Define: ψ(q) =

∑
x,a q(x, a) log q(x, a).

2: Initialization: set q1,i = argminq∈∆(M,α) ψ(q) and
p1,i = 1/N for ∀i ∈ [N ].

3: for t = 1 to T do
4: Receive qt,i from base-learner Bi,∀i ∈ [N ].
5: Compute qt =

∑N
i=1 pt,iqt,i, play the induced policy

πt(a|xt) ∝ qt(xt, a),∀a ∈ A.
6: Suffer loss ℓt(xt, at) and observe loss function ℓt.
7: Construct switching-cost-regularized loss by Eq. (10)
8: Update weight by pt+1,i ∝ exp(−ε

∑t
s=1 hs,i).

9: Each base-learner Bi updates prediction by
qt+1,i = argminq∈∆(M,α) ηi⟨q, ℓt⟩+Dψ(q, qt,i).

10: end for

Theorem 6. Set the clipping parameter α = 1/T 2, the
step size pool H = {2i−1

√
T−1 log |X||A| | i ∈ [N ]}

where N = ⌈ 1
2 log(1 + 4T log T

log |X||A| )⌉ + 1 and the learning

rate ε = (2τ + 3)−1
√

(logN)/2T . REDO-REPS ensures

E[D-REGT ] ≤ O
(√

τT (log |X||A|+ τPT log T ) + τ2PT
)
.

Remark 3. Set πc1:T = π∗ ∈ argminπ
∑T
t=1 ℓt(xt, π(xt))

(then PT = 0), we recover the best known static regret
O(
√
τT log |X||A|) (Zimin & Neu, 2013). Our dynamic re-

gret scales with the path-length of compared policies rather
than that of occupancy measures. We achieve so by estab-
lishing their relationships in Lemma 11 of Appendix E.1.

5. Conclusion
In this paper we investigate learning in three foundational
online MDPs with adversarially changing loss functions and
known transition kernel. We propose novel online ensemble
algorithms and establish their dynamic regret guarantees for
the first time. In particular, the results for episodic (loop-
free) SSP are provably minimax optimal in terms of time
horizon and certain non-stationarity measure.

Our results present an initial resolution for dynamic regret
of online MDPs. There are plenty of future works to investi-
gate. For example, this paper focuses on the full-information
feedback and known transition, and how to extend the re-
sults to the bandit feedback and unknown transition setting
is important and challenging. Moreover, it is interesting to
further consider function approximation in those models.
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A. Related Work
We presents discussions on several topics related to this work. The first part is about the development of static regret for
online adversarial MDPs, and the second part reviews related advance of dynamic regret in non-stationary online learning.

A.1. Online Adversarial MDPs

Learning adversarial MDPs has attracted much attention in recent years. We briefly discuss related works on three models of
online MDPs studied in this paper, including episodic loop-free SSP, episodic SSP, and infinite-horizon MDPs.

Episodic loop-free SSP. Neu et al. (2010a) first study learning in the episodic SSP with a loop-free structure and known
transition, where an Õ(H2

√
K) regret is achieved in the full information setting and K is the number of the episodes and

H is the horizon length in each episode. Later Zimin & Neu (2013) propose the O-REPS algorithm which applies mirror
descent over occupancy measure space and achieves the optimal regret of order Õ(H

√
K). Neu et al. (2010a); Zimin & Neu

(2013) also consider the bandit feedback setting. Neu et al. (2012); Rosenberg & Mansour (2019a) investigate the unknown
transition kernel and full-information setting. Rosenberg & Mansour (2019b) and Jin et al. (2020a) further consider the
harder unknown transition kernel and bandit-feedback setting. The linear function approximation setting is also studied (Cai
et al., 2020). Notably, our results for episodic loop-free SSP (see Section 2) focus on known transition and full-information
feedback setting. Different from all mentioned results minimizing static regret, our proposed algorithm is equipped with
dynamic regret guarantee, which can recover the Õ(H

√
K) minimax optimal static regret when choosing compared policies

as the best fixed policy in hindsight. Furthermore, when the environments are predictable, we enhance the algorithm to
capture such adaptivity and hence enjoy better dynamic regret guarantees than the minimax rate.

Episodic SSP. Rosenberg & Mansour (2021) first consider learning in episodic (non-loop-free) SSP with full-information
loss feedback. Their algorithm achieves an Õ( D

cmin

√
K) regret for the known transition setting, where cmin ∈ (0, 1] is

the lower bound of the loss function and D is the diameter of the MDP. They also study the zero costs case and unknown
transition setting. Chen et al. (2021a) develop algorithms that significantly improve the results and achieve minimax regret
Õ(

√
Hπ∗DK) for the full information with known transition setting, where Hπ∗

is the hitting time of the optimal policy.
They also investigate the unknown transition setting. Our results for episodic SSP (see Section 3) focus on the known
transition and full-information setting. We develop an algorithm with optimal dynamic regret guarantees. Our result
immediately recovers the optimal Õ(

√
Hπ∗DK) static regret when setting comparators as the best fixed policy in hindsight.

We further enhance our algorithm to achieve a more adaptive bound when the environments are predictable.

Infinite-horizon MDPs. Even-Dar et al. (2009) consider learning in unichain MDPs with known transition and full-
information feedback, they propose the algorithm MDP-E that enjoys Õ(

√
τ3T ) regret, where τ is the mixing time. Another

work (Yu et al., 2009) achieves Õ(T 2/3) regret in a similar setting. The O-REPS algorithm of Zimin & Neu (2013) achieves
an Õ(

√
τT ) regret. Neu et al. (2010b; 2014) consider the known transition kernel and bandit feedback setting. These studies

focus on the MDPs with uniform mixing properties, which could be strong. Recent study tries to relax the assumption by
considering the larger class of communicating MDPs (Chandrasekaran & Tewari, 2021). Our results for infinite-horizon
MDPs (see Section 4) focus on the known transition and full-information feedback setting and propose an algorithm that
enjoys dynamic regret which can recover the best-known Õ(

√
τT ) static regret.

Discussion. We note that all those works focus on the static regret minimization, and our work establishes the dynamic
regret for all the three online MDPs models. In a setting most similar to ours, Fei et al. (2020) investigate the dynamic
regret of episodic loop-free SSP (with function approximation). They propose two model-free algorithms and prove the
dynamic regret bound scaling with non-stationarity of environments. However, we note that their algorithms require the
prior knowledge of non-stationarity measure PT as input, which is generally unavailable to the learner in practice. By
contrast, our proposed algorithms are parameter-free to those unknown quantities related to the underlying environments
(including non-stationarity measure PT and adaptivity quantity VT ). More importantly, we also consider dynamic regret of
two more challenging settings of online MDPs — episodic (non-loop-free) SSP and infinite-horizon MDPs.

A.2. Non-stationary Online Learning

In this part, we first discuss related works of online non-stationary MDPs (whose loss functions are stochastic, whereas we
study the adversarial setting) then discuss dynamic regret of online convex optimization whose techniques are related to us.
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Online Non-stationary MDPs. Another related line of research is on the online non-stationary MDPs. More specifically,
in contrast to learning with adversarial MDPs where the online loss functions are generated in an adversarial way, online
non-stationary MDPs consider the setting where reward (loss) functions are generated in a stochastic way according to
a certain reward distribution that might be non-stationary over the time. For infinite-horizon MDPs, Jaksch et al. (2010)
consider the piecewise-stationary setting where the losses and transition kernels are allowed to change a fixed number
and then propose UCRL2 with restarting mechanism to handle the non-stationarity. Later, Gajane et al. (2018) propose
an alternative approach based on the sliding-window update for the same setting, and is later generalized to more general
non-stationary setting with gradual drift (Ortner et al., 2019). However, all above approaches require the prior knowledge on
the degree of non-stationarity, either the number of piecewise changes or the tensity of gradual drift. Recently, Cheung
et al. (2020) propose the Bandit-over-RL algorithm to remove the requirement of unknown non-stationarity measure, but
nevertheless can only obtain suboptimal result. Other results for non-stationary MDPs includes episodic non-stationary
MDPs (Mao et al., 2021; Domingues et al., 2021) and episodic non-stationary linear MDPs (Touati & Vincent, 2020; Zhou
et al., 2020). The techniques in those studies are related to the thread of stochastic linear bandits (Jin et al., 2020b; Yang &
Wang, 2020; Zhao et al., 2020a). A recent breakthrough is made by Wei & Luo (2021), who propose a black-box approach
that can turn a certain algorithm with optimal static regret in a stationary environment into another algorithm with optimal
dynamic regret in a non-stationary environment, and more importantly, the overall approach does not require any prior
knowledge on the degree of non-stationarity. They achieve optimal dynamic regret for episodic tabular MDPs (Mao et al.,
2021; Zhou et al., 2020; Touati & Vincent, 2020). For infinite-horizon MDPs, they can achieve optimal dynamic regret
when the maximum diameter of MDP is known or the degree of non-stationarity is known (Gajane et al., 2018; Cheung
et al., 2020); when none of them is know, they attain suboptimal regret but is still the best-known result.

Non-stationary Online Convex Optimization. Online convex optimization (OCO) is a fundamental and versatile
framework for modeling online prediction problems (Hazan, 2016). Dynamic regret of OCO has drawn increasing attention
in recent years, and techniques are highly related to ours. We here briefly review some related results and refer the reader
to the latest paper (Zhao et al., 2021b) for a more thorough treatment. Dynamic regret ensures the online learner to be
competitive with a sequence of changing comparators, and is sometimes called tracking regret or switching regret in the
study of prediction with expert advice setting (Cesa-Bianchi et al., 2012). As mentioned in Section 1, this paper focuses
on the general dynamic regret that allows the any feasible comparators in the decision set, which is also called universal
dynamic regret. A special variant is called worst-case dynamic regret, which only competes with the sequence of minimizers
of online functions and has gained much attention in the literature (Besbes et al., 2015; Jadbabaie et al., 2015; Yang et al.,
2016; György & Szepesvári, 2016; Chen et al., 2019; Baby & Wang, 2019; Zhang et al., 2020; Zhao & Zhang, 2021).
However, the worst-case dynamic regret would be problematic or even misleading in many cases, for example, approaching
the minimizer of each-round online function would lead to overfitting when the environments admit some noise (Zhang
et al., 2018). Thus, the universal dynamic regret is generally more desired to be performance measure for algorithm design
in non-stationary online learning. We now introduce the results in this regard. Zinkevich (2003) first considers the universal
dynamic regret of OCO and shows that Online Gradient Descent (OGD) enjoys O(

√
T (1 + PT )) dynamic regret, where PT

is the path-length of the comparators reflecting the non-stationarity of the environments. Later, Zhang et al. (2018) propose a
novel algorithm and prove a minimax optimal O(

√
T (1 + PT )) dynamic regret guarantee without requiring the knowledge

of unknown PT . Their proposed algorithm employs the meta-base structure, which turns out to be a key component to
handle unknown non-stationarity measure PT . When the environments are predictable and the loss functions are convex and
smooth, Zhao et al. (2020b; 2021b) develop an algorithm, achieving problem-dependent dynamic regret which could be
much smaller than the minimax rate. Baby & Wang (2021; 2022) consider OCO with exp-concave or strongly convex loss
functions. Dynamic regret of bandit online learning is studied for adversarial linear bandits (Luo et al., 2022) and bandit
convex optimization (Zhao et al., 2021a). More discussions can be found in the latest advance (Zhao et al., 2021b).

B. Useful Lemmas Related to Online Mirror Descent
In this section, we present several important lemmas used frequently in the analysis of (optimistic) online mirror descent.

Lemma 3 (Lemma 3.2 of Chen & Teboulle (1993)). Define q∗ = argminq∈K η⟨q, ℓ⟩ +Dψ(q, q̂) for some compact set
K ⊆ Rd, convex function ψ, an arbitrary point ℓ ∈ Rd, and a point q̂ ∈ K. Then for any u ∈ K,

⟨q∗ − u, ℓ⟩ ≤ 1

η
(Dψ(u, q̂)−Dψ(u, q

∗)−Dψ(q
∗, q̂)).
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Lemma 4 (Lemma 5 and Proposition 7 of Chiang et al. (2012)). Let qt = argminq∈K η⟨q,mt⟩+Dψ(q, q̂t) and q̂t+1 =

argminq∈K η⟨q, ℓt⟩+Dψ(q, q̂t) for some compact convex set K ⊆ Rd, convex function ψ, arbitrary points ℓt,mt ∈ Rd,
and a point q̂1 ∈ K. Then, for any u ∈ K,

⟨qt − u, ℓt⟩ ≤ ⟨qt − q̂t+1, ℓt −mt⟩+
1

η
(Dψ(u, q̂t)−Dψ(u, q̂t+1)−Dψ(q̂t+1, qt)−Dψ(qt, q̂t)),

and when ψ is λ-strongly convex function w.r.t. the norm ∥ · ∥, we have

∥qt − q̂t+1∥ ≤ 1

λ
∥ℓt −mt∥∗.

Lemma 5 (Lemma 1 of Chen et al. (2021b)). Define ψ(q) =
∑d
i=1

1
ηi
qi log qi, where d is the dimension of q. Let at ∈ Rd

with at,i = 32ηi(ℓt,i −mt,i)
2, qt = argminq∈K⟨q,mt⟩+Dψ(q, q̂t) and q̂t+1 = argminq∈K⟨q, ℓt + at⟩+Dψ(q, q̂t) for

some compact convex set K ⊆ Rd, arbitrary points ℓt,mt ∈ Rd, and a point q̂t ∈ K. Suppose 32ηi|ℓt,i −mt,i| ≤ 1 holds
for all i ∈ [d]. Then, for any u ∈ K,

⟨qt − u, ℓt⟩ ≤ Dψ(u, q̂t)−Dψ(u, q̂t+1) + 32

d∑
i=1

ηiui(ℓt,i −mt,i)
2 − 16

d∑
i=1

ηiqt,i(ℓt,i −mt,i)
2.

Proof. This lemma is originally proven by Chen et al. (2021b). For self-containedness, we present their proof and adapt to
our notations. By Lemma 4, we have

⟨qt − u, ℓt + at⟩ ≤ Dψ(u, q̂t)−Dψ(u, q̂t+1) + ⟨qt − q̂t+1, ℓt −mt + at⟩ −Dψ(q̂t+1, qt).

For the last two terms, define q∗ = argmaxq∈Rd
>0
⟨qt − q, ℓt −mt + at⟩ +Dψ(q, qt), by the optimality of q∗, we have:

ℓt −mt + at = ∇ψ(qt)−∇ψ(q∗) and thus q∗i = qt,ie
−ηi(ℓt,i−mt,i+at,i). Therefore, we have

⟨qt − q̂t+1, ℓt −mt + at⟩ −Dψ(q̂t+1, qt)

≤ ⟨qt − q∗, ℓt −mt + at⟩ −Dψ(q
∗, qt)

= ⟨qt − q∗,∇ψ(qt)−∇ψ(q∗)⟩ −Dψ(q
∗, qt)

= Dψ(qt, q
∗) =

d∑
i=1

1

ηi

(
qt,i log

qt,i
q∗i

− qt,i + q∗i

)

=

d∑
i=1

qt,i
ηi

(
ηi(ℓt,i −mt,i + at,i)− 1 + e−ηi(ℓt,i−mt,i+at,i)

)
≤

d∑
i=1

ηiqt,i(ℓt,i −mt,i + at,i)
2,

where the last inequality holds due to the fact e−x − 1 + x ≤ x2 for x ≥ −1 and the condition that ηi|ℓt,i −mt,i| ≤ 1
32

such that ηi|ℓt,i −mt,i + at,i| ≤ ηi|ℓt,i −mt,i|+ 32η2i (ℓt,i −mt,i)
2 ≤ 1

16 . Using the definition of at and the condition
ηi|ℓt,i −mt,i| ≤ 1

32 , we have

⟨qt − q̂t+1, ℓt −mt + at⟩ −Dψ(q̂t+1, qt) ≤
d∑
i=1

ηiqt,i(ℓt,i −mt,i + 32ηi(ℓt,i −mt,i)
2)2 ≤ 4

d∑
i=1

ηiqt,i(ℓt,i −mt,i)
2.

To sum up, we have

⟨qt − u, ℓt + at⟩ ≤ Dψ(u, q̂t)−Dψ(u, q̂t+1) + 4

d∑
i=1

ηiqt,i(ℓt,i −mt,i)
2.

Finally, moving ⟨qt − u, at⟩ to the right-hand side of the inequality and using the definition of at finishes the proof.
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C. Proofs for Section 2 (Episodic Loop-free SSP)
In this section, we provide the proofs for Section 2. First, we introduce the relationship between the path-length of policies
and the path-length of occupancy measures, and then provide proof of the dynamic regret of DO-REPS algorithm in
Section 2.2. Finally we present the proof of the dynamic regret lower bound.

C.1. Path-length of Policies and Occupancy Measures

This part introduces the relationship between the path-length of policies and path-length of occupancy measures.

Lemma 6. For any occupancy measure sequence qπ1 , . . . , qπK induced by the policy sequence π1, . . . , πK , it holds that

K∑
k=2

∥qπk − qπk−1∥1 ≤ H

K∑
k=2

H−1∑
l=0

∥πk,l − πk−1,l∥1,∞.

Proof. Let dπk

l (x) ≜
∑
a q

πk(x, a),∀x ∈ Xl, k ∈ [K], we have∑
x,a

|qπk(x, a)− qπk−1(x, a)|

=

H−1∑
l=0

∑
x∈Xl

∑
a

|qπk(x, a)− qπk−1(x, a)|

=

H−1∑
l=0

∑
x∈Xl

∑
a

|dπk

l (x)πk(a|x)− d
πk−1

l (x)πk−1(a|x)|

≤
H−1∑
l=0

∑
x∈Xl

∑
a

|dπk

l (x)πk(a|x)− d
πk−1

l (x)πk(a|x)|+ |dπk−1

l (x)πk(a|x)− d
πk−1

l (x)πk−1(a|x)|

=

H−1∑
l=0

∑
x∈Xl

|dπk

l (x)− d
πk−1

l (x)|
∑
a

πk(a|x) +
H−1∑
l=0

∑
x∈Xl

d
πk−1

l (x)
∑
a

|πk(a|x)− πk−1(a|x)|

≤
H−1∑
l=0

∥dπk

l − d
πk−1

l ∥1 +
H−1∑
l=0

∥πk,l − πk−1,l∥1,∞, (11)

where the first inequality due to the triangle inequality. Next, we bound the term ∥dπk

l − d
πk−1

l ∥1. Since X0 = {x0}, we
have ∥dπk

0 − d
πk−1

0 ∥1 = 0. For l ≥ 1, we have

∥dπk

l − d
πk−1

l ∥1 = ∥dπk

l−1P
πk − d

πk−1

l−1 Pπk−1∥1
≤ ∥dπk

l−1P
πk − dπk

l−1P
πk−1∥1 + ∥dπk

l−1P
πk−1 − d

πk−1

l−1 Pπk−1∥1
≤ ∥πk,l−1 − πk−1,l−1∥1,∞ + ∥dπk

l−1 − d
πk−1

l−1 ∥1,

where the last inequality holds due to Lemma 7 and Lemma 8. Summing the above inequality from 1 to l, we have

∥dπk

l − d
πk−1

l ∥1 ≤
l−1∑
i=0

∥πk,i − πk−1,i∥1,∞. (12)

Combining (11) and (12), we obtain

∑
x,a

|qπk(x, a)− qπk−1(x, a)| ≤
H−1∑
l=0

l−1∑
i=0

∥πk,i − πk−1,i∥1,∞ +

H−1∑
l=0

∥πk,l − πk−1,l∥1,∞

=

H−1∑
l=0

l∑
i=0

∥πk,i − πk−1,i∥1,∞ ≤ H

H−1∑
l=0

∥πk,l − πk−1,l∥1,∞.

We complete the proof by summing the inequality over all iterations.
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C.2. Proof of Lemma 1

Proof. Denote by q′k+1 = argminq η⟨q, ℓk⟩ + Dψ(q, qk), or equivalently, q′k+1(x, a) = qk(x, a) exp(−ηℓk(x, a)). By
standard analysis of online mirror descent, we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ =

K∑
k=1

⟨qk − q′k+1, ℓk⟩+ ⟨q′k+1 − qπ
c
k , ℓk⟩

≤
K∑
k=1

⟨qk − q′k+1, ℓk⟩+
1

η

K∑
k=1

(
Dψ(q

πc
k , qk)−Dψ(q

πc
k , q′k+1)

)
≤

K∑
k=1

⟨qk − q′k+1, ℓk⟩+
1

η

K∑
k=1

(
Dψ(q

πc
k , qk)−Dψ(q

πc
k , qk+1)

)
,

(13)

where the first inequality holds due to Lemma 3 and the last inequality holds due to Pythagoras theorem. For the first term,
applying the inequality 1− e−x ≤ x, we obtain

K∑
k=1

⟨qk − q′k+1, ℓk⟩ ≤ η
K∑
k=1

∑
x,a

qk(x, a)ℓ
2
k(x, a) ≤ η

K∑
k=1

∑
x,a

qk(x, a) ≤ ηHK = ηT. (14)

For the last term, we have

K∑
k=1

(
Dψ(q

πc
k , qk)−Dψ(q

πc
k , qk+1)

)
= Dψ(q

πc
1 , q1) +

K∑
k=2

(
Dψ(q

πc
k , qk)−Dψ(q

πc
k−1 , qk)

)
= Dψ(q

πc
1 , q1) +

K∑
k=2

∑
x,a

(
qπ

c
k(x, a) log

qπ
c
k(x, a)

qk(x, a)
− qπ

c
k−1(x, a) log

qπ
c
k−1(x, a)

qk(x, a)

)

= Dψ(q
πc
1 , q1) +

K∑
k=2

∑
x,a

(
qπ

c
k(x, a)− qπ

c
k−1(x, a)

)
log

1

qk(x, a)
+ ψ(qπ

c
K )− ψ(qπ

c
1)

≤
K∑
k=2

∥qπ
c
k − qπ

c
k−1∥1 log

1

α
+Dψ(q

πc
1 , q1) + ψ(qπ

c
K )− ψ(qπ

c
1),

(15)

where the last inequality holds due to qk(x, a) ≥ α, since qk ∈ ∆(M,α) for all k and x, a. It remains to bound the last two
terms. Since q1 minimize ψ over ∆(M,α), we have ⟨∇ψ(q1), qπ

c
1 − q1⟩ ≥ 0, and thus

Dψ(q
πc
1 , q1) + ψ(qπ

c
K )− ψ(qπ

c
1) ≤ ψ(qπ

c
K )− ψ(q1) ≤

∑
x,a

q1(x, a) log
1

q1(x, a)
≤ H log

|X||A|
H

. (16)

Combining(14), (15) and (16), we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ ηT +

1

η

(
H log

|X||A|
H

+ P̄T log
1

α

)
,

where P̄T =
∑K
k=2∥qπ

c
k − qπ

c
k−1∥1. This completes the proof.

C.3. Proof of Theorem 1

Proof. Without loss of generality, we assume that all states are reachable with positive probability under the uniform
policy πu(a|x) = 1/|A|,∀x ∈ X, a ∈ A (otherwise remove the unreachable states since they are unreachable by any
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policy). Assume T is large enough such that the occupancy measure of πu satisfies qπ
u ∈ ∆(M, 1

T ), then define
uk = (1− 1

T )q
πc
k + 1

T q
πu ∈ ∆(M, 1

T 2 ), we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ =

K∑
k=1

⟨qk − uk, ℓk⟩+
1

T

K∑
k=1

⟨qπ
u

− qπ
c
k , ℓk⟩

≤
K∑
k=1

⟨qk − uk, ℓk⟩+ 2

≤
K∑
k=1

⟨qk − qk,i, ℓk⟩︸ ︷︷ ︸
meta-regret

+

K∑
k=1

⟨qk,i − uk, ℓk⟩︸ ︷︷ ︸
base-regret

+2, (17)

where the first inequality follows from the definition uk = (1− 1
T )q

πc
k + 1

T q
πu

and the last inequality holds for any index i.

Upper bound of base-regret. Since uk ∈ ∆(M, 1
T 2 ),∀k ∈ [K], from Lemma 1 we have

base-regret ≤ ηT +
H log |X||A|

H + 2
∑K
k=2∥uk − uk−1∥1 log T
η

≤ ηT +
H log |X||A|

H + 2P̄T log T

η
,

where the last inequality holds due to
∑K
k=2∥uk − uk−1∥1 ≤

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 = P̄T . It is clear that the optimal

step size is η∗ =
√
(H log (|X||A|/H) + 2P̄T log T )/T . From the definition of P̄T =

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1, we have

0 ≤ P̄T ≤ 2KH = 2T . Thus, the possible range of the optimal step size is

ηmin =

√
H log(|X||A|/H)

T
, and ηmax =

√
H log(|X||A|/H)

T
+ 4 log T .

By the construction of the candidate step size pool H = {ηi = 2i−1
√
K−1 log(|X||A|/H) | i ∈ [N ]}, where N =

⌈ 1
2 log(1 +

4K log T
log(|X||A|/H) )⌉+ 1, we know that the step size therein is monotonically increasing, in particular

η1 =

√
H log(|X||A|/H)

T
= ηmin, and ηN ≥

√
H log(|X||A|/H)

T
+ 4 log T = ηmax.

Thus, we ensure there exists a base-learner i∗ whose step size satisfies ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . Since the regret
decomposition in (17) holds for any i ∈ [N ], we choose the base-learner i∗ to analysis to obtain a sharp bound.

base-regret ≤ ηi∗T +
H log(|X||A|/H) + 2P̄T log T

ηi∗

≤ η∗T +
2(H log(|X||A|/H) + 2P̄T log T )

η∗

= 3
√
T
(
H log(|X||A|/H) + 2P̄T log T

)
,

(18)

where the second inequality holds due to ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ and the last equality holds by substituting the optimal
step size η∗ =

√
(H log(|X||A|/H) + 2P̄T log T )/T .

Upper bound of meta-regret. From the construction that hk,i = ⟨qk,i, ℓt⟩,∀k ∈ [K], i ∈ [N ], the meta-regret can be
written in the following way:

meta-regret =

K∑
k=1

⟨qk − qk,i, ℓk⟩ =
K∑
k=1

⟨
N∑
i=1

pk,iqk,i − qk,i, ℓk⟩ =
K∑
k=1

⟨pk − ei, hk⟩

It is known that the update pk+1,i ∝ exp(−ε
∑k
s=1 hs,i),∀i ∈ [N ] is equal to the update pk+1 = argminp∈∆N

ε⟨p, hk⟩+
Dψ(p, pk), where ψ(p) =

∑N
i=1 pi log pi is the standard negative entropy. This can be further reformulated solving the
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unconstrained optimization problem p′k+1 = argminp ε⟨p, hk⟩+Dψ(p, pk) at first and then projecting p′k+1 to the simplex
∆N as pk+1 = argminp∈∆N

Dψ(p, p
′
k+1). By standard analysis of OMD, we have

K∑
k=1

⟨pk − ei, hk⟩ ≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
K∑
k=1

⟨p′k+1 − ei, hk⟩

≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε

K∑
k=1

(Dψ(ei, pk)−Dψ(ei, p
′
k+1))

≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε

K∑
k=1

(Dψ(ei, pk)−Dψ(ei, pk+1))

≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε
Dψ(ei, p1),

where the second inequality holds due to Lemma 3 and the third inequality holds due to Pythagoras theorem. Using the fact
that 1− e−x ≤ x and the definition that p1,i = 1/N, hk,i ≤ H,∀k ∈ [K], i ∈ [N ], we have

K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε
Dψ(ei, p1) ≤ ε

K∑
k=1

N∑
i=1

pk,ih
2
k,i +

lnN

ε
≤ εHT +

lnN

ε
.

Therefore, for any base-learner i ∈ [N ], we have

K∑
k=1

⟨qk − qk,i, ℓk⟩ =
K∑
k=1

⟨pk − ei, hk⟩ ≤ εHT +
logN

ε
.

In particular, for the best base-learner i∗ ∈ [N ], we have

meta-regret =

K∑
k=1

⟨qk − qk,i∗ , ℓk⟩ ≤ εHT +
logN

ε
=
√
HT logN, (19)

where the last equality holds due to the setting ε =
√
(logN)/(HT ).

Upper bound of overall dynamic regret. Combining (17), (18) and (19), we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ base-regret+ meta-regret

≤ 3
√
T
(
H log(|X||A|/H) + 2P̄T log T

)
+
√
HT logN + 2

≤ O
(√

HT (log(|X||A|/H) + PT log T )
)
,

where the last equality is due to P̄T ≤ HPT by Lemma 6, N = ⌈ 1
2 log(1+

4K log T
log(|X||A|/H) )⌉+1. This finishes the proof.

C.4. Proof of Theorem 2

Proof. The proof is similar to the proof of the minimax lower bound of dynamic regret for online convex optimization (Zhang
et al., 2018). For any γ ∈ [0, 2T ], we first construct a piecewise-stationary comparator sequence, whose path-length is
smaller than γ, then we split the whole time horizon into several pieces, where the comparator is fixed in each piece. By this
construction, we can apply the existed minimax static regret lower bound of episodic loop-free SSP (Zimin & Neu, 2013) in
each piece, and finally sum over all pieces to obtain the lower bound for the dynamic regret.

Denote by RK(Π,F , γ) the minimax dynamic regret, which is defined as

RK(Π,F , γ) = inf
π1∈Π

sup
ℓ1∈F

. . . inf
πK∈Π

sup
ℓK∈F

(
K∑
k=1

⟨qπk , ℓk⟩ − min
(πc

1,...,π
c
K)∈U(γ)

K∑
k=1

⟨qπ
c
k , ℓk⟩

)
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where Π denotes the set of all policies, F denotes the set of loss functions ℓ ∈ R|X||A|
[0,1] , and U(γ) = {(πc1, . . . , πcK) | ∀k ∈

[K], πck ∈ Π, and P̄T =
∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 ≤ γ} is the set of feasible policy sequences with the path-length P̄T of the

occupancy measures less than γ.

We first consider the case of γ ≤ 2H . Then we can directly utilize the established lower bound of the static regret for
learning in episodic loop-free SSP (Zimin & Neu, 2013) as a natural lower bound of dynamic regret,

RK(Π,F , γ) ≥ C1H
√
K log(|X||A|), (20)

where C1 = 0.03 is the constant appeared in the lower bound of static regret.

We next deal with the case that γ ≥ 2H . Without loss of generality, we assume L = ⌈γ/2H⌉ divides K and split the whole
time horizon into L pieces equally. Next, we construct a special policy sequence in U(γ) such that the policy sequence is
fixed within each piece and only changes in the split point. Since the sequence changes at most L− 1 ≤ γ/2H times and
the variation of the occupancy measure at each change point is at most 2H , the path-length P̄T of the occupancy measures
does not exceed γ. As a result, we have

RK(Π,F , γ) ≥ LC1H

√
K

L
log(|X||A|) ≥

√
2C1

2

√
HKγ log(|X||A|). (21)

Combining (20) and (21), we obtain the final lower bound

RK(Π,F , γ) ≥
√
2C1

2

√
HK log(|X||A|)max(

√
2H,

√
γ) ≥ Ω(

√
HK(H + γ) log(|X||A|)),

which finishes the proof.

C.5. Useful Lemmas

In this part, we present some basic lemmas in episodic loop-free SSP. For any policy π(a|x), we define Pπ to be the
transition matrix induced by π, where the component [Pπ]x,x′ is the transition probability from x to x′, i.e., [Pπ]x,x′ =∑
a π(a|x)P ax,x′ . Then, we have the following useful lemmas.

Lemma 7 (Lemma 6.3 of Even-Dar et al. (2009)). For any policies π and π and any state distribution d, we have

∥dPπ − dPπ
′
∥1 ≤ ∥π − π′∥1,∞.

Proof. Consider the case when d is a delta function on x. The difference in the next state distributions, ∥dPπ − dPπ
′∥1, is∑

x′

∣∣∣[Pπ]x,x′ − [Pπ
′
]x,x′

∣∣∣ =∑
x′

∑
a

|P (x′|x, a) (π(a|x)− π′(a|x))|

≤
∑
x′,a

P (x′|x, a)|π(a|x)− π′(a|x)| =
∑
a

|π(a|x)− π′(a|x)|.

Linearity of expectation leads to the result for arbitrary d.

Lemma 8. For any state distribution d and d′, and any policy π, we have

∥dPπ − d′Pπ∥1 ≤ ∥d− d′∥1. (22)

Proof. Note that the relationship that d(x′) =
∑
x d(x)P

π
x,x′ , therefore, we have

∥dPπ − d′Pπ∥1 =
∑
x′

|
∑
x

d(x)Pπx,x′ − d′(x)Pπx,x′ | ≤
∑
x′

∑
x

|d(x)Pπx,x′ − d′(x)Pπx,x′ |

=
∑
x′

∑
x

|d(x)− d′(x)|Pπx,x′ =
∑
x

|d(x)− d′(x)|
∑
x′

Pπx,x′

=
∑
x

|d(x)− d′(x)| = ∥d− d′∥1.

This finishes the proof.
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Finally, we introduce the following lemma, which shows the strongly convexity of the regularizer.

Lemma 9. ψ(w) =
∑d
i=1 wi logwi is 1

H -strongly convex w.r.t. ∥ · ∥1 for {w ∈ Rd≥0 |
∑d
i=1 wi = H}.

Proof. For any y, z ∈ {w ∈ Rd≥0 |
∑N
i=1 wi = H}, we have y

H ,
z
H ∈ {w ∈ Rd≥0 |

∑d
i=1 wi = 1}. Then, it holds that

ψ(y)− ψ(z)− ⟨∇ψ(y), y − z⟩ =
d∑
i=1

yi log
yi
zi

= H

d∑
i=1

yi
H

log
yi/H

zi/H
≥ 1

2H
∥y − z∥21,

where the last inequality holds due to Pinsker’s Inequality. This finishes the proof.

D. Proofs for Section 3 (Episodic SSP)
In this section, we first give the impossible result to bound the path-length of occupancy measures by the path-length of
policies. Next we provide proofs of the dynamic regret of CODO-REPS algorithm and the lower bound in Section 3.2.

D.1. Path-length of Policies and Occupancy Measures

In the following, we give the impossible result to bound the path-length of the occupancy measures by the path-length of the
corresponding policies.

Theorem 7. For any H∗ > 1 and any positive integer c > 0, there exists an SSP instance with |X| = 2c+1 states, |A| = 2
actions and a policy sequence πc1, . . . , π

c
K with largest expected hitting time H∗ such that P̄K ≥ cPK .

Proof. For any H∗ > 1 and any positive integer c > 0, we construct an episodic SSP with n+ 1 states X = {x0, . . . , xn}
with n = 2c and two actions A = {a1, a2} as in Figure 1. Let the transition kernel be deterministic and the corresponding
transitions are shown in Figure 1. Specifically, taking a1 and a2 in initial state x0 leads to the state g and x1 respectively.

𝑎𝑎1/𝑎𝑎2

𝑎𝑎1/𝑎𝑎2

𝑎𝑎1

𝑎𝑎2 ...
𝑥𝑥0

𝑥𝑥1 𝑥𝑥𝑛𝑛

𝑔𝑔

Figure 1: State transitions for Theorem 7.

Taking any action in state xi leads to state xi+1,∀i ∈ [n− 1] and taking any action in state xn leads to the goal state state g.
Then, we consider two policies π and π′ with π(a1|xi) = 1,∀i ∈ {0} ∪ [n] and π′(a1|x0) = 1− ε, π′(a1|xi) = 1,∀i ∈ [n].
It is clear that ∥π − π′∥1,∞ = 2ε and Hπ(x0) = 1, Hπ′

(x0) = 1 + εn. For any H∗ > 1 and c > 0, let ε = (H∗ − 1)/n,
we have Hπ′

= 1 + εn = H∗, i.e., the largest hitting time of π and π′ is H∗. Then we consider the occupancy measure
discrepancy of π and π′. It is easy to verify∑

x,a

|qπ(x, a)− qπ
′
(x, a)| = ε+ ε(n+ 1) = ε(n+ 2) = 2ε(c+ 1) = (c+ 1)∥π − π′∥1,∞.

Therefore, we have ∥qπ−qπ′∥1 ≥ c∥π−π′∥1,∞. Thus, the policy sequence π, π′, π, π′, . . . satisfies P̄K = K∥qπ−qπ′∥1 ≥
cK∥π − π′∥1,∞ = cPK , which completes the proof.

D.2. Proof of Lemma 2

Proof. Since η ≤ 1
64 , we ensure that 32η|ℓk,i| ≤ 1,∀k ∈ [K], i ∈ [|X||A|]. Taking mk = 0 in Lemma 5, we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤

K∑
k=1

(
Dψ(q

πc
k , q̂k)−Dψ(q

πc
k , q̂k+1)

)
+ 32η

K∑
k=1

⟨qk, ℓ2k⟩ − 16η

K∑
k=1

⟨qπ
c
k , ℓ2k⟩. (23)
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For the first term, from the definition that Dψ(q, q
′) =

∑
x,a q(x, a) log

q(x,a)
q′(x,a) −

∑
x,a(q(x, a)− q′(x, a)), we have

K∑
k=1

(
Dψ(q

πc
k , q̂k)−Dψ(q

πc
k , q̂k+1)

)
(24)

= Dψ(q
πc
1 , q̂1) +

K∑
k=2

(
Dψ(q

πc
k , q̂k)−Dψ(q

πc
k−1 , q̂k)

)
= Dψ(q

πc
1 , q̂1) +

1

η

K∑
k=2

∑
x,a

(
qπ

c
k(x, a) log

qπ
c
k(x, a)

q̂k(x, a)
− qπ

c
k−1(x, a) log

qπ
c
k−1(x, a)

q̂k(x, a)

)
+

1

η

K∑
k=2

∑
x,a

(
qπ

c
k−1(x, a)− qπ

c
k(x, a)

)

= Dψ(q
πc
1 , q̂1) +

1

η

K∑
k=2

∑
x,a

(
qπ

c
k(x, a)− qπ

c
k−1(x, a)

)
log

1

q̂k(x, a)
+
ψ(qπ

c
K )− ψ(qπ

c
1)−

∑
x,a(q

πc
K (x, a)− qπ

c
1(x, a))

η

≤ 1

η
log

H

α

K∑
k=2

∥qπ
c
k − qπ

c
k−1∥1 +Dψ(q

πc
1 , q̂1) +

ψ(qπ
c
K )− ψ(qπ

c
1)−

∑
x,a(q

πc
K (x, a)− qπ

c
1(x, a))

η
,

where the last inequality holds due to |log q̂k(x, a)| ≤ log H
α since α ≤ q̂k(x, a) ≤ H for q̂k ∈ ∆(M,H,α). For the last

two term, since q̂1 minimize ψ over ∆(M,H,α), we have ⟨∇ψ(q̂1), qπ
c
1 − q̂1⟩ ≤ 0, thus

Dψ(q
πc
1 , q̂1) +

ψ(qπ
c
K )− ψ(qπ

c
1)−

∑
x,a(q

πc
K (x, a)− qπ

c
1(x, a))

η

≤ ψ(qπ
c
1)− ψ(q̂1)

η
+
ψ(qπ

c
K )− ψ(qπ

c
1)−

∑
x,a

(
qπ

c
K (x, a)− qπ

c
1(x, a)

)
η

≤
ψ(qπ

c
K )− ψ(q̂1)−

∑
x,a

(
qπ

c
K (x, a)− qπ

c
1(x, a)

)
η

≤ H log(|X||A|) +H logH +H

η
=
H(1 + log(|X||A|H))

η
,

(25)

where the last inequality holds due to −H log(|X||A|) ≤ ψ(q) ≤ H logH and 0 ≤
∑
x,a q(x, a) ≤ H for any q ∈

∆(M,H,α) from Lemma 10. Combining (23), (24) and (25), we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤

H(1 + log(|X||A|H)) + P̄K log(H/α)

η
+ 32η

K∑
k=1

⟨qk, ℓ2k⟩ − 16η

K∑
k=1

⟨qπ
c
k , ℓ2k⟩,

where P̄K =
∑K
k=2∥qπ

c
k − qπ

c
k−1∥1. This finishes the proof.

D.3. Proof of Theorem 3

Proof. We only need to consider the case H∗ ≤ K (otherwise the claimed regret bound is vacuous). Since all the compared
policies are proper, they will not visit the states from which the goal state g is not accessible (otherwise the hitting time
will be infinite) and the states which are not accessible from initial state x0. We can remove them from the SSP since we
consider the known transition setting. Then, suppose K is large enough such that these exists at least a policy πu whose
occupancy measure qπ

u

satisfies qπ
u ∈ ∆(M,K, 1

K ). Then, we define uk = (1− 1
K2 )q

πc
k + 1

K2 q
πu

and the corresponding
policy πuk . For any k ∈ [K], we ensure that the hitting time Hπuk ≤ (1 − 1

K2 )H∗ +
K
K2 ≤ H∗ + 1 and the occupancy

measure uk(x, a) ≥ 1
K3 ,∀x, a, i.e., uk ∈ ∆(M,H∗ + 1, 1

K3 ). Thus, we have

E[D-REGK(πc1:K)] = E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨qπ
c
k , ℓk⟩

]

= E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨uk, ℓk⟩

]
+

1

K2
E

[
K∑
k=1

⟨qπ
u

− qπ
c
k , ℓk⟩

]
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≤ E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨uk, ℓk⟩

]
+ 2,

≤ E

[
K∑
k=1

⟨pk − ei,j , hk⟩

]
︸ ︷︷ ︸

meta-regret

+E

[
K∑
k=1

⟨qi,jk − uk, ℓk⟩

]
︸ ︷︷ ︸

base-regret

+2 (26)

where the first inequality holds due to
∑
x,a q

u(x, a) ≤ K and
∑
x,a q

πc
k(x, a) ≤ H∗ ≤ K, the last inequality holds due to

the definition that hi,jk = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni] and the decomposition holds for any index i ∈ [G], j ∈ [Ni].

Upper bound of base-regret. Since the possible range of H∗ is Hπf ≤ H∗ ≤ K. From the construction of horizon
length pool H = {Hi = 2i−1 ·Hπf |i ∈ [G]} where G = 1 + ⌈log((K + 1)/Hπf

)⌉, we ensure

H1 = Hπf

≤ H∗ + 1 and HG = K + 1 ≥ H∗ + 1.

So for any unknown H∗, there exist an index i for the space pool that satisfies Hi∗−1 = Hi∗
2 ≤ H∗ + 1 ≤ Hi∗ . Then, we

analysis the base-regret of the base learners in group i∗. From the construction of each step size pool, we ensure ηi,j ≤ 1
64 ,

i.e., 32ηi,j |ℓk,r| ≤ 1,∀i ∈ [G], j ∈ [Ni], k ∈ [K], r ∈ [|X||A|]. Since qi
∗,j
k , uk ∈ ∆(M,Hi∗ , 1/K

3),∀j ∈ [N∗
i ], k ∈ [K],

from Lemma 2, we have

base-regret ≤
4
∑K
k=2∥uk − uk−1∥1 logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 16ηi∗,j

K∑
k=1

(2⟨uk, ℓk⟩ − ⟨qi
∗,j
k , ℓ2k⟩)

≤ 4P̄K logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 32ηi∗,jBK − 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓ2k⟩+ 1, (27)

where the last inequality holds due to
∑K
k=2∥uk − uk−1∥1 ≤

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 = P̄K and BK =

∑K
k=1⟨qπ

c
k , ℓk⟩.

Upper bound of meta-regret. Then, we consider the meta-regret with respect to base-learner Bi∗,j ,∀j ∈ Ni∗ . From
the construction of the regularizer ψ̄(p) in meta-algorithm, we have 32εi,j |hi,jk | = 32

ηi,j
2Hi

|⟨qi,jk , ℓk⟩| ≤ 1,∀i ∈ [G], j ∈
[Ni], k ∈ [K]. From the analysis of OMD in Lemma 5, we have

meta-regret ≤ Dψ̄(ei∗,j , p1) + 32εi∗,j

K∑
k=1

(hi
∗,j
k )2

=
1

εi∗,j
log

1

pi
∗,j
1

+

G∑
r=1

Ni∑
s=1

pr,s1

εr,s
+ 32εi∗,j

K∑
k=1

(hi
∗,j
k )2

=
1

εi∗,j
log

∑G
r=1

∑Ni

s=1 ε
2
r,s

ε2i∗,j
+

∑G
r=1

∑Ni

s=1 εr,s∑G
r=1

∑Ni

s=1 ε
2
r,s

+ 32εi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓk⟩2,

where the first equality holds due to Dψ̄(p, p
′) =

∑
i,j

1
εi,j

(pi,j log
pi,j
p′i,j

− pi,j + p′i,j) and the last equality is due to

pi,j1 ∝ ε2i,j , h
i,j
k = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni]. From the definition of the horizon length pool H = {Hi = 2i−1 ·Hπf |

i ∈ [G]} where G = 1 + ⌈log((K + 1)/Hπf

)⌉, the step size pools Ei =
{

1
32·2j | j ∈ [Ni]

}
, i ∈ [G], where Ni =

⌈ 1
2 log (

4K
1+log (|X||A|Hi)

)⌉ and learning rate εi,j =
ηi,j
2Hi

,∀i ∈ [G], j ∈ [Ni], we ensure that
∑G
r=1

∑Ni

s=1 εr,s = Θ(1/H1)

and
∑G
r=1

∑Ni

s=1 ε
2
r,s = Θ(1/H2

1 ). Thus,

meta-regret ≤ Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
+ 16

ηi∗,j
Hi∗

K∑
k=1

⟨qi
∗,j
k , ℓk⟩2 +Θ(H1)

≤ Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
+ 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓ2k⟩+Θ(H1),

(28)

where the last inequality holds due to Cauchy–Schwarz inequality.
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Upper bound of over all dynamic regret. Combining (26), (27) and (28), we obtain

E[D-REGK ] ≤ 4P̄T logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 32ηi∗,jBK +Θ(

Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j
), (29)

holds for any index j ∈ [Ni∗ ]. Omit the last term, it is clear that the optimal step size is η∗ =√
(Hi∗(1 + log(|X||A|Hi∗)) + 4P̄K logK)/(32BK). Meanwhile, since

∑
x,a qk(x, a) ≤ H∗,∀k ∈ [K], we have

0 ≤ P̄K =
∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 ≤ 2H∗K ≤ 2Hi∗K and BK ≤ H∗K ≤ Hi∗K. Therefore, we ensure that

η∗ ≥
√

1 + log(|X||A|Hi∗)

32K
.

From the construction of the candidate step size pool Hi∗ , we know that the step size therein is monotonically decreasing
with respect to the index, in particular,

η1 =
1

64
, and ηN =

√
1 + log(|X||A|Hi∗)

128K
≤ η∗

Let j∗ be the index of base learner in group i∗ with step size closest to the η∗. Then, we consider the base regret of the base
learner Bi∗,j∗ . We consider the following two cases:

• when η∗ ≤ 1
64 , then ηi∗,j∗ ≤ η∗ ≤ 2ηi∗,j∗ = ηi∗,j∗−1, we have

R.H.S of (29) ≤ 8P̄K logK + 2Hi∗(1 + log(|X||A|Hi∗))

η∗
+ 32η∗BK +Θ

(
Hi∗

η∗
log

Hi∗

H1η∗

)
≤ Õ

(√(
P̄K +H∗

)
BK

)
.

• when η∗ > 1
64 , then ηi∗,j∗ = 1

64 , we have

R.H.S of (29) ≤ 256
(
P̄K logK +Hi∗(1 + log(|X||A|Hi∗))

)
+

1

2
BK +Θ(H∗) ≤ Õ

(
P̄K +H∗

)
,

where the last inequality holds due to
√
(Hi∗(1 + log(|X||A|Hi∗)) + 4P̄K logK)/(32BK) ≥ 1

64 .

As a result, taking both cases into account yields

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ Õ

(√(
H∗ + P̄K

)
(H∗ + P̄K +BK)

)
.

This finishes the proof.

D.4. Proof of Theorem 4

Proof. The proof is similar to that of Theorem 2. For any γ ∈ [0, 2T ], we first construct a piecewise-stationary comparator
sequence, whose path-length is smaller than γ, then we split the whole time horizon into several pieces, where the comparator
is fixed in each piece. By this construction, we can apply the existed minimax static regret lower bound of episodic SSP (Chen
et al., 2021a) in each piece, and finally sum over all pieces to obtain the lower bound for the dynamic regret.

Denote by RK(Π,F , γ) the minimax dynamic regret, which is defined as

RK(Π,F , γ) = inf
π1∈Π

sup
ℓ1∈F

. . . inf
πK∈Π

sup
ℓK∈F

(
K∑
k=1

⟨qπk , ℓk⟩ − min
(πc

1,...,π
c
K)∈U(γ)

K∑
k=1

⟨qπ
c
k , ℓk⟩

)

where Π denotes the set of all policies, F denotes the set of loss functions ℓ ∈ R
|X||A|
[0,1 and U(γ) = {(πc1, . . . , πcK) | ∀k ∈

[K], πck ∈ Π, and P̄K =
∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 ≤ γ} is the set of feasible policy sequences with path-length P̄K of the

occupancy measures less than γ.
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We first consider the case of γ ≤ 2(H∗ + 1). From Theorem 3 of Chen et al. (2021a), we ensure for any D,H∗,K with
K ≥ D + 1, there exists an SSP instance such that its diameter is D + 2, the hitting time of the best fixed policy is H∗ + 1
and the expected regret of any policy after K episodes is at least Ω(

√
DH∗K). Then we can set all compared policies as the

best fixed policy and directly utilize this lower bound of the static regret as a natural lower bound of dynamic regret,

RK(Π,F , γ) ≥ Ω(
√
DH∗K). (30)

We next deal with the case that γ ≥ 2(H∗ + 1). Without loss of generality, we assume L = ⌈γ/2(H∗ + 1)⌉ devides K and
split the whole time horizon into L pieces equally. Next, we construct an SSP instance such that its diameter is D + 2, the
hitting time of the best fixed policy is H∗ + 1 and the expected regret of any policy after K episodes is at least Ω(

√
DH∗K)

in each piece. Then, we choose the best fixed policy in each piece as the comparator sequence, whose hitting time are all
H∗ + 1. Since the sequence changes at most L− 1 ≤ γ/2(H∗ + 1) times and the variation of the policy sequence at each
change point is at most 2(H∗ + 1) (Note that ∥qπc

k − qπ
c
k−1∥ ≤ ∥qπc

k∥1 + ∥qπ
c
k−1∥1 = 2(H∗ + 1),∀πck ̸= πck−1), the path-

P̄K does not exceed γ. As a result,

RK(Π,F , γ) ≥ LΩ(
√
DH∗K/L) ≥ Ω(

√
DKγ). (31)

Combining (30) and (31), we have

RK(Π,F , γ) ≥ Ω(
√
DH∗K) + Ω(

√
DKγ) ≥ Ω(

√
DH∗K(1 + γ/H∗)),

which finishes the proof.

D.5. Useful Lemmas

we introduce the following lemma which shows the boundedness of the regularizer.

Lemma 10. Let H ≥ 1, it holds that −H log(|X||A|) ≤
∑
x,a q(x, a) log q(x, a) ≤ H logH for every q ∈ ∆(M,H).

Proof. First, we prove the right-hand side of the inequality.

∑
x,a

q(x, a) log q(x, a) =
∑
x,a

q(x, a) log
q(x, a)

H
+
∑
x,a

q(x, a) logH ≤
∑
s,a

q(x, a) logH ≤ H logH.

Then, we prove the left-hand side of the inequality.

−
∑
x,a

q(x, a) log q(x, a) = −
∑
x,a

q(x, a) log
q(x, a)

H
−
∑
x,a

q(x, a) logH ≤ −H
∑
s,a

q(x, a)

H
log

q(x, a)

H
≤ H log |X||A|.

This finishes the proof.

E. Proofs for Section 4 (Infinite-horizon MDPs)
In this section, we first show the relationship between the path-length of policies and the path-length of occupancy measures.
Next, we show the proofs of the reduction to switching-cost expert problem in Section 4.2. Finally, we give the proofs of the
dynamic regret of our algorithm in Section 4.3.

E.1. Path-length of Policies and Occupancy Measures

We introduce the relationship between the path-length of policies and the path-length of occupancy measures as follows.

Lemma 11. For any occupancy measure sequence q1, . . . , qT induced by the policy sequence π1, . . . , πT , it holds that

T∑
t=2

∥qπt − qπt−1∥1 ≤ (τ + 2)

T∑
t=2

∥πt − πt−1∥1,∞.
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Proof. Consider any two policies π and π′ with occupancy measure qπ and qπ
′
, let dπ(x) ≜

∑
x,a q

π(x, a), dπ
′
(x) ≜∑

x,a q
π′
(x, a),∀x ∈ X , we have

∥qπ − qπ
′
∥1 =

∑
x,a

|qπ(x, a)− qπ
′
(x, a)|

=
∑
x,a

|dπ(x)π(a|x)− dπ
′
(x)π′(a|x)|

≤
∑
x,a

|dπ(x)π(a|x)− dπ(x)π′(a|x)|+
∑
x,a

|dπ(x)π′(a|x)− dπ
′
(x)π′(a|x)|

=
∑
x

dπ(x)
∑
a

|π(a|x)− π′(a|x)|+
∑
x

|dπ(x)− d′(x)|
∑
a

π′(a|x)

≤ ∥π − π′∥1,∞ + ∥dπ − dπ
′
∥1

≤ (τ + 2)∥π − π′∥1,∞,

where the first inequality holds due to the triangle inequality and the last inequality holds due to Lemma 14. We finish the
proof by summing the inequality over T .

E.2. Proof of Theorem 5

To prove Theorem 5, we first introduce two lemmas which measure the difference between the sum of average losses
and the actual losses of the learner and compared policies. Denote by ρπt the average loss per step corresponding
π: ρπt ≜ limT→∞

1
T

∑T
t=1 E[ℓt(xt, at)|P, π] = ⟨qπ, ℓt⟩ and the actual cumulative loss suffered by the learner LT ≜

E[ℓt(xt, πt(xt))|P, π], where the randomness is over the transition kernel and policy sequence π1:T . Similarly, the actual
cumulative loss suffered by the compared policy sequence πc1:T is Lc

T ≜ E[ℓt(xt, πct (xt))|P, π]. Let dπ be the stationary
state distribution, i.e., dπ(x) ≜

∑
a q

π(x, a),∀x ∈ X . Denote by µt = µ1P
π1 · · ·Pπt−1 the state distribution after

executing π1, . . . , πt−1, where µ1 is the initial distribution, similarly, µct = µ1P
πc
1 · · ·Pπ

c
t−1 .

Lemma 12. For any compared policy sequence πc1, . . . , π
c
T , it holds that

∑T
t=1 ρ

πc
t
t − Lc

T ≤ (τ + 1)2PT + 2(τ + 1).

Proof. From the definition that µct = µ1P
πc
1 · · ·Pπ

c
t−1 , we have

T∑
t=1

ρ
πc
t
t − Lc

T =

T∑
t=1

∑
x

(
dπ

c
t(x)− µct (x)

)∑
a

πct (a|x)ℓt(x, a)

≤
T∑
t=1

∥dπ
c
t − µct∥1

≤ 2(τ + 1) + (τ + 1)

T∑
t=2

∥dπ
c
t − dπ

c
t−1∥1

≤ 2(τ + 1) + (τ + 1)2
T∑
t=2

∥πct − πct−1∥1,∞,

where the second inequality holds due to Lemma 15 and the last inequality holds due to Lemma 14.

Lemma 13. For any occupancy measure sequence qπ1 , . . . , qπT returned by the learner, it holds that LT −
∑T
t=1 ρ

πt
t ≤

(τ + 1)
∑T
t=2∥qπt − qπt−1∥1 + 2(τ + 1).

Proof. From the definition that µt = µ1P
π1 · · ·Pπt−1 , we have

LT −
T∑
t=1

ρπt
t =

T∑
t=1

∑
x

(µt(x)− dπt(x))
∑
a

πt(a|x)ℓt(x, a)
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≤
T∑
t=1

∥µt − dπt∥1

≤ 2(τ + 1) + (τ + 1)

T∑
t=2

∥dπt − dπt−1∥1

= 2(τ + 1) + (τ + 1)

T∑
t=2

∑
x

|
∑
a

qπt(x, a)− qπt−1(x, a)|

≤ 2(τ + 1) + (τ + 1)

T∑
t=2

∥qπt − qπt−1∥1,

where the second inequality holds due to Lemma 15.

Then, we present the proof of Theorem 5.

Proof of Theorem 5. Note that the dynamic regret for infinite-horizon MDPs is defined as E[D-REG(πc1:T )] =

E[
∑T
t=1 ℓt(xt, πt(xt))− ℓt(xt, π

c
t (xt))]. Then it can be written as

E[D-REGT (π
c
1:T )] = E

[
T∑
t=1

ℓt(xt, πt(xt))− ℓt(xt, π
c
t (xt))

]

= LT −
T∑
t=1

ρπt
t +

T∑
t=1

(ρπt
t − ρ

πc
t
t ) +

T∑
t=1

ρ
πc
t
t − Lc

T

≤
T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1),

where the last inequality holds due to Lemma 12 and Lemma 13 and the definition that PT =
∑T
t=2∥πt − πct ∥1,∞.

E.3. Proof of Theorem 6

Proof. Similar to the proof in Appendix C.3, since the MDP is ergodic according to Definition 1, we assume T is large
enough such that there at least exists a policy πu whose occupancy measure qu satisfies qπ

u ∈ ∆(M, 1
T ), then define

ut = (1− 1
T )q

πc
t + 1

T q
πu ∈ ∆(M, 1

T 2 ), from the dynamic regret decomposition in (9), we have

E[D-REGT (π
c
1:T )] (32)

≤
T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1)

=

T∑
t=1

⟨qt − ut, ℓt⟩+
1

T

T∑
t=1

⟨qπ
u

− qπ
c
t , ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1)

=

T∑
t=1

⟨qt − ut, ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1︸ ︷︷ ︸
term (a)

+(τ + 1)2PT + 4(τ + 1) + 2, (33)

where the first equality follows from the definition that ut = (1− 1
T )q

πc
t+ 1

T q
πu

. We only need to consider term (a) since the
remaining terms are not related to the algorithm. From the definition that ht,i = ⟨qt,i, ℓt⟩+(τ+1)∥qt,i−qt−1,i∥1,∀i ∈ [N ],
it can be verified that term (a) can be written as

T∑
t=1

⟨pt, ht⟩ −
T∑
t=1

ht,i︸ ︷︷ ︸
meta-regret

+(τ + 1)

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-switching-cost

+

T∑
t=1

⟨qt,i − ut, ℓt⟩︸ ︷︷ ︸
base-regret

+(τ + 1)

T∑
t=2

∥qt,i − qt−1,i∥1︸ ︷︷ ︸
base-switching-cost

,
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which hold for any index i. Next, we bound these terms separately.

Upper bound of base-regret. From the standard analysis of OMD similar to that in (13) and (15), we have

T∑
t=1

⟨qt,i − ut, ℓt⟩ ≤ ηi

T∑
t=1

∑
x,a

qt,i(x, a)ℓ
2
t (x, a) +

1

ηi

T∑
t=1

(Dψ(ut, qt,i)−Dψ(ut, qt+1,i))

≤ ηiT +
log |X||A|

ηi
+

2 log T

ηi

T∑
t=2

∥ut − ut−1∥1

≤ ηiT +
log |X||A|+ 2P̄T log T

ηi
,

(34)

which the last inequality holds due to
∑T
t=2∥ut − ut−1∥1 ≤

∑T
t=2∥qπ

c
t − qπ

c
t−1∥1 = P̄T .

Upper bound of meta-regret. From the definition that ht,i = ⟨qt,i, ℓt⟩ + (τ + 1)∥qt,i − qt−1,i∥1,∀i ∈ [N ], we have
0 ≤ ht,i ≤ 1 + 2(τ + 1) = 2τ + 3,∀i ∈ [N ]. By the standard analysis of Hedge similar to the analysis of meta-regret in
Appendix C.3, we have

T∑
t=1

⟨pt, ht⟩ −
T∑
t=1

ht,i ≤ ε

T∑
t=1

N∑
i=1

pt,ih
2
t,i +

logN

ε
≤ ε(2τ + 3)2T +

logN

ε
. (35)

Upper bound of switching-cost. From Lemma 3, we have

∥qt,i − qt−1,i∥1 ≤ ηi∥ℓt∥∞ ≤ ηi, and ∥pt − pt−1∥1 ≤ ε∥ht∥∞ ≤ ε(2τ + 3),∀t ≥ 2. (36)

Upper bound of overall dynamic regret. Combining (34), (35) and (36), we obtain

term (a) ≤ ηi(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi
+ ε(2τ + 3)2T +

logN

ε
+ ε(2τ + 3)(τ + 1)T

≤ ηi(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi
+ 2ε(2τ + 3)2T +

logN

ε
.

From the configuration that ε =
√

logN
2T (2τ+3)2 , we obtain

term (a) ≤ ηi(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi
+ (4τ + 6)

√
2T logN.

It is clear that the the optimal step size is η∗ =
√

log |X||A|+2P̄T log T
(τ+2)T . From the definition of P̄T , we have 0 ≤ P̄T =∑T

t=2∥qπ
c
t − qπ

c
t−1∥1 ≤ 2T , we ensure the possible range of η∗ is√

log |X||A|
(τ + 2)T

≤ η∗ ≤

√
log (|X||A|) + 4T log T

(τ + 2)T
.

Set the step size pool as H =
{
2i−1

√
log |X||A|

T | i ∈ [N ]
}

where N = ⌈ 1
2 log(1 +

4T log T
log |X||A| )⌉+ 1. We can verify that

η1 =

√
log |X||A|
(τ + 2)T

≤ η∗, and ηN ≥

√
log (|X||A|) + 4T log T

(τ + 2)T
= η∗.

Thus, we confirm that there exists a base-learner whose step size satisfies ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . Then, we choose i∗ to
analysis to obtain a sharp bound. Thus term (a) is bounded by

term (a) ≤ ηi∗(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi∗
+ (4τ + 6)

√
2T logN
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≤ η∗(τ + 2)T +
2(log (|X||A|) + 2P̄T log T )

η∗
+ (4τ + 6)

√
2T logN

≤ 3
√

(τ + 2)T (log |X||A|+ 2P̄T log T ) + (4τ + 6)
√
2T logN, (37)

where the second inequality holds due to the condition ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ and the last inequality holds by substituting

the optimal step size η∗ =
√

log |X||A|+2P̄T log T
(τ+2)T . Therefore, combining (33) and (37), we obtain

E[D-REGT (π
c
1:T )]

≤ term (a) + (τ + 1)2PT + 4τ + 6

≤ 3
√

(τ + 2)T (log |X||A|+ 2P̄T log T ) + (4τ + 6)
√
2T logN + (τ + 1)2PT + 4τ + 6

≤ 3
√

(τ + 2)T (log |X||A|+ 2(τ + 2)PT log T ) + (4τ + 6)
√

2T logN + (τ + 1)2PT + 4τ + 6

≤ O(
√
τT (log |X||A|+ τPT log T ) + τ2PT ),

where the third inequality uses P̄T ≤ (τ + 2)PT from Lemma 11. This finishes the proof.

E.4. Useful Lemmas

In this part, we present some useful lemmas in infinite-horizon MDPs. Denote by dπ the stationary state distribution induced
by policy π under transition kernel P , i.e., dπ(x) ≜

∑
a q

π(x, a),∀x ∈ X . Then we have the following useful lemmas
which show the relationships between policy discrepancy and distribution discrepancy.

Lemma 14 (Lemma 4 of Neu et al. (2014)). For any two policies π and π′, it holds that

∥dπ − dπ
′
∥1 ≤ (τ + 1)∥π − π′∥1,∞.

Proof. The statement follows from solving

∥dπ − dπ
′
∥1 ≤ ∥dπPπ − dπ

′
Pπ∥1 + ∥dπ

′
Pπ − dπ

′
Pπ

′
∥1 ≤ e−1/τ∥dπ − dπ

′
∥1 + ∥π − π′∥1,∞

for ∥dπ − dπ
′∥1 and using 1

1−e−1/τ ≤ τ + 1.

Lemma 15. Consider the distribution µt = µ1P
π1 · Pπt−1 , where µ1 is any distribution over X and π1, . . . , πt is any

policy sequence, it holds that

T∑
t=1

∥µt − dπt∥1 ≤ 2(τ + 1) + (τ + 1)

T∑
t=2

∥dπt − dπt−1∥1.

Proof. It is trivial for t = 1 since ∥µ1 − dπ1∥1 ≤ 2. Thus, in what follows we only consider the case that t ≥ 2.By the
triangle inequality, we have

∥µt − dπt∥1 ≤ ∥µt − dπt−1∥1 + ∥dπt−1 − dπt∥1
= ∥µt−1P

πt−1 − dπt−1Pπt−1∥1 + ∥dπt−1 − dπt∥1
≤ e−1/τ∥µt−1 − dπt−1∥1 + ∥dπt−1 − dπt∥1

≤ e−1/τ
(
e−1/τ∥µt−2 − dπt−2∥1 + ∥dπt−2 − dπt−1∥1

)
+ ∥dπt−1 − dπt∥1

≤ · · · ≤ e−(t−1)/τ∥µ1 − dπ1∥1 +
t−2∑
n=0

e−n/τ∥dπt−n − dπt−n−1∥1

≤ 2e−(t−1)/τ +

t−2∑
n=0

e−n/τ∥dπt−n − dπt−n−1∥1.
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where the first equality holds since dπt−1 is the stationary distribution of πt−1, i.e., dπt−1 = dπt−1Pπt−1 and the second
inequality holds due to Definition 1. Summing above inequality over t, we have

T∑
t=1

∥µt − dπt∥1 ≤ 2 + 2

T∑
t=2

e−(t−1)/τ +

T∑
t=2

t−2∑
n=0

e−n/τ∥dπt−n − dπt−n−1∥1

≤ 2(τ + 1) +

T∑
t=2

(

T−t∑
n=0

e−n/τ )∥dπt − dπt−1∥1

≤ 2(τ + 1) + (τ + 1)

T∑
t=2

∥dπt − dπt−1∥1.

This finishes the proof.
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