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Abstract
Few-Shot Learning (FSL) requires vision mod-
els to quickly adapt to brand-new classification
tasks with a shift in task distribution. Understand-
ing the difficulties posed by this task distribution
shift is central to FSL. In this paper, we show
that a simple channel-wise feature transformation
may be the key to unraveling this secret from a
channel perspective. When facing novel few-shot
tasks in the test-time datasets, this transformation
can greatly improve the generalization ability of
learned image representations, while being ag-
nostic to the choice of datasets and training al-
gorithms. Through an in-depth analysis of this
transformation, we find that the difficulty of rep-
resentation transfer in FSL stems from the severe
channel bias problem of image representations:
channels may have different importance in differ-
ent tasks, while convolutional neural networks are
likely to be insensitive, or respond incorrectly to
such a shift. This points out a core problem of the
generalization ability of modern vision systems
which needs further attention in the future.

1. Introduction
Deep convolutional neural networks (Krizhevsky et al.,
2012; He et al., 2016) have revolutionized computer vi-
sion in the last decade, making it possible to automatically
learn representations from a large number of images. The
learned representations can generalize well to brand-new
images. As a result, image classification performance is
close to humans on most benchmarks. However, in addi-
tion to recognizing previously-seen categories, humans can
quickly change their focus of image patterns in changing
environments and recognize new categories given only a
few observations. This fast learning capability, known as
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Figure 1. Examples of task distribution shift. Different classifi-
cation tasks may focus on distinct discriminative information. Top:
animals in miniImageNet with different plants as background. Mid-
dle: plants as the main categories in iNaturalist. Bottom: Different
types of plant diseases in the fine-grained Plant Disease dataset.

Few-Shot Learning (FSL), challenges current vision models
on the ability to quickly adapt to novel classification tasks
that are different from those in training. This task distri-
bution shift means that categories, domains of images or
granularity of categories in new tasks deviate from those in
the training tasks.

Recent studies of few-shot image classification have high-
lighted the importance of the quality of learned image repre-
sentations (Raghu et al., 2020; Doersch et al., 2020; Dhillon
et al., 2020; Tian et al., 2020; Rizve et al., 2021), and also
showed that representations learned by neural networks do
not generalize well to novel few-shot classification tasks
when there is task distribution shift (Chen et al., 2021; Do-
ersch et al., 2020; Agarwal et al., 2021). Thus it is crucial to
understand how task distribution shift affects the generaliza-
tion ability of image representations in few-shot learning.

As shown in Figure 1, task distribution shift may lead to
changes in discriminative image features that are critical to
the classification task at hand. For example, in the task of
recognizing animals, a convolutional neural network trained
on miniImageNet can successfully identify the discrimina-
tive information related to animals. Although the repre-
sentations learned by the network may encode some plant
information (from image background), plants do not appear
as a main category in miniImageNet and it may be insuf-
ficient for the network to distinguish various plants in a
novel few-shot task sampled from the iNaturalist dataset.
Even when the network is well trained to recognize plants
on iNaturalist, it is difficult to be adapted to the novel task
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of identifying plant diseases due to the granularity shift,
since the discriminative information now becomes the more
fine-grained lesion part of leaves.

In this paper, we show that this difficulty encountered in
few-shot learning leads to a channel bias problem in learned
image representations (i.e., features). Specifically, in the
layer after global pooling, different channels in the learned
feature seek for different patterns (as verified in (Zhou et al.,
2015; Bau et al., 2017)) during training, and the channels
are weighted (in a biased way) based on their importance to
the training task. However, when applied to novel few-shot
classification tasks, the learned image features usually do
not change much or have inappropriately changed without
adapting to categories in novel tasks. This bias towards
training tasks may result in imprecise attention to image
features in novel tasks.

What leads to our discovery of the channel bias problem is
a simple transformation function that we found in a mathe-
matical analysis textbook. Applied to top of image represen-
tations channel-wisely only at test time on the fly, this trans-
formation function can consistently and largely improve
predictions for out-of-distribution few-shot classification
tasks, being agnostic to the choice of datasets and training
algorithms (e.g., 0.5-7.5% average improvement over 5-way
5-shot tasks on 19 different test-time datasets, as shown
in Table 1). Through analysis, we reveal the existence of
channel bias problem, and show that this transformation rec-
tifies channel emphasis by adjusting the Mean Magnitude
of Channels (MMC) of image representations over the tar-
get task. Concretely, it serves as a smoothing function that
suppresses channels of large MMC and largely amplifies
channels of small MMC.

To further understand the channel bias problem, we derive
an oracle adjustment on the MMC of image representations
in binary classification tasks. Such studies demonstrate that
the channel bias problem exists in many different target
tasks with various types of task distributions shift, and it
becomes severe with the distribution shift expanding (as
shown in Figure 6). In addition, through test-time shot
analysis, we verify that the channel bias problem requires
more attention in few-shot setting, while simple fine-tuning
can help address this problem in many-shot setting.

2. A Channel-wise Feature Transformation
2.1. Problem Setup

In few-shot image classification, a training set Dtrain is
used at first to train a neural network parametrized by θ,
which will be evaluated on a series of few-shot classification
tasks constructed from the test-time dataset Dtest. Impor-
tantly, there should be task distribution shift betweenDtrain

and Dtest, which may include category shift, domain shift

or granularity shift. Each evaluated N -way K-shot few-
shot classification task τ is constructed by first sampling N
classes from Dtest, and then sampling K and M images
from each class to constitute a support set Sτ and a query set
Qτ , respectively. The support set Sτ = {(xτ

k,n, y
τ
k,n)}

K,N
k,n=1

consisting of K × N images xτ
k,n and corresponding la-

bels yτk,n from the N classes is used to construct a classi-
fier pθ(·|x,Sτ ), which is further evaluated on the query set
Qτ = {x∗τ

m,n}
M,N
m,n=1. The evaluation metric is the average

prediction accuracy on query set over all sampled few-shot
classification tasks.

In order to evaluate on different types and degrees of task
distribution shift, in the following experiments, we select a
broad range of datasets for Dtrain and Dtest. For Dtrain,
we choose (1) the train split of miniImageNet (Vinyals
et al., 2016) that contains 38400 images from 64 classes; (2)
the train split of ImageNet 1K (Russakovsky et al., 2015)
containing more than 1M images from 1000 classes; (3)
train+val split of iNaturalist 2018 (Horn et al., 2018), a fine-
grained dataset of plants and animals with a total of more
than 450000 training images from 8142 classes. For Dtest,
we choose the test split of miniImageNet, and all evaluation
datasets of Meta-dataset (Triantafillou et al., 2020), BSCD-
FSL benchmark (Guo et al., 2020) and DomainNet (Peng
et al., 2019), for a total of 19 datasets, to ensure adequate
coverage of different categories, domains and task granular-
ities.

2.2. Universal Performance Gains from a Test-time
Simple Feature Transformation

Let x ∈ RD denote an image and fθ(·) a feature extractor
learned from the training setDtrain. The l-th channel of the
feature z = fθ(x) ∈ Rd is defined as the l-th dimension
of z, i.e., {zi}di=1 is the set of all d channels. The simple
transformation function ϕk : [0,+∞)→ [0,+∞) that we
consider is defined as

ϕk(λ) =

{
1

lnk( 1
λ+1)

, λ > 0

0, λ = 0
(1)

where k > 0 is a hyperparameter. At test time, we sim-
ply use this function to transform each channel of image
features, i.e.,

ϕk(z) = (ϕk(z1), ..., ϕk(zd)). (2)

When applying this transformation, we transform all image
features in the target classification task regardless of whether
they are in the support set or query set; any subsequent
operation keeps unchanged. Note that this function can only
be applied to features taking non-negative values, common
in most convolutional neural networks using ReLU as the
activation function. We discuss one variant of the function
dealing with features having negative values (e.g., networks
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Table 1. Performance gains of the simple feature transformation on various training and testing datasets with a broad range of
choices of network architectures and algorithms. The black values indicate the original accuracy, and the red values indicate the
increase. Each running of evaluation contains 10000 5-way 5-shot tasks sampled using a fixed seed, and the average accuracy is reported.
The three groups of test-time datasets come from MetaDataset, BSCD-FSL benchmark and DomainNet, respectively.

TrainData mini-train ImageNet iNaturalist
Algorithm PN PN CE MetaB MetaOpt CE S2M2 PN CE MoCo-v2 CE

Architecture Conv-4 Res-12 Res-12 Res-12 Res-12 SE-Res50 WRN Res-50 Res-50 Res-50 Res-50 Average
mini-test 66.6+1.2 73.5+2.2 75.9+1.6 74.7+2.6 74.8+0.5 76.2+0.2 82.5+1.2 82.2-1.6 89.1-0.5 93.7+2.2 69.9+2.2 78.1+1.1

CUB 52.0+2.8 57.0+3.0 59.6+2.3 60.1+2.6 60.3+1.7 59.9+2.2 68.5+2.8 65.3+2.5 78.2+0.4 70.0+6.8 94.7+0.0 66.0+2.5
Textures 50.9+2.3 57.1+4.2 63.1+2.4 61.2+3.7 60.2+1.8 63.5+0.6 69.3+2.9 61.9+2.4 71.6+0.8 82.8+0.9 63.2+2.3 64.1+2.0

Traffic Signs 52.6+2.1 64.8+2.2 65.6+1.4 67.3+1.5 67.1+4.9 62.2+2.9 69.6+3.1 64.0+2.2 67.2+3.5 68.4+8.8 60.5+4.0 64.4+3.3
Aircraft 32.1+0.9 31.3+1.6 34.7+1.9 34.7+2.3 35.6+2.4 38.2+2.0 40.5+4.7 38.4+1.7 46.6+2.5 34.5+8.8 42.1+2.5 34.0+2.9

Omniglot 61.0+10.0 77.6+7.8 86.9+3.7 81.6+7.9 78.0+9.9 89.9+2.3 85.9+7.4 76.4+2.9 88.6+5.3 74.5+15.8 83.8+9.0 80.4+7.5
VGG Flower 71.0+3.1 71.1+5.5 79.2+3.8 78.3+4.5 78.4+3.1 83.0+1.7 87.8+2.5 81.4+2.6 89.3+1.7 86.2+6.3 91.9+1.1 81.6+3.3
MSCOCO 52.0+1.2 58.2+1.1 59.0+0.7 58.0+1.6 58.4+0.1 57.1+0.5 63.5+0.1 61.3-0.5 64.3-0.4 71.4+1.4 50.4+1.9 59.4+0.7

Quick Draw 49.7+6.5 60.2+5.4 67.5+6.5 61.9+9.0 61.0+6.2 69.8+2.8 66.4+8.2 59.8+6.9 70.2+3.0 63.7+8.3 60.8+6.2 62.8+6.3
Fungi 48.5+1.5 49.0+3.7 52.2+3.3 51.5+4.0 54.6+1.9 55.2+0.5 61.6+3.8 58.5+1.3 65.1+1.1 60.2+9.2 70.0+1.8 56.9+2.9

Plant Disease 66.6+7.8 73.3+7.9 80.0+5.1 75.6+7.6 78.6+4.5 83.1+3.2 86.4+3.5 72.5+8.0 84.1+3.3 87.1+4.7 85.6+4.1 79.4+5.4
ISIC 38.5+1.6 36.8+2.9 40.4+1.0 38.8+1.7 39.5+2.3 37.7+3.9 40.5+5.5 39.5+4.0 37.8+3.6 43.2+2.8 39.0+4.3 39.2+3.1

EuroSAT 63.0+4.5 67.3+5.5 75.7+2.9 71.9+4.5 72.8+5.8 75.7+1.6 81.2+2.9 72.5+6.1 78.4+2.2 83.5+2.7 73.5+3.7 74.1+3.9
ChestX 22.9+0.2 23.0+0.5 24.1+0.3 23.5+0.5 24.5+0.4 23.6+0.2 24.2+0.9 23.2+0.3 24.2+0.8 25.4+0.9 23.9+0.1 23.9+0.5

Real 67.0+1.8 72.2+3.1 76.3+1.6 75.0+2.6 75.8+1.1 76.7+0.5 81.7+1.9 80.5+0.4 87.1-0.1 88.8+2.1 72.9+1.7 77.6+1.5
Sketch 42.6+2.9 45.3+5.0 51.1+2.6 50.2+3.4 50.6+2.0 50.9+2.4 56.8+4.1 53.1+1.5 63.2+2.5 63.9+5.8 51.9+1.4 52.7+3.1

Infograph 33.1+2.8 34.7+3.7 35.3+2.8 35.0+4.0 38.3+1.1 38.2+2.5 39.2+3.7 39.7+2.7 42.3+4.2 41.6+7.1 38.5+2.9 37.8+3.4
Painting 49.0+1.7 52.5+3.3 56.1+1.4 55.1+2.5 56.2+0.7 59.3+0.8 64.2+1.8 61.8-0.2 69.6+0.5 76.5+3.0 56.4+1.9 59.7+1.6
Clipart 47.5+3.6 49.7+4.8 55.5+3.1 54.9+4.3 56.4+2.6 60.4+2.3 63.0+4.3 60.9+1.8 72.7+1.5 67.4+7.0 58.4+2.2 58.8+3.4

with Leaky ReLU) in Appendix D. A plot of this function
with various choices of k is shown in Figure 2.

Table 1 shows the performance gains brought by this trans-
formation on 5-way 5-shot FSL tasks. We test the transfor-
mation on representations trained with different algorithms,
including (1) the conventional training methods including
cross-entropy (CE) and the S2M2 algorithm (Mangla et al.,
2020), (2) meta-learning methods including ProtoNet (Snell
et al., 2017) (PN), Meta-baseline (Chen et al., 2021) and
MetaOpt (Lee et al., 2019), and (3) MoCo-v2 (He et al.,
2020), a unsupervised contrastive learning method. We
test these methods with various backbone networks: Conv-
4 (Vinyals et al., 2016) and four variants of ResNet (He et al.,
2016) including ResNet-12 (Oreshkin et al., 2018), WRN-
28-10 (Zagoruyko & Komodakis, 2016), ResNet-50 and
SE-ResNet50 (Hu et al., 2018). We replace Leaky ReLU
with ReLU in ResNet-12 to obtain positive features (cause
of performance degradation in Table 1). At test-time, we
use the Nearest-Centroid Classifier (Snell et al., 2017) for
CE, linear probing for S2M2 and MoCo-v2, and for meta-
learning algorithms we use their own test-time classifier.
Training and evaluation details can be found in Appendix B.

The result shows how this simple feature transformation
substantially improves few-shot learning across various al-
gorithms, datasets and architectural choices, with a fixed
hyperparameter k = 1.3 (We show how performance varies
with different choices of k in Appendix C). The only ex-
ception happens when the test-time task distribution is very
similar to a subset of training distribution: training the su-
pervised models on ImageNet and testing on miniImageNet,
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Figure 2. The simple transformation function ϕk with various
choices of k.

MSCOCO, Real or Painting1, or training on iNaturalist and
testing on CUB. Is this transformation useful only if there
exists task distribution shift between training and testing? To
verify this, we train a CE model on each of ten datasets and
test on 5-way 5-shot tasks sampled from each dataset. When
testing on the training dataset, we evaluate on images not
included in training. The results shown in Figure 3 clearly
give evidence that the transformation is beneficial only to
few-shot classification with task distribution shift—the per-
formance is improved only when test-time task distribution
deviates from training, and this distribution shift includes
domain shift (e.g., from Sketch to QuickDraw), category
shift (e.g., from Plant Disease to Fungi) and granularity shift
(e.g., from iNaturalist to Plant Disease in Table 1).

1There are a lot of painting-style images in ImageNet. Con-
trastive learning (MoCo) can be seen as an infinitely fine-grained
classification task, thus having a relatively large different task
distribution shift from training to testing, even on the same dataset.
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Figure 3. In-distribution (diagonal) and out-of-distribution (off-
diagonal) performance gains of the simple channel-wise transfor-
mation on representations trained with CE. When the test-time
dataset equals the training dataset (diagonal), the categories of
images remain the same but test-time images are unseen during
training (as in conventional classification).

3. The Channel Bias Problem
In this section, we analyze the simple transformation, which
leads us to discover the channel bias problem of visual rep-
resentations. Given the transformation function described
in Eq.(1), it can be first noticed that

ϕ′
k(λ) > 0, lim

λ→0+
ϕ′
k(λ) = +∞,

∃t > 0, s.t. ∀λ ∈ (0, t), ϕ′′
k(λ) < 0, (3)

where t is a large value for most k, relative to the magni-
tudes of almost all channels (e.g., when k = 1.3, t ≈ 0.344,
while most channel values are less than 0.3). The positive-
ness of the derivative ensures that the relative relationship
between channels will not change, while the negative sec-
ond derivative narrows their gaps; the infinite derivative
near zero pulls up small channels by a large margin, i.e.,
limλ→0+

ϕk(λ)
λ = +∞. See Appendix E for the necessity

of all these properties. A clear impact of these properties on
features is to make channel distribution smooth: suppress
channels with high magnitude, and largely amplify channels
with low magnitude. This phenomenon is clearly shown in
Figure 4, where we plot mean magnitudes of all 640 feature
channels on miniImageNet and PlantDisease, with red ones
being the original distribution, blue ones being the trans-
formed distribution. The transformed distribution becomes
more uniform.

Intuitively, different channels have high responses to dif-
ferent features, and a larger Mean Magnitude of a Channel
(MMC) implies that the model puts more emphasis on this
channel, hoping that this channel is more important for the
task at hand. Combining the analysis above with previous
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Figure 4. Mean magnitudes of feature channels before and after
applying the simple transformation. The feature extractor is
trained using PN on the training set of miniImageNet. Left: test set
of miniImageNet. Right: The Plant Disease dataset. The change
of relative magnitude is due to different variances of channels.

experiment results, we conjecture that the MMC of repre-
sentations should change when testing on novel tasks with a
shift in distribution. This meets our intuition that different
tasks are likely to be characterized by distinct discriminative
features, as shown in the examples of Fig 1.

3.1. Deriving the Oracle MMC of Any Binary Task

We now wonder how much the MMC estimated by neu-
ral networks in a task deviates from the best MMC or
channel importance of that task. To achieve this goal, we
first derive the optimal MMC for any classification task
by multiplying a positive constant to each channel of fea-
tures, given that we know the first-order and second-order
statistics of features. For convenience, we consider the
binary classification problem. Specifically, let D1, D2 de-
note probability distributions of two classes over feature
space Z ⊂ [0,+∞)d, and z1 ∼ D1, z2 ∼ D2 denote
samples of each class. Let µ1,µ2 and Σ1,Σ2 denote their
means and covariance matrices, respectively. We assume
that the channels of features are uncorrelated with each other,
i.e., there exist σ1,σ2 ∈ [0,+∞)d, s.t. Σ1 = diag(σ1),
Σ2 = diag(σ2). The original MMC of the binary task is
defined as ωo = (µ1 + µ2)/2. We assume that the MMC
after adjustment is ω ∈ [0,+∞)d. Let z̃1, z̃2 denote stan-
dadized version of z1, z2 that have unit MMC, i.e., z̃1,l =
z1,l/ω

o
l , z̃2,l = z2,l/ω

o
l ⇒ (µ̃1,l + µ̃2,l)/2 = 1,∀l ∈ [d]

([d] is equivalent to {1, 2, ..., d}). A simple approach to
adjust MMC to ω is to transform features to ω ⊙ z̃1 and
ω⊙ z̃2 respectively, where⊙ denotes the hadamard product.
Here, we consider a metric-based classifier. Specifically,
a standardized feature z̃ is classified as the first class if
||ω ⊙ (z̃ − µ̃1)||2 < ||ω ⊙ (z̃ − µ̃2)||2 and otherwise the
second class. This classifier is actually the Nearest-Centroid
Classifier (NCC) (Snell et al., 2017) with accurate centroids.
Assume that two classes of images are sampled equal times,
then the expected misclassification rate of this classifier is

R =
1

2
[Pz1∼D1

(||ω ⊙ (z̃1 − µ̃1)||2 > ||ω ⊙ (z̃1 − µ̃2)||2)

+Pz2∼D2(||ω ⊙ (z̃2 − µ̃2)||2 > ||ω ⊙ (z̃2 − µ̃1)||2)].
(4)
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Figure 5. Visualization of two channels of image features in two
classes of Plant Disease. The feature extractor is trained using
PN on miniImageNet. We visualize a one-shot task with only
two channels available for classification. The plot with “None”
shows the original channels. The plots with “Simple” and “Oracle”
show channels adjusted by the simple and oracle transformation.
The per-class accuracy is calculated as the proportion of samples
correctly classified by the classification boundary in each class.

The following theorem gives an upper bound of the mis-
classification rate and further gives the oracle MMC of any
given task.
Proposition 3.1. Assume that µ1,l ̸= µ2,l and σ1,l+σ2,l >
0 hold for any l ∈ [d], then we have

R ≤
8
∑d

l=1 ω
4
l (σ̃1,l + σ̃2,l)

2

(
∑d

l=1 ω
2
l (µ̃1,l − µ̃2,l)2)2

. (5)

To minimize this upper bound, the adjusted oracle MMC of
each channel ωl should satisfy:

ωl ∝
|µ1,l − µ2,l|
σ1,l + σ2,l

. (6)

Proofs are given in Appendix A. We here use the word
“oracle” because it is derived using the class statistics of the
target dataset, which is not available in few-shot tasks. This
derived MMC has an intuitive explanation: if the difference
between the means of features from two classes is large but
the variances of features from two classes are both small,
the single channel can better distinguish the two classes and
thus should be emphasized in the classification task. In fact,
if we further assume x1,l and x2,l are Gaussian-distributed
and consider only using the l-th channel for classification,
then the misclassification error for the i-th class (i = 1, 2)
is a strictly monotonically decreasing function of |µ1,l −
µ2,l|/σi,l.

Table 2 shows the performance improvement over the simple
feature transformation when adjusting the MMC to derived
oracle one in each of the real few-shot binary classification
tasks. For every sampled binary task in a dataset, we calcu-
late the oracle adjustment based on Eq. (6); see Appendix
F.1 for details. The oracle MMC improves performance
on all datasets, and always by a large margin. Note that
although the oracle MMC is derived using a metric-based
classifier, it can also help a linear classifier to boost perfor-
mance, which will be further discussed in Section 4. The
large performance gains using the derived channel perfor-
mance indicate that the MMC of features on new test-time
few-shot task indeed has a large mismatch with ground-truth
channel importance.

To obtain a better understanding, in Figure 5, we visualize
image representations of two classes when transferred from
miniImageNet to Plant Disease. The two exhibited classes
are apples with Apple Scab and Black Rot diseases, respec-
tively. We visualize 2 out of 640 channels in the features,
shown as the x-axis and y-axis in the figure. We select these
channels by first selecting a channel that requires a large sup-
pression of MMC (x-axis), and then a channel that requires
a large increase (y-axis). As seen, the x-axis channel has a
large intra-class variance ( the variances are 0.13 and 0.11
in two classes on the x-axis channel, compared to 0.03 and
0.08 on the y-axis channel) and a small class mean differ-
ence (about 0.03, compared to 0.13 on the y-axis channel),
so it is hard to distinguish two classes through this chan-
nel. By adjusting the mean magnitude of this channel, the
simple transformation and oracle adjustment decrease the
intra-class variance of the x-axis channel, and so decrease
its influence on classification. Similarly, the y-axis channel
can better distinguish two classes due to its relatively larger
class mean difference and smaller intra-class variance, so
the influence of the y-axis channel should be strengthened.

3.2. Analysis of Channel Importance

Next, we take the derived oracle MMC as an approxima-
tion of the ground-truth channel importance, and use it to
observe how the simple transformation works, as well as
how much the channel emphasis of neural networks de-
viates from the ground-truth channel importance of tasks
in each test-time dataset. We define MMC of a dataset
D as the average l1-normalized MMCs over all possible
binary tasks in that dataset. Specifically, suppose in one
dataset D there are C classes, and let ωij denote the MMC
in the binary task discriminating the i-th and j-th class.
ωij = ωij/||ωij ||1 normalizes the MMC, such that the
l-th component of the vector ωij represents the percent-
age of channel emphasis on the l-th channel. Then the
MMC of D is defined as ωD =

∑
1≤i<j≤C ωij , which

gives average percentages of channel emphasis over all bi-
nary tasks. We visualize the oracle MMC, compared with
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Figure 6. Visualization of MMC of ten datasets ωD before and after the use of simple and oracle transformation. In each plot, a
point represents a channel, and the x-axis and y-axis represent the MMC before and after transformation respectively, averaged over all
possible binary tasks in the corresponding dataset. For comparison, we also plot the line y = x representing the “None” scenario where
none of the transformations are applied to features. The feature extractor is trained using PN on miniImageNet.

Table 2. The performance gains of the oracle MMC on 5-shot binary classification tasks on various datasets. The derived MMC improves
the few-shot performance of both metric and non-metric test-time methods: Nearest-Centroid Classifier (NCC) and Linear Classifier (LC).

Algorithm Classifier Transformation mini CUB Texture TS PlantD ISIC ESAT Sketch QDraw Fungi Avg

PN NCC
None 90.5 80.6 80.6 85.1 89.2 65.7 86.5 71.9 82.4 74.6 80.7

Simple 91.3 82.4 83.1 85.8 93.0 68.6 89.2 75.2 85.1 77.2 83.1
Oracle 93.1 88.7 87.2 92.4 95.6 69.1 91.5 81.2 89.4 88.4 87.7

S2M2 LC
None 94.0 87.1 85.7 88.7 95.0 68.7 93.5 78.7 85.5 82.8 86.0

Simple 94.4 88.3 87.3 91.2 96.4 72.2 93.8 81.0 89.2 84.5 87.8
Oracle 96.3 94.0 90.7 96.1 98.3 72.6 95.2 87.0 93.0 93.3 91.7

MMC adjusted by the simple transformation and the orig-
inal MMC of each dataset in Figure 6. A point in each
figure represents a channel of the image features, with x
and y axis being its MMC of that dataset before and af-
ter transformation, respectively. To obtain a more precise
understanding, we also want to quantitatively measure dif-
ference between different MMCs or image features. To
achieve this, given a distance measure d(·, ·) (not necessar-
ily a metric), we define three levels of distances: (1) dataset-
level distance d(ωDa

,ωDb
) that measures the distance be-

tween MMCs of two datasets (or the same dataset with
different transformations); (2) in-dataset task-level distance
C(C+1)

2

∑
1≤i<j≤C d(ωa

ij ,ω
b
ij) that measures average dis-

tance between MMCs of all tasks from a dataset obtained
by different feature transformations, and (3) image-level
distance 1

|D|
∑|D|

i=1 d(z
i
a, z

i
b), a more fine-grained one that

measures average distance between all l1-normalized image
features zi

a, z
i
b of dataset D under different feature transfor-

mations. For dataset-level distance, we adopt the normalized
mean square difference d(x,y) = 1

d

∑d
l=1(xl − yl)

2/x2
l ,

since it treats each channel equally w.r.t. to the scale and
is sensitive to high deviation. However, for task-level and
image-level distance, we choose the mean square differ-
ence d(x,y) = 1

d

∑d
l=1(xl − yl)

2 instead to avoid high
variations caused by a single task or image feature that has

channels with very small magnitude; see Appendix F.2 for
details. We calculate the distance (1) between the original
MMC of the training set (mini-train) and each test set, to see
how much neural networks change channel emphasis when
faced with novel tasks, (2) between the original and oracle
MMC to see how much the changed emphasis is biased on
each dataset, and (3) between the simple and oracle MMC
of each dataset to see how much the simple transformation
alleviates the problem. The results are shown in Table 3.

Neural networks are overconfident in previously learned
channel importance. Comparing the first and second rows
in Table 3, we can see that the adjustment of MMC that the
network made on new tasks is far from enough: the distance
of original MMCs between train and test set (the first row) is
much smaller than that between original and oracle MMCs
on the test set. This suggests channels that are important to
previously learned tasks are still considered by the neural
network to be important for distinguishing new tasks, but in
fact, the discriminative channels are very likely to change
on new tasks. This can be also observed from each plot in
Figure 6, where the oracle MMC pushes up channels having
small magnitudes and suppresses channels having large
magnitudes. The magnitudes of a large number of small-
valued channels are amplified 10× times or more by the
oracle MMC, while large-valued channels are suppressed
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Table 3. Three levels of distance between different MMCs or l1-normalized image features. The first row shows the dataset-level distance
between the original MMC of the training set (mini-train) and each test set; the second row shows the dataset-level distance between
the original and oracle MMCs on each dataset; rows 3-6 show the task-level and image-level distances (both amplified by 106 times)
between MMCs obtained by simple and oracle transformation or between original MMCs (None) and the MMCs obtained by oracle
transformation. The feature extractor is trained using PN on the training set of miniImageNet (mini-train).

Test dataset
Level Compared dataset Trans. mini-train mini-test CUB Texture TS PlantD ISIC ESAT Sketch QDraw Fungi

Dataset Train v.s. Test None - 0.18 1.56 0.88 1.13 1.54 2.28 1.30 1.01 1.58 0.79
Test None v.s. Oracle 0.42 0.72 3.60 1.78 4.04 3.92 3.47 5.62 4.26 3.37 3.87

Task Test None v.s. Oracle 3.60 4.04 3.53 4.13 3.68 4.09 3.15 4.24 5.31 4.22 3.38
Simple v.s. Oracle 3.54 3.80 2.93 3.62 3.22 3.65 2.59 3.71 4.35 3.18 2.78

Image Test None v.s. Oracle 10.52 10.65 11.53 25.20 9.88 9.75 13.04 16.33 27.36 13.46 11.39
Simple v.s. Oracle 7.98 8.14 8.69 16.74 7.06 7.34 8.43 11.22 19.50 9.32 8.71
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Figure 7. Examples of Grad-Cam (Selvaraju et al., 2017) class
activation maps of query samples using PN before and after the
oracle adjustment of MMC on binary 5-shot tasks sampled from
the test set of miniImageNet.

5× times or more, and in most datasets originally large-
valued channels eventually have similar channel importance
to those of originally small-valued channels. The simple
transformation, although not being perfect, also regularizes
channels due to its smoothing property discussed in Section
3. We call this problem the channel bias problem.

The channel bias problem diminishes as task distribu-
tion shift lessens. The channel patterns in Figure 6 on all
datasets look similar, except for miniImageNet, whose over-
all pattern is close to the line y = x representing the original
MMCs. There does not exist dominant channels when test-
ing on miniImageNet (The maximum scale of channels is
within 0.006), while on other datasets there are channels
where the neural network assigns much higher but wrong
MMCs which deviate far away from the y = x line. In the
second row of Table 3, we can also see that the distance
between the original and oracle MMCs on miniImageNet,
especially on mini-train that the model trained on, is much
smaller than that on other datasets2. Since mini-test has a

2Unnormalized mean square difference ignores critical changes
of small-valued channels. This is why we do not observe simi-
lar phenomenon from the task and image-level difference; see
Appendix F.2 for detailed explanations.

similar task distribution with mini-train, we can infer that
the channel bias is less serious on datasets that have similar
task distribution. This explains why in Table 1 and Figure
3 the simple transformation gets a relatively low improve-
ment when trained on mini-train and tested on mini-test, and
even degrades performance when trained and tested on tasks
sampled from the same task distribution.

The channel bias problem distracts the neural network
from new objects. In Figure 7, we compare some class
activation maps before and after the oracle adjustment of
MMC. We observe that adjusting channel importance helps
the model adjust the attention to the objects responsible
for classification using a classifier constructed by only a
few support images. This matches observation in previous
work (Zhou et al., 2015; Bau et al., 2017) that different chan-
nels of image representations are responsible for detecting
different objects. The task distribution shift makes mod-
els confused about which object to focus on, and a proper
adjustment of channel emphasis highlights the objects of
interest.

The simple transformation pushes MMCs towards the
oracle ones. Observing Figure 6, it is evident that the sim-
ple transformation pushes MMCs towards the oracle ones
(compared with the line y = x), albeit not perfectly. This
observation is further confirmed by the None v.s. Oracle
and Simple v.s. Oracle comparison of fine-grained task-
level and image-level distance shown from the third row to
the last row of Table 3. On each of the test-time dataset,
the distance between MMCs obtained by simple and oracle
transformation is smaller than that bewteen original MMCs
and the MMCs obtained by oracle transformation.

4. Analysis of the Number of Shots
We have seen that the channel bias problem is one of the
main reasons why image representations cannot generalize
well to new few-shot classification tasks. However, two
questions remain to be answered: (1) we are still unclear
whether this problem is only tied with few-shot image clas-
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Figure 8. Shot analysis of miniImageNet. Left: performance of dif-
ferent test-time methods. Right: performance gains of the simple
transformation using different test-time methods.

sification. In all previous experiments, we tested on tasks
where only 5 labeled images per class are given. What will
happen if we have more training examples in the new task?
(2) How much will different test-time methods be influenced
by the channel bias problem? If we have the opportunity
to fine-tune the learned representations, will the proposed
simple transformation still work?

In order to give answers to these questions, we conduct shot
analysis experiments on three representative test-time meth-
ods that are adopted or are the basis of most mainstream
few-shot classification algorithms: (1) The metric-based
method Nearest-Centroid Classifier (NCC) presented in Pro-
toNet, which first average image features of each class in
the support set to form class centroids and then assign query
features to the class of the nearest centroid; (2) Linear Clas-
sifier (LC), which trains a linear layer upon learned image
features in the support set, and (3) Fine-tuning, which fine-
tunes the feature extractor together with the linear layer
using images in the support set. The feature extractor is
trained using the state-of-the-art S2M2 algorithm on the
training set of miniImageNet, and we test it on the test set
of miniImageNet using the above three test-time methods
with different numbers of labeled images in each class of
the support set. The results are shown in Figure 8. We show
the original accuracy of all methods, as well as the impact
of simple transformation on the performance.

We first take a look at the right plot, which shows the im-
pact of the simple transformation on all the methods. The
performance gains on NCC and LC stay at a relatively high
value for all tested shots, which is up to 400 labeled images
per class. This indicates that the channel bias problem is not
only linked to few-shot settings, but also exists in many-shot
settings. However, when we have abundant support images,
we have an alternative choice of fine-tuning the feature ex-
tractor directly. Fine-tuning methods have the potential to
fully resolve the channel bias problem by directly modifying
the image representation and rectifying the channel distribu-
tion. The right figure shows that the simple transformation
does not improve fine-tuning methods, so indeed the channel
bias problem has been largely alleviated. In the left figure,
the fine-tuning method exhibits its advantages in many-shot
setting, but falls short in few-shot settings. Therefore, we

can infer that the channel bias problem exists only in the
few-shot setting where freezing the feature extractor and
building the classifier on learned features becomes a better
choice.

We also have another notable observation. While the perfor-
mance gain of simple transformation on NCC stays around
a fixed value, the performance gain on LC decreases with
the increase of shots. Thus the channel bias problem is alle-
viated to some extent in many-shot settings. This is because
more labeled data tells the linear classifier sufficient infor-
mation about intra-class variance of data, making it possible
to adjust MMC by modifying the scale of each row of the
linear transformation matrix. So Linear Classifier can stably
increase its performance when more labeled data comes in,
until no more linear separation can be achieved, and also the
time fine-tuning should get into play to adjust the feature
space directly.

5. Discussion and Related Work
Task distribution shift. Task distribution shift may hap-
pen when a model faces category shift, domain shift or
granularity shift. Conventional benchmarks of FSL only
consider category shift, i.e. the categories are disjoint for
training and testing, such as miniImageNet (Vinyals et al.,
2016) and CIFAR-FS (Bertinetto et al., 2019). In cross-
domain few-shot learning (Chen et al., 2019), domain shift
exists between train and test-time tasks, and several later
benchmarks such as BSCD-FSL (Guo et al., 2020) and
Meta-dataset (Triantafillou et al., 2020) both target at such
setting. Recently, the shift of granularities of categories has
been considered as another type of task distribution shift,
and is also called Coarse-to-Fine Few-Shot (C2FS) Learn-
ing (Luo et al., 2021a; Bukchin et al., 2021; Yang et al.,
2021a), which trains a model on coarse-labeled images and
tests on few-shot tasks that aim at distinguishing between
fine-grained subclasses of training categories. Our work
reveals that all three types of task distribution shift have a
similar phenomenon of channel bias problem.

The influence of task distribution shift on FSL has been
firstly studied in (Doersch et al., 2020). They find that the
representation constructed by meta-learning algorithms can-
not capture useful discriminative information outside of the
training categories. They solve this problem by highlighting
the crucial spatial information for classification, using a
cross-attention module between support and query features
in new tasks. The algorithm COSOC (Luo et al., 2021b)
also considers filtering task-irrelevant spatial information,
but it achieves it more directly. They identify image back-
ground as harmful information in both training and testing
and design a method to remove the background, in order to
reduce the difficulty of category transfer. The perspective of
our work is different, not focusing on discriminative spatial
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positions of features, but orthogonally taking inspections on
discriminative channel information of features.

Test-time methods for FSL. The presented three methods
in Section 4 represent three types of mainstream algorithms
in FSL. (1) Finetuning—Optimization-based algorithms,
originated mainly from MAML (Finn et al., 2017), opti-
mizes both the learned feature extractor and classifier to-
gether at test-time. Most work that fall into this type use
meta-learning to train the network (Rusu et al., 2019; Ra-
jeswaran et al., 2019; Zintgraf et al., 2019; Park & Oliva,
2019). When training adopts conventional supervised ap-
proaches, the method turns to resemble transfer learning
approaches, and is adopted in (Dhillon et al., 2020) and
BiT (Kolesnikov et al., 2020). In the experiments of Section
4, we notice that in few-shot settings, although alleviating
channel bias problem, fine-tuning method performs gener-
ally worse and may require very different hyperparameters
for different test-time datasets to avoid overfitting, which is
impossible to achieve in a realistic few-shot scenario, thus
we believe finetuning would not be the best test-time choice.
(2) NCC—metric-based algorithms (Vinyals et al., 2016;
Snell et al., 2017; Zhang et al., 2020; Hou et al., 2019; Do-
ersch et al., 2020) that aim at learning a well-shaped feature
space equipped with a distance metric for comparing the sim-
ilarity of images, on which the test-time prediction depends.
Metric-based methods, as we have shown, benefit from in-
ductive bias given by the metric and thus are widely adopted
in state-of-the-art algorithms. (3) LC—most conventionally
trained methods adopt LC as the test-time methods (Chen
et al., 2019; Mangla et al., 2020; Tian et al., 2020; Liu et al.,
2020; Rizve et al., 2021), and two meta-learning algorithms
MetaOpt (Lee et al., 2019) and ANIL (Raghu et al., 2020)
use LC in both training and testing. The importance of a
good quality of image representation is mainly figured out
from this line of work.

Other feature transformations in FSL. LFT (Tseng et al.,
2020) introduces learnable channel-wise feature transforma-
tions into training for cross-domain few-shot learning. The
transformations are put inside backbone, instead of on top
of representations, and are only used at train time, learned
in a learning-to-learn fashion using multiple domains of
datasets. Z-score transformation upon image representations
is introduced in (Fei et al., 2021) for solving the hubness
problem of image representations in FSL. CCF (Xu et al.,
2021) proposes a variant of variational autoencoder to trans-
form features, which utilizes category relationship between
training and test-time classes to rectify the feature distribu-
tions. Feature-wise linear modulation (FiLM) (Perez et al.,
2018) that turns scaling and shifting coefficients in batch
normalization layer (seen as parameters of a linear feature
transformation) into dataset- or task-dependent learnable
parameters has been adopted in several FSL algorithms (Ore-
shkin et al., 2018; Requeima et al., 2019; Triantafillou et al.,

2021; Li et al., 2022). The core idea of these methods is to
only tune the FiLM modules at test time in order to reduce
overfitting. Thus these methods in some sense belong to
finetuning-based methods, and have the potential to perform
better than vanilla finetuning in low-shot settings. Contrary
to our work, all methods discussed above do not discover
or target at the channel bias problem. The most relevant
method to our paper may be ConFeSS (Das et al., 2022),
a framework that masks task-irrelevant channels in image
representations at test time for cross-domain few-shot learn-
ing. Our work shows that the success of ConFeSS may be
attributed to alleviating the channel bias problem by aban-
doning overconfident channels when transferred to novel
tasks.

6. Conclusion
In this paper, we reveal the channel bias problem in few-shot
image classification. The problem can be alleviated by a
simple channel-wise feature transformation presented in this
work. This transformation, used at test-time without adding
any computation overhead, can be applied to most pre-
trained convolutional neural networks and few-shot learning
algorithms. We show it serves as prior knowledge that regu-
larizes the channel distribution of features. Further analysis,
including a derivation of the oracle MMC adjustment, ana-
lyzes comprehensively the channel bias problem. We hope
that the channel bias problem revealed in this work, along
with analysis of different test-time methods, can provide the
community with a better understanding of task distribution
shift and representation transfer in few-shot classification,
which may in turn help produce better algorithms.
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Oreshkin, B. N., López, P. R., and Lacoste, A. TADAM:
task dependent adaptive metric for improved few-shot
learning. In Bengio, S., Wallach, H. M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, pp.
719–729, 2018.

Park, E. and Oliva, J. B. Meta-curvature. In Advances in
Neural Information Processing Systems, pp. 3309–3319,
2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, pp. 2825–2830, 2011.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general con-
ditioning layer. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. Rapid
learning or feature reuse? towards understanding the
effectiveness of MAML. In International Conference on
Learning Representations, 2020.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In Advances in
Neural Information Processing Systems, pp. 113–124,
2019.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and
Turner, R. E. Fast and flexible multi-task classification
using conditional neural adaptive processes. Advances in
Neural Information Processing Systems, 32, 2019.

Rizve, M. N., Khan, S. H., Khan, F. S., and Shah, M. Explor-
ing complementary strengths of invariant and equivariant
representations for few-shot learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
10836–10846, 2021.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M. S., Berg, A. C., and Li, F. Imagenet large scale visual
recognition challenge. In IJCV, volume 115, pp. 211–252,
2015.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu,
R., Osindero, S., and Hadsell, R. Meta-learning with
latent embedding optimization. In International Confer-
ence on Learning Representations, 2019.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on
computer vision, pp. 618–626, 2017.

Snell, J., Swersky, K., and Zemel, R. S. Prototypical net-
works for few-shot learning. In Advances in Neural In-
formation Processing Systems, pp. 4077–4087, 2017.

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and
Isola, P. Rethinking few-shot image classification: A
good embedding is all you need? In European Conference
on Computer Vision, pp. 266–282, 2020.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci,
U., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Man-
zagol, P., and Larochelle, H. Meta-dataset: A dataset
of datasets for learning to learn from few examples. In
International Conference on Learning Representations,
2020.

Triantafillou, E., Larochelle, H., Zemel, R. S., and Du-
moulin, V. Learning a universal template for few-shot
dataset generalization. In Proceedings of the 38th Inter-
national Conference on Machine Learning, pp. 10424–
10433, 2021.

Tseng, H., Lee, H., Huang, J., and Yang, M. Cross-domain
few-shot classification via learned feature-wise transfor-
mation. In International Conference on Learning Repre-
sentations, 2020.

Tukey, J. W. et al. Exploratory data analysis, volume 2.
Reading, MA, 1977.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,
and Wierstra, D. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems,
pp. 3630–3638, 2016.

Xu, J., Pan, X., Luo, X., Pei, W., and Xu, Z. Exploring
category-correlated feature for few-shot image classifica-
tion. arXiv preprint arXiv:2112.07224, 2021.

Yang, J., Yang, H., and Chen, L. Towards cross-granularity
few-shot learning: Coarse-to-fine pseudo-labeling with
visual-semantic meta-embedding. In ACM Multimedia
Conference, pp. 3005–3014, 2021a.

Yang, S., Liu, L., and Xu, M. Free lunch for few-shot learn-
ing: Distribution calibration. In International Conference
on Learning Representations, 2021b.



Channel Importance Matters in Few-Shot Image Classification

Ye, H. and Chao, W. How to train your maml to excel in
few-shot classification. In International Conference on
Learning Representations, 2022.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In Proceedings of the British Machine Vision Conference,
2016.

Zhang, C., Cai, Y., Lin, G., and Shen, C. Deepemd: Few-
shot image classification with differentiable earth mover’s
distance and structured classifiers. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
12200–12210, 2020.

Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., and Tor-
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A. Proof of Proposition 3.1
Lemma A.1. (Cantelli’s inequality (Cantelli, 1929)) Let X be a random variable with finite expected value µ and finite
non-zero variance σ2. Then for any k > 0,

P(X − µ ≥ kσ) ≤ 1

1 + k2
. (7)

Lemma A.2. Let ai > 0, bi > 0, i = 1, ..., D. Define f : [0,+∞)D/{0} → R by

f(x) =

∑D
i=1 bix

2
i

(
∑D

i=1 aixi)2
, (8)

then

min
x

f(x) =
1∑D

i=1
a2
i

bi

. (9)

The mimimum value is reached when there exists a constant c > 0, such that ∀i ∈ [D], xi =
aic
bi

.

Proof. We show it by induction on dimension D. Denote the domain of f by U , i.e., U = [0,+∞)D/{0}.

When D = 1, f(x) ≡ b1
a2
1

is a constant, so the result holds.

Assume that when D ≤ k, the result holds. We now prove that when D = k + 1, the result holds. It is obvious
that ∀c > 0, f(cx) = f(x), thus it suffices to find a minimum point in S = {x|a ≤ ||x||2 ≤ b and x ∈ U} for
any chosen 0 < a < b. Since S is a closed set and f is continuous, the minimum point exists. The minimum point
either lies on the hyperspheres: ∂S = {x|||x||2 = a and x ∈ U} ∪ {x|||x||2 = b and x ∈ U} or in between:
S = {x|a < ||x||2 < b and x ∈ U}. If there exists a minimum point on one of the hyperspheres, say, the outer hypersphere
{x|||x||2 = b and x ∈ U}, then there exists another minimum point (a+b)x

2b ∈ S (or (a+b)x
2a ∈ S for the inner hypersphere).

Thus it suffices to find the minimum point in S.

Let S/i = {x|x ∈ S and xi = 0} and S>0 = {x|x ∈ S and xi > 0 for all i ∈ [k + 1]}. We have S = (∪k+1
i=1 S/i) ∪ S>0.

If x ∈ S/i, then

f(x) =

∑i−1
j=1 bjx

2
j +

∑k+1
j=i+1 bjx

2
j

(
∑i−1

j=1 ajxj +
∑k+1

j=i+1 ajxj)2
, (10)

which can be seen as a function with input dimension k. Thus from the induction, we have

min
x∈S/i

f(x) =
1∑i−1

j=1

a2
j

bj
+

∑k+1
j=i+1

a2
j

bj

. (11)

Next, we handle the setting when x ∈ S>0, i.e., find all possible extreme points of f inside S>0. Note that

∂f

∂xi
=

2(bixi

∑k+1
j=1 ajxj − ai

∑k+1
j=1 bjx

2
j )

(
∑k+1

j=1 ajxj)3
, (12)

then an extreme point x must satisfy

bixi

k+1∑
j=1

ajxj − ai

k+1∑
j=1

bjx
2
j = 0,∀i ∈ [k + 1], (13)

which is equivalent to

xi =
ai

∑k+1
j=1 bjx

2
j

bi
∑k+1

j=1 ajxj

= (

∑k+1
j=1 bjx

2
j∑k+1

j=1 ajxj

)
ai
bi
,∀i ∈ [k + 1]. (14)
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Thus xi = cai

bi
, where c =

∑k+1
j=1 bjx

2
j∑k+1

j=1 ajxj
. Furthermore, it is easy to show that xi = cai

bi
satisfies Eq. (14) for any c > 0. Denote

any of the points satisfying this property as x∗, then

f(x∗) =
1∑k+1

i=1
a2
i

bi

. (15)

Comparing Eq. (11) and Eq. (15), it can be seen that

f(x∗) < min
x∈S/i

f(x),∀i ∈ [k + 1]. (16)

Finally, note that ∂S and {S/i}k+1
i=1 constitute the boundary of S>0, thus Eq. (16) and earlier discussion about ∂S indicate

that x∗ is the minimum point of f , as desired.

Proposition 3.1. Assume that µ1,l ̸= µ2,l and σ1,l + σ2,l > 0 hold for any l ∈ [d], then we have

R ≤
8
∑d

l=1 ω
4
l (σ̃1,l + σ̃2,l)

2

(
∑d

l=1 ω
2
l (µ̃1,l − µ̃2,l)2)2

. (17)

To minimize this upper bound, the adjusted oracle MMC of each channel ωl should satisfy:

ωl ∝
|µ1,l − µ2,l|
σ1,l + σ2,l

. (18)

Proof.

R =
1

2
[Pz1∼D1(||ω ⊙ (z̃1 − µ̃1)||2 > ||ω ⊙ (z̃1 − µ̃2)||2) + Pz2∼D2(||ω ⊙ (z̃2 − µ̃2)||2 > ||ω ⊙ (z̃2 − µ̃1)||2)]

=
1

2
[Pz1∼D1

(

d∑
l=1

ω2
l [(z̃1,l − µ̃1,l)

2 − (z̃1,l − µ̃2,l)
2] > 0) + Pz2∼D2

(

d∑
l=1

ω2
l [(z̃2,l − µ̃2,l)

2 − (z̃2,l − µ̃1,l)
2] > 0)]

=
1

2
[Pz1∼D1

(

d∑
l=1

ω2
l (1− z̃1,l)(µ̃1,l − µ̃2,l) > 0) + Pz2∼D2

(

d∑
l=1

ω2
l (1− z̃2,l)(µ̃2,l − µ̃1,l) > 0)]

≤
2
∑d

l=1 ω
4
l (µ̃1,l − µ̃2,l)

2(σ̃2
1,l + σ̃2

2,l)

(
∑d

l=1 ω
2
l (µ̃1,l − µ̃2,l)2)2

[Applying Lemma A.1]

≤
2
∑d

l=1 ω
4
l (µ̃1,l + µ̃2,l)

2(σ̃2
1,l + σ̃2

2,l)

(
∑d

l=1 ω
2
l (µ̃1,l − µ̃2,l)2)2

[µ̃1,lµ̃2,l ≥ 0]

=
8
∑d

l=1 ω
4
l (σ̃

2
1,l + σ̃2

2,l)

(
∑d

l=1 ω
2
l (µ̃1,l − µ̃2,l)2)2

[Standadization: (µ̃1,l + µ̃2,l)/2 = 1]

≤
8
∑d

l=1 ω
4
l (σ̃1,l + σ̃2,l)

2

(
∑d

l=1 ω
2
l (µ̃1,l − µ̃2,l)2)2

. [σ̃1,lσ̃2,l ≥ 0] (19)

Let xl = ω2
l , al = (µ̃1,l − µ̃2,l)

2, bl = (σ̃1,l + σ̃2,l)
2, then according to Lemma A.2, the minimum value of the upper bound

(19) is reached when ω2
l ∝

(µ̃1,l−µ̃2,l)
2

(σ̃1,l+σ̃2,l)2
=

(µ1,l−µ2,l)
2

(σ1,l+σ2,l)2
, i.e., ωl ∝ |µ1,l−µ2,l|

σ1,l+σ2,l
.

B. Training and Evaluation Details
For S2M2 and MoCo-v2 in Table 1, we directly use the official publicly-available pre-trained checkpoints. All other
algorithms in Table 1 are trained using a learning rate 0.1 with cosine decay schedule without restart. SGD with momentum
0.9 is adopted as the optimizer. For all meta-learning algorithms, a total of 60000 5-way 5-shot tasks are sampled for training,
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Figure 9. The effect of the hyperparameter k in the simple transformation on each test-time dataset. The feature extractor is trained on
miniImageNet using PN. All experiments are conducted on 10000 5-way 5-shot tasks sampled with a fixed seed.

each of which contains 15 query images per class. The batch size (number of sampled tasks of each iteration) is 4. All other
hyperparameters of MetaOpt match the default settings in the original paper. All conventionally-trained algorithms are
trained for 60 epochs, and the batch size is set to 128. For the training of the CE (Cross-Entropy) algorithm, we normalize
the representation before the fully-connected layer. We find that if we do not normalize the representation during the training
of CE, the simple transformation does not work. We leave it for future work to investigate this phenomenon.

For the test-time linear classification method we implement for MoCo and S2M2 in Table 1 and Figure 8, we adopt the
Logistic Regression implementation of scikit-learn (Pedregosa et al., 2011).

C. The Effect of Hyperparameter k

In Figure 9, we show how the hyperparameter k in Eq. (1) influences the few-shot classification performance. On all
datasets, As the k becomes larger, the accuracy first increases and then decreases. The optimal value of k varies for
different datasets, ranging from 0.6 to 1.8. That being said, the simple transformation gives a relatively stable performance
improvement on all datasets when k ∈ [1, 2]. Notably, datasets with larger task distribution shift often give a smaller optimal
k. This phenomenon is reasonable because as seen from Figure 2, a smaller k leads to a larger smoothing effect, and the
transformation can better rectify the channel distribution when the task distribution shift is also larger.

D. Attempts at Handling Negative Output Values of Neural Networks
As shown in Section 3, the MMC of image representations can represent the emphasis of neural network on different
channels. However, things get complicated if the output of the neural network can take negative values. If the value of a
channel represents the activation of a feature, it is difficult to say whether a large negative value means a large or small
activation. At this time, we consider negative value as a signal of feature activation as well, which leads to the following
simple extension of the transformation:
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Table 4. Performance gains when applying the extended version of the simple transformation to ResNet-12 with Leaky ReLU trained on
mini-train.

Algorithm mini-test CUB Texture TS PlantD ISIC ESAT Sketch QDraw Fungi Avg
PN 76.0+0.5 59.3+0.6 62.0+0.7 66.3-0.2 78.2+2.8 38.1+1.3 75.1+0.8 52.7+0.3 66.5+2.9 55.4+0.0 63.0+1.0

CE 79.4+0.2 64.5+0.8 66.1-0.2 69.9+0.1 84.9+2.1 40.1+0.1 77.6+0.4 53.6+0.4 72.1+3.7 57.4+1.1 66.6+0.9
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Figure 10. The Visualization of MMC of the other nine datasets before and after the use of simple and oracle transformation. All
notations are the same as in Figure 6.

ϕk(λ) =

{
sign(λ)

lnk( 1
|λ|+1)

, |λ| > 0

0, λ = 0
(20)

now this extended simple transformation can be applied directly to the standard ResNet-12 using leaky ReLU, and the results
are shown in Table 4. While leaky ReLU improves the basic performance compared to vanilla ReLU, the improvement of
the simple transformation becomes significantly smaller. We conjecture that a large negative magnitude of a channel does
not strictly mean that this channel is important. It is future work to investigate how to exactly measure channel importance
in such circumstances.

E. Necessary Ingredients for a Good Transformation
One may ask that whether all of the three properties presented in Eq. (3) are necessary for a transformation to successfully
improve few-shot learning performance, or whether there exist good transformations other than ϕk(λ) considered in the
main article. To verify the necessity of all properties, we design several functions, each of which does not satisfy one of
the properties. First, we consider the function p(λ) = ln(aλ+ 1), where a > 0. This function has positive derivative and
negative second derivative, but does not have large enough derivative near zero (p′(0) = a). In the left plot of Figure 11,
we see that the improvement brought by this function is smaller than ϕ1.3(λ), and that the gap becomes smaller when a
increases. This validates the necessity of having a large enough derivative near zero. We then consider the piece-wise
function

q(λ) =

{
ϕk(x), 0 ≤ λ < λ0

a2λ
2 + a1λ+ a0, λ ≥ λ0

(21)

where the values of a2, a1, a0 ensure the smoothness of q(λ) at λ = λ0 up to first derivative, and also control the position
of the extreme point x0 = − a1

2a2
. This function does not have positive derivative when λ ≥ x0. We set x0 = 0.05, and

change the value of λ0. The results are shown in the second plot in Figure 11. As seen, introducing negative derivative into
the transformation substantially degrades performance. Finally, the property of having negative second derivative can be
naturally broken by increasing the value of k in ϕk(λ), and Figure 9 shows that doing this would degrade performance.

Since inactivate channels may represent absence of a feature in a task instead of having low emphasis, thus they are likely
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Figure 11. Exploration of necessary ingredients for a good channel-wise transformation. The accuracies show the average 5-way 5-shot
performance over all 19 datasets using PN trained on miniImageNet. The red dashed line shows the original performance; the green
dashed line shows the performance when using the simple transformation ϕ1.3(λ). The leftmost plot shows the performance when using
the function p(λ) = ln(aλ+ 1). The second plot shows the performance when using the piece-wise function q(λ). The third plot shows
the performance when adding a constant r to the simple transformation ϕ1.3(λ). The rightmost plot shows the performance when using
the power function g(λ) = xk.

to have no importance. Therefore another property ϕk(0) = 0, not shown in Eq. (3), could also be important for a good
transformation. To investigate this, we add a constant r to ϕk(λ) and see how the performance would change. The third plot
in Figure 11 shows the opposite result: a small constant added to the transformation helps further improve the performance.
As adding this constant has more influence on small-valued channels, we conjecture that this helps further alleviate the
channel bias problem, and that some inactivate channels indeed should gain some focus.

Apparently, ϕk(λ) is not the only function that satisfies all the three properties. We consider the power function g(λ) = λk,
where k > 0. Although being very simple, this function matches all desired properties. The rightmost plot in Figure 11
shows that this function can indeed improve the performance as well. Note that this function has been used in (Yang et al.,
2021b), where it is called the Tukey’s Ladder of Powers transformation (Tukey et al., 1977), and is used to transform the
feature distribution to be more like a Gaussian distribution. Here we show that mitigating the channel bias problem may be
another reason for why it works.

F. Details of MMC Calculation and Comparison
F.1. Oracle Transformation

To apply the oracle transformation, for every test-time dataset D, we first calculate feature mean µc and variance σc of
each class c in D. Then for every sampled binary classification task τ = {Sτ ,Qτ} that aims at discriminating two classes
c1 and c2, we calculate the oracle MMC ω directly from Eq. (6). Next, we standardize each image feature z in Sτ and
Qτ , and multiply it by ω to obtain the transformed feature z ← ω ⊙ z̃. The transformed features can be already used for
classification, but we find that for some channels with very small means µl, the corresponding value of oracle MMC ωl

becomes too big, deviating from what we expect. To avoid generating such outliers, we additionally restrict that for every
channel l, the ratio of transformed MMC to the original MMC should not surpass a threshold, i.e., ωl/ω

o
l ≤ α for some

α ∈ R+. If a channel l does not meet this requirement, we simply set ωl = ωo
l . In all of our experiments, we set α = 50.

The optimal MMC visualizied in Figure 6 and Figure 10 is also computed using this strategy. We leave it for future work to
investigate the reason behind such phenomenon.

F.2. Choice of Distance Measure

The normalized mean square difference d(x,y) = 1
d

∑d
l=1(xl − yl)

2/x2
l has the advantage of having equal treatment for

both channels with small and large values. However, it can be largely influenced by “outlier channel” with very small
xl. Since dataset-level MMC ωD is averaged over MMCs of all possible tasks in D, it is more stable and can use such
distance measure. The task-level MMC and image features have much higher variances acorss tasks/images, thus for these
two fine-grained settings we just use the mean square difference d(x,y) = 1

d

∑d
l=1(xl − yl)

2. This, however, introduces
another problem that critical changes of channels with small values are always ignored by such unnormalized distance. Let’s
see a simple example. Let ω1 = (0.05, 0.08, 0.87) and ω2 = (0.4, 0.3, 0.3) be two 3-dimensional l1-normalized MMCs.
Assume that after transformation, their l1-normalized values become ω′

1 = (0.15, 0.1, 0.75) and ω′
2 = (0.55, 0.22, 0.23).

The value of the first dimension of ω1 triples and surpasses that of the second dimension after transformation, thus the
channel emphasis changes substantially, while the channel emphasis of ω2 does not change much. We expect that the
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Table 5. Found best hyperparameters of the test-time finetuning method on miniImageNet. The feature extrator is ResNet-12, trained by
S2M2 algorithm.

Shot Batch size Number of epochs Learning rate
1 5 10 0.1
5 25 30 0.05

10 50 50 0.05
20 50 100 0.02
50 64 100 0.01
100 64 500 0.005
400 64 500 0.005

Table 6. The influence of using different seeds during training or testing. Average 5-way 5-shot performance of PN over 19 datasets with
95% confidence interval (over 5 trials) are shown. The training set is mini-train.
Seed mini-test CUB Texture TS PlantD ISIC ESAT Sketch QDraw Fungi
Test +2.36±0.06 +2.98±0.03 +4.26±0.10 +2.37±0.06 +8.04±0.14 +2.80±0.10 +5.50±0.09 +5.02±0.09 +5.46±0.14 +3.90±0.11

Train +2.08±0.33 +3.28±0.43 +3.78±0.77 +2.00±0.89 +8.21±0.80 +3.64±0.44 +4.03±1.37 +4.21±0.93 +7.01±2.62 +3.59±0.50

distance measuring the change of ω1 should be much larger than that measuring the change of ω2. The normalized mean
square differences between the MMC before and after transformation are 1.36 and 0.09 for ω1 and ω2 respectively, which
is in line with our intuition. However, the mean square differences are 0.008 and 0.011 for ω1 and ω2 respectively. Thus
under such circumstances, the normalized mean square difference is a much better choice. Although being simple, ω2 and
ω1 are a good analogy to the MMC pattern on miniImageNet and some other datasets in Figure 6, respectively. In Figure 6,
we can see that most MMC values on miniImageNet are around mid-level, which resembles ω2; most MMC values on other
datasets are either very small or large, which resembles ω1. This explains why in Table 3 the task-level and image-level
differences on miniImageNet are not smaller than those on other datasets. We leave it for future work to find a distance
measure that could avoid unstable results, while being sensitive to small-valued channels.

G. More Details on Fine-tuning Based Method
For fine-tuning methods in Figure 8, we grid search the best hyperparameters in each shot setting on the test set. All best
configurations are shown in Table 5. As seen, the hyperparameters of fine-tuning methods are very sensitive to the number
of shots. In low-shot settings, care should be taken for controlling the total steps of finetuning and learning rate, in order to
avoid overfitting. This phenomenon is also shown in (Ye & Chao, 2022), where the authors show that MAML (Finn et al.,
2017), one of the most widely adopted finetuning-based methods, has a much higher optimal test-time fine-tuning steps than
expected.

H. Error Bars
All results regarding performance in the main paper are shown without error bars. In Table 6, we show how different seeds
affect the improvement brought by the simple transformation ϕk(λ). There are two seeds that could influence the result,
one for training, and one for testing. When considering test seed, we fix the feature extractor and use different seeds to
sample tasks; when considering train seed, we fix the test seed (same tasks) and evaluate different feature extractors trained
with different seeds. As seen, while varying the test seed hardly affect the performance, varying the train seed produces
some fluctuations. After considering the fluctuations, the improvement given by the transformation can still be statistically
guaranteed.


