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Abstract

Inverse problems in multi-dimensional imaging, e.g.,
completion, denoising, and compressive sensing, are chal-
lenging owing to the big volume of the data and the inher-
ent ill-posedness. To tackle these issues, this work unsuper-
visedly learns a hierarchical low-rank tensor factorization
(HLRTF) by solely using an observed multi-dimensional
image. Specifically, we embed a deep neural network
(DNN) into the tensor singular value decomposition frame-
work and develop the HLRTF, which captures the underly-
ing low-rank structures of multi-dimensional images with
compact representation abilities. This DNN herein serves
as a nonlinear transform from a vector to another to help
obtain a better low-rank representation. Our HLRTF in-
fers the parameters of the DNN and the underlying low-
rank structure of the original data from its observation via
the gradient descent using a non-reference loss function in
an unsupervised manner. To address the vanishing gradient
in extreme scenarios, e.g., structural missing pixels, we in-
troduce a parametric total variation regularization to con-
strain the DNN parameters and the tensor factor param-
eters with theoretical analysis. We apply our HLRTF for
typical inverse problems in multi-dimensional imaging in-
cluding completion, denoising, and snapshot spectral imag-
ing, which demonstrates its generality and wide applicabil-
ity. Extensive results illustrate the superiority of our method
as compared with state-of-the-art methods.

1. Introduction
Tensor factorization family methods extend familiar ma-

trix cases to multi-dimensional modalities for effective
analysis and processing of real-world multi-dimensional
images, e.g., videos, hyperspectral images (HSIs), and
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Figure 1. Top: The results of multi-dimensional image comple-
tion by TNN (based on the DFT) [58], DCTNN (based on the
DCT) [33], and HLRTF (based on the DNN transform) on MSI
Beans with sampling rate 0.1. Bottom: The AccEgy (AccEgy
=
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2
i /
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j with σi denotes the i-th singular value [46])

versus the percentage of singular values of the transformed frontal
slices by different transforms (i.e., the DNN transform, the DNN
transform with only one layer, the DCT, and the DFT). The DNN
transform obtains lower-rank transformed frontal slices and thus
the corresponding HLRTF achieves better recovery performance.

multispectral images (MSIs) [1, 11]. Real-world multi-
dimensional images are usually self-correlated and thus en-
joy intrinsic low-rank structures [15, 28]. Therefore, low-
rank tensor factorization methods utilize this property to
design specific forms and operations to exploit the low-
rankness or/and enhance the low-rankness by minimizing
the nuclear norm [17, 52, 60, 61], successfully applying to
various applications such as hyperspectral imaging [41,48],
image/video inpainting [26], network compression [42],
and recommender system [6, 7].

Most tensor factorization methods rely on multilinear
operations. The classic Tucker decomposition and CP de-
composition [13, 24, 28, 44] were proposed for tensor anal-
ysis. Recently, tensor network decompositions including
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tensor train decomposition [39], tensor ring decomposi-
tion [14], and fully connected tensor network decomposi-
tion [60] were studied. In this paper, we focus on the tensor
singular value decomposition (t-SVD) [22], which is based
on the tensor-tensor product (t-product) [20,21]. The t-SVD
extended matrix SVD to tensor cases without flattening and
information loss inside tensor modalities. Based on the t-
SVD, the tensor tubal rank [21, 32] was defined. Its convex
relaxation, the tensor nuclear norm (TNN), was studied and
applied to low-rank tensor recovery [18,25,32,33,58]. More
recently, the low-tubal-rank tensor factorization [30,61] was
proposed by factorizing a tensor into two smaller tensors
through the t-product, preserving the low-tubal-rankness of
the tensor and avoiding the computing of the SVD for faster
implementations.

Nonetheless, the tensor tubal-rank is based on a linear
transform (e.g., the discrete Fourier transform (DFT) [32] or
the discrete cosine transform (DCT) [33]). The linear trans-
form is applied on the tubes of a tensor to transform it into
a low-rank representation, then the matrix rank of the trans-
form frontal slices is considered to define the tubal-rank,
see Definition 2. Considering the complex and diversified
topology structures of real-world data, it is highly possible
that the transform between the original tensor and the op-
timal low-rank representation is nonlinear and hierarchical,
which can not be interpreted by the linear transform.

In this paper, we propose to replace the linear trans-
form with a deep neural network (DNN), which consists
of multiple linear layers and nonlinear activation functions.
The motivation is that the DNN transform can access much
lower-rank transformed frontal slices and hence a better
low-rank representation can be obtained. To validate this,
we plot the AccEgy with respect to the percentage of sin-
gular values of the transformed frontal slices in Fig. 1. We
can observe that the energy obtained by the DNN transform
is concentrated in larger singular values, which reveals that
a compact low-rank representation is obtained. Thus, the
recovery performance can be reasonably improved.

Equipped with the DNN transform, we deduce a new
tensor rank called the hierarchical-tubal-rank. Correspond-
ingly, we propose the hierarchical low-rank tensor factor-
ization (HLRTF) and prove its capability to capture the
low-rank structure. The HLRTF factorizes a tensor X ∈
Rn1×n2×n3 into X = A ∗f B, where A ∈ Rn1×r×n3 and
B ∈ Rr×n2×n3 are two smaller tensors and ∗f is the t-
product induced by the DNN f(·) (see Definition 4). We
further develop an equivalent form of HLRTF, i.e., X =
g(Â△B̂), where g(·) is the inverse DNN of f(·), △ is the
face-wise product [20], and Â, B̂ are two smaller tensor fac-
tors, to reduce computational expense. To tackle inverse
problems in multi-dimensional imaging, we simultaneously
optimize the tensor factors Â, B̂ and learn the inverse DNN
g(·) using the fidelity loss between g(Â△B̂) and the obser-

vation. In this way, the low-rank X can be readily obtained
thourgh X = g(Â△B̂) in an unsupervised manner.

To face the difficulty that in some extreme situations, our
method would suffer from unavoidable vanishing gradient,
we propose the parametric total variation (PTV) regular-
ization for DNN parameters and tensor factor parameters,
successfully addressing the vanishing gradient. We prove
that PTV is an upper bound of the traditional 3D total vari-
ation (3DTV) regularization [40], while its computational
complexity is much lower than that of 3DTV regulariza-
tion. Therefore, PTV efficiently captures the local smooth-
ness [40] of multi-dimensional images to enhance the ro-
bustness of HLRTF.

We summarize the contributions of this paper as follows:

• By embedding a DNN as a nonlinear transform into
the t-SVD framework, we propose the HLRTF to
capture the underlying low-rank structure of multi-
dimensional images with compact representation abil-
ities. We provide algebraic property of the HLRTF,
which leads to solid foundations of its potential ca-
pacity. With the loss function tailored corresponding
to different observations, high-quality recovery results
can be obtained after the DNN parameters and tensor
factor parameters are unsupervisedly learned.

• To address extreme structural missing cases, we pro-
pose the PTV regularization to constrain the DNN pa-
rameters and tensor factor parameters, successfully ad-
dressing the vanishing gradient issue. Our analysis
shows that PTV is rooted in classic 3DTV and has a
lower computational complexity.

• We apply HLRTF to typical inverse problems in multi-
dimensional imaging including multi-dimensional im-
age completion, denoising, and snapshot spectral
imaging. Extensive experiments validate the general-
ization abilities of HLRTF for different tasks and its
superior performance over state-of-the-art methods.

1.1. Related Work

1.1.1 Transform Induced t-SVD

In the literature, there were other transforms used in the t-
SVD. The initial one was the DFT [32, 58]. The DCT was
employed for real arithmetic computation [35]. Some uni-
tary transforms were adopted to obtain a lower-tubal-rank
tensor [37, 45]. Lu et al. [33] showed that any invertible
linear transforms were able to induce the TNN. Recently,
non-invertible transforms were used in t-SVD [18, 19, 25],
and some of them were data-dependent [19, 25]. However,
these transforms are all linear and their corresponding TNN
frameworks require SVD computing. Our DNN transform
is a nonlinear transform and the proposed HLRTF is SVD-
free, which largely saves computational costs.
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1.1.2 Matrix/Tensor Factorization with Deep Learning

Recently, there are growing appeals for combining deep
learning techniques and matrix/tensor factorization meth-
ods. The deep matrix factorization [2,10,51] attempted inte-
grating DNNs with matrix factorization. The tensor Tucker
and CP factorizations were combined into DNNs for effec-
tive deep learning [6, 7, 9, 27, 38, 57]. However, these deep
tensor factorization-based methods are mostly supervised
learning methods, which may lack generalization abilities
for different tasks.

2. Notations and Preliminaries
Matrices and tensors are denoted as X, X , respectively.

Given a tensor X ∈ Rn1×n2×n3 , X (i, j, k) denotes the
i, j, k-th element of X and X (i) ∈ Rn1×n2 denotes the
i-th frontal slice of X . ×3 denotes the mode-3 tensor-
matrix product [24], i.e., X ×3 A = fold(Aunfold(X )),
where unfold(·) : Rn1×n2×n3 → Rn3×n1n2 is the un-
folding operator and fold(·) is its inverse operator. △ de-
notes the face-wise product between two tensors [20], i.e.,
C = A△B ⇔ C(i) = A(i)B(i). ∇x, ∇y , and ∇z respec-
tively denote the vertical, horizontal, and temporal/spectral
derivative operators of a tensor 1 [34].

Definition 1. (T-product) [21] The tensor-tensor product
between A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is defined as
A∗B = ((A×3F)△(B×3F))×3F

−1 ∈ Rn1×n4×n3 , where
F ∈ Rn3×n3 is the DFT matrix and F−1 is the inverse DFT
matrix.

Definition 2. (Tensor tubal-rank) [21] The tensor tubal
rank of A ∈ Rn1×n2×n3 is defined as

rankt(A) ≜ max
i=1,2,··· ,n3

{rank((A×3 F)
(i))}, (1)

where F ∈ Rn3×n3 is the DFT matrix.

Theorem 1. (Low-tubal-rank tensor factorization) [30,
61] Let X ∈ Rn1×n2×n3 , Y ∈ Rn1×n2×n3 , and Z ∈
Rn2×n4×n3 be arbitrary tensors, then

(i) If rankt(X ) = r, then there exist two tensors A ∈
Rn1×r×n3 and B ∈ Rr×n2×n3 such that X = A ∗ B
hold and they meet rankt(A) = rankt(B) = r.

(ii) rankt(Y ∗ Z) ≤ min{rankt(Y), rankt(Z)}.

3. Main Results
3.1. Hierarchical Low-Rank Tensor Factorization

In this section, we introduce the proposed HLRTF. Our
method is based on the tensor tubal-rank. The tensor tubal-
rank considers the interactions of frontal slices by connect-
ing all frontal slices of A with the linear DFT along the

1The derivative operators can be also applied to matrices since a matrix
X ∈ Rn1×n2 can be viewed as a tensor of size n1 × n2 × 1.

third mode. Such interactions are ubiquitous in real world
data, e.g., the temporal correlations of videos and the spec-
tral correlations of MSIs. Given a degraded tensor, the basic
assumption is that the underlying tensor is low-tubal-rank,
and therefore tubal-rank minimization can be used to re-
cover the underlying tensor [30, 61].

However, considering the complex and diverse structures
of real-world multi-dimensional images, it is highly pos-
sible that the linear DFT can not transform the original
tensor into a desirable low-rank representation [8]. Thus,
we propose to replace the DFT with a DNN, which con-
sists of multiple linear layers and nonlinear functions. The
DNN is expected to capture the nonlinear interactions in-
side data to obtain a better low-rank representation, see Fig.
1. Equipped with the DNN, we deduce a new tensor rank
called the hierarchical tubal-rank.

Definition 3. (Hierarchical tubal-rank) Given a tensor
A ∈ Rn1×n2×n3 , matrices {Wj ∈ Rn3×n3}kj=1, and a
nonlinear scalar function σ(·), the hierarchical tubal-rank
is defined as

rankh(A) ≜ max
i=1,2,··· ,n3

{rank(f(A)(i))}, (2)

where f(A) ∈ Rn1×n2×n3 is given by f(A) =
σ(· · ·σ(σ(A×3 W1)×3 W2) · · · ×3 Wk−1)×3 Wk.

In Definition 3, f(·) is a DNN with k layers. Except
the last layer, all layers are followed by the nonlinear ac-
tivation function σ(·) (In this work, σ(·) is set as the in-
vertible LeakyReLU function [12]). The DNN more effec-
tively captures the nonlinear interactions inside data for a
better low-rank representation than that of linear transforms
(see the AccEgy in Fig. 1). In fact, if we let k = 1, then
f(·) degrades to a linear transform, i.e., the linear trans-
form [19, 25, 33] is just a special case of f(·).

The direct way to minimize the hierarchical tubal-rank
is to minimize the nuclear norm of the transformed frontal
slices [32]. However, minimizing the nuclear norm, which
needs to compute the SVD, is time-consuming [61]. Thus,
we turn to formulate a hierarchical low-rank tensor fac-
torization method that implicitly preserves the hierarchical
tubal-rank without SVD computing. As preparation, we
study the invertibility of the DNN f(·) and define a new
t-product induced by f(·).

Lemma 1. (Invertibility) Suppose that {Wj ∈
Rn3×n3}kj=1 are full-rank and σ(·) is invertible. Then,
there exists a DNN with k layers, denoted as g(·), such that
g(f(A)) = f(g(A)) = A holds for arbitrary A.

Proof. Let σ−1(·) be the inverse function of σ(·) and
Hj ∈ Rn3×n3 (j = 1, 2, · · · , n3) be the inverse matrix of
Wn3−j+1. Then, g(f(A)) = f(g(A)) = A holds for ar-
bitrary A, where g(A) = σ−1(· · ·σ−1(σ−1(A ×3 H1) ×3

H2) · · · ×3 Hk−1)×3 Hk.
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Definition 4. (T-product induced by f(·)) Given A ∈
Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the t-product induced by
f(·) is defined as A∗f B = g(f(A)△f(B)) ∈ Rn1×n4×n3 ,
where g(·) is the inverse transform of f(·).

Theorem 2. (Hierarchical low-rank tensor factoriza-
tion) Let X ∈ Rn1×n2×n3 , Y ∈ Rn1×n2×n3 , Z ∈
Rn2×n4×n3 be arbitrary tensors, f(·) be a DNN, and the
suppositions in Lemma 1 hold. Then

(i) If rankh(X ) = r, then there exist two tensors A ∈
Rn1×r×n3 and B ∈ Rr×n2×n3 such that X = A ∗f B
hold and they meet rankh(A) = rankh(B) = r.

(ii) rankh(Y ∗f Z) ≤ min{rankh(Y), rankh(Z)}.

By utilizing Theorem 2, we can characterize the low-
rankness of a tensor by factorizing it as X = A∗f B, where
A ∈ Rn1×r×n3 , B ∈ Rr×n2×n3 , and rankh(X ) ≤ r holds.
By changing r (which can be efficiently done by changing
the size of A,B), we can control the hierarchical tubal-rank
of X for low-rank tensor recovery. When k = 1, the pro-
posed HLRTF can degrade to the low-tubal-rank tensor fac-
torization in Theorem 1 [61], i.e., the low-tubal-rank tensor
factorization is a special case of our HLRTF.

Based on Definition 4, instead of learning f(·) and cal-
culate its inverse g(·) to obtain the low-rank tensor X =
A ∗f B, we can cleverly start from the latent tensor factors
Â ≜ f(A) and B̂ ≜ f(B) to reformulate the HLRTF as
X = g(Â△B̂). Thus, we only need to learn the inverse g(·)
and tensor factors Â and B̂ to obtain X , which avoids the
complicated calculation of the inverse g(·) from f(·).

3.2. Multi-Dimensional Image Recovery Models

The optimization model of our HLRTF for multi-
dimensional image recovery is formulated as

min
Â,B̂,{Hj}k

j=1

L(g(Â△B̂),O), (3)

where O ∈ Rn1×n2×n3 is the observation. Â ∈ Rn1×r×n3

and B̂ ∈ Rr×n2×n3 are tensor factors and g(·) is a DNN
with parameters {Hj}kj=1. L denotes the fidelity loss be-
tween our result and the observation, and flexibly varies for
different tasks. Three tasks are considered in this work:

• Multi-dimensional image completion [18], which
aims at recovering an underlying low-rank tensor from
its incompleted observation. The corresponding fi-
delity term is L(X ,O) = ∥(X − O)Ω∥2F , where Ω
is the support of observed entries.

• Multispectral image denoising [48], which aims at
recovering a clean multi-dimensional image from its
noisy observation. We consider mixed noise includ-
ing Gaussian noise, impulse noise, and stripe dead-
lines [29]. The fidelity term is L(X ,O) = ∥X −O∥ℓ1 .

• Snapshot spectral imaging [31], which aims at recov-
ering the underlying multi-dimensional image from its
low-dimensional measurement and binary masks. The
fidelity term is L(X ,O) = ∥

∑n3

i=1 C(i)⊙X (i)−O∥2F ,
where ⊙ is the element-wise product. Here, O ∈
Rn1×n2 is the measurement and {C(i)}n3

i=1 denote n3

masks, which are given in advance.

We remark here that our HLRTF characterizes the low-rank
structure of multi-dimensional images with compact repre-
sentation abilities. Thus, it is not limited to the above tasks.
For other tasks, with suitable formulations of L, our HLRTF
is believed to perform well.

3.3. Optimization

We directly use off-the-shelf gradient descent-based al-
gorithms to optimize the non-convex problem (3). Specif-
ically, we optimize Θ = {Â, B̂, {Hj}kj=1} using the effi-
cient adaptive moment estimation (Adam) algorithm [23],
in which the gradient ∂L

∂Θ is used in back propagation to
minimize L(g(Â△B̂),O). Benefit from our elegant de-
sign of importing the hierarchical structure in the transform
pipeline within the t-SVD framework and directly learning
the inverse DNN g(·), the holistic computational burden is
low as we only need to infer k matrices, i.e., {Hj}kj=1, and
two smaller tensors, i.e., Â and B̂.

However, in our unsupervised framework, a tricky issue
occurs in some challenging cases. Next, we first clarify the
difficulty we faced and then propose the PTV to fix it.

3.3.1 Vanishing Gradient

We take the completion task as an example. When some
slices of the multi-dimensional image are missing, as shown
in Fig. 2, directly minimizing (3) leads to poor results. Dig-
ging into back propagation steps, we find that the gradient
would vanish in this situation.

Lemma 2. (Vanishing gradient) Take the tensor comple-
tion task as an example. The fidelity term is L(X ,O) =
∥(X −O)Ω∥2F , where X = g(Â△B̂). Then
(i) If the i-th horizontal slice of O is missed, i.e., (i, b, c) /∈
Ω for arbitrary b, c, then the following equalities hold:

∂L(X ,O)

∂Â(i, v, w)
= 0, v = 1, 2, · · · , r, w = 1, 2, · · · , n3. (4)

(ii) If the i-th lateral slice of O is missed, i.e., (a, i, c) /∈ Ω
for arbitrary a, c, then the following equalities hold:

∂L(X ,O)

∂B̂(u, i, w)
= 0, u = 1, 2, · · · , r, w = 1, 2, · · · , n3. (5)

(iii) If the i-th frontal slice of O is missed, i.e., (a, b, i) /∈ Ω
for arbitrary a, b, then the following equalities hold:

∂L(X ,O)

∂Hk(i, v)
= 0, v = 1, 2, · · · , n3. (6)
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PSNR 39.65 PSNR 41.26 PSNR 40.07 PSNR 42.79 PSNR 43.11

PSNR 18.20 PSNR 21.53 PSNR 21.84 PSNR 20.91 PSNR 26.36

PSNR 16.25 PSNR 15.94 PSNR 15.95 PSNR 39.79 PSNR 42.10
No Reg. ∥∇xÂ∥ℓ1

∥∇yB̂∥ℓ1
∥∇xH∥ℓ1

PTV(Θ)

Figure 2. The results of multi-dimensional image completion on
HSI WDC mall with random missing (first row), horizontal/lateral
slice missing (second row), and frontal slice missing (third row)
by HLRTF with different regularizations.

Fig. 3 provides a vivid illustration of Lemma 2. Simi-
larly, in other tasks (denoising and snapshot spectral imag-
ing), the vanishing gradient would also occur in extreme
conditions. In these conditions, the gradients on some of
the parameters in Θ are zeros and these parameters would
never update (see the first column of Fig. 2). This issue
is different from the conventional vanishing gradient [3],
since we only have one observation and all the parameters
in Θ are inferred in an unsupervised manner. This prevents
us to resort to some well-known proven techniques, e.g.,
batch normalization [16], to address the vanishing gradient.
Therefore, new techniques are appealed for.

3.3.2 Parametric Total Variation

To address the vanishing gradient issue, we propose the
PTV regularization to constrain the DNN parameters and
tensor factor parameters. Suppose that X = g(Â△B̂) and
Θ = {Â, B̂, {Hj}kj=1}. Inspired by the fact that nearby pa-
rameters are usually more related [4], we propose the PTV
regularization, which is formulated as

PTV(Θ) ≜ ∥∇xÂ∥ℓ1 + ∥∇yB̂∥ℓ1 + ∥∇xHk∥ℓ1 . (7)

In our PTV regularization, three terms ∥∇xÂ∥ℓ1 , ∥∇yB̂∥ℓ1 ,
and ∥∇xHk∥ℓ1 respectively address the vanishing gradient
in (4), (5), and (6). Take (4) as an example, where the i-th
horizontal slice of Â has zero gradients. The regularization
∥∇xÂ∥ℓ1 enforces the nearby horizontal slices of Â to have
local-similarities, and thus the vanishing gradient in the i-
th horizontal slice is addressed. Similarly, ∥∇yB̂∥ℓ1 and
∥∇xHk∥ℓ1 address the vanishing gradient in (5) and (6).
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Figure 3. Figurative expressions of Lemma 2. (i) If the i-th hori-
zontal slice of O is missed, then the gradient on the i-th horizontal
slice of Â equals to zero. (ii) If the i-th lateral slice of O is missed,
then the gradient on the i-th lateral slice of B̂ equals to zero. (iii)
If the i-th frontal slice of O is missed, then the gradient on the i-th
row of Hk equals to zero.

Figure 4. The statistical distributions of derivative values of factors
for different data O: the ground-truth MSI Beans, the ground-truth
MSI Cloth, and the Gaussian noise. Given the data O, the factors
are obtained by optimizing (3) using the Adam.

We first empirically validate the effectiveness of PTV.
In Fig. 4, we display the statistical distributions of the
derivative values of Â, B̂, and Hk. We can observe that
when given ground-truth MSIs as the observation O, the
derivative values are more concentrated around zero, while
they are less so when given random Gaussian noise. This
reveals that the factors have local-similarities for ground-
truth MSIs, i.e., ∥∇xÂ∥ℓ1 , ∥∇yB̂∥ℓ1 , and ∥∇xHk∥ℓ1 tend
to have low intensities for real-world multi-dimensional im-
ages, which validates the effectiveness of PTV.

Next, we theoretically validate the effectiveness of our
PTV by studying the connections between PTV regulariza-
tion and the traditional 3DTV regularization [40].

Theorem 3. Suppose that X = g(Â△B̂), where {Hj}kj=1,
Â, and B̂ are bounded and σ−1(·) is Lipschitz continuous.
Then, there exist three constants J1, J2, J3 > 0 such that
the following inequalities hold:

∥∇xX∥ℓ1 ≤ J1∥∇xÂ∥ℓ1
∥∇yX∥ℓ1 ≤ J2∥∇yB̂∥ℓ1
∥∇zX∥ℓ1 ≤ J3∥∇xHk∥ℓ1 .

(8)

Let J = max{J1, J2, J3}, we have

∥X∥3DTV ≜ ∥∇xX∥ℓ1 + ∥∇yX∥ℓ1 + ∥∇zX∥ℓ1
≤ J PTV(Θ).

(9)
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Theorem 3 indicates that the traditional 3DTV regular-
ization [40] on X is upper bounded by the proposed PTV.
This reveals that PTV constrains the local smoothness of
X , which has been widely considered for real-world multi-
dimensional image recovery [47, 48, 59]. Thus, PTV can
largely enhance the robustness of HLRTF for various in-
verse problems in multi-dimensional imaging. Moreover,
the computational complexity of PTV is much lower than
that of 3DTV. Specifically, it costs O(r(n1n3+n2n3)+n2

3)
to compute the PTV, while it costs O(3n1n2n3) to com-
pute the 3DTV. Here, r << min{n1, n2}. Therefore, PTV
can efficiently enhance the robustness of HLRTF for multi-
dimensional image recovery.

By introducing the PTV in the optimization model, (3) is
reformulated as

min
Â,B̂,{Hj}k

j=1

L(g(Â△B̂),O) + γPTV(Θ), (10)

where γ is the trade-off parameter. Similarly, we directly
use Adam to optimize (10).

4. Experiments
4.1. Ablation Study

We first evaluate the influence of the PTV regularization.
We consider multi-dimensional image completion with ran-
dom missing, horizontal/lateral slice missing, and frontal
slice missing cases. We test five approaches: HLRTF
without regularizations, HLRTF with ∥∇xÂ∥ℓ1 regulariza-
tion, HLRTF with ∥∇yB̂∥ℓ1 regularization, HLRTF with
∥∇xH∥ℓ1 regularization, and HLRTF with PTV(Θ) regu-
larization. The results are shown in Fig. 2. We can observe
that all approaches can well recover the HSI with random
missing. However, HLRTF without regularizations cannot
recover the HSI with slice missing. ∥∇xÂ∥ℓ1 can address
horizontal slice missing, ∥∇yB̂∥ℓ1 can address lateral slice
missing, and ∥∇xH∥ℓ1 can address frontal slice missing.
The PTV(Θ) combines these three terms and thus can re-
cover HSIs with different slice missing cases. The experi-
mental results well support the analysis in Sec. 3.3.2.

Next, we clarify the influence of the number of layers
(i.e., the parameter k) of the DNN. We set k = 1, 2, 3, 4, 5
to test the influence (When k = 1, the DNN degrades to
a linear transform). The results are shown in Table 1. We
can observe setting a proper number can improve the per-
formance. However, when k becomes too large, the perfor-
mance drops, since it is harder to optimize the DNN with
deeper structures. Nevertheless, setting k as a moderate
number (e.g., k = 2) can well guarantee the performance.

4.2. Comparisons with State-of-the-Arts

We then compare our method with state-of-the-art meth-
ods in three different inverse problems in multi-dimensional

Table 1. The quantitative results for multi-dimensional image
completion by HLRTF with different number of layers.

Sampling rate 0.1 0.2 0.3 Time
(s)Data k PSNR SSIM PSNR SSIM PSNR SSIM

HSIs
WDC mall

(256×256×191)
Pavia

(200×200×80)

k = 1 30.98 0.930 32.87 0.956 34.33 0.968 355
k = 2 41.70 0.990 51.41 0.999 54.68 0.999 491
k = 3 45.71 0.997 52.80 0.999 56.35 0.999 584
k = 4 45.68 0.997 51.77 0.999 54.56 0.999 598
k = 5 45.14 0.997 50.26 0.999 52.72 0.999 656

imaging: completion [18], denoising [48], and snapshot
spectral imaging [31]. We use peak-signal-to-noise-ratio
(PSNR) and structural similarity (SSIM) to evaluate the re-
sults. Higher PSNR and SSIM values refer to better perfor-
mance. HLRTF and HLRTF* respectively denote the pro-
posed method with and without the PTV. For implementa-
tion details, please refer to supplementary materials.

4.2.1 Datasets and Compared Methods

Multi-Dimensional Image Completion The multi-
dimensional image completion aims at recovering the
underlying image from its incompleted observation. We
adopt two HSIs (WDC mall and Pavia2), two MSIs (Beans
and Cloth [50]3), and two videos (Backdoor and Yard4)
to conduct the experiments. The sampling rates (SRs)
of random missing cases are set to 0.1, 0.2, and 0.3.
Please refer to supplementary materials for structural slice
missing cases. The compared methods include the TNN
based on DFT (TNN) [58], the deep matrix factoriza-
tion (DMF) [10], the low-tubal-rank tensor factorization
(TCTF) [61], the TNN based on DCT (DCTNN) [33],
the tensor ring decompoistion with rank minimization on
latent space (TRLRF) [52], the freamlet transform-based
TNN (FTNN) [18], and the fully connectd tensor network
decomposition (FCTN) [60].

Multispectral Image Denoising The MSI denoising aims
at recovering the clean HSI from its noisy observation.
We adopt two HSIs (WDC mall and Pavia) and four MSIs
(Balloons, Fruits [50], Pool, and Doll5) to conduct the ex-
periments. We consider three noisy cases. Case 1 includes
the Gaussian noise with standard deviation 0.2. Case 2
includes Gaussian noise with standard deviation 0.2 and im-
pulse noise with SR 0.1. Case 3 includes the same noise in
Case 2 plus stripe deadline noise in all spectral bands [29].
The compared methods are the low-rank matrix recovery
(LRMR) [56], the total variation regularized low-rank
tensor decomposition (LRTDTV) [48], the subspace-based

2http : / / www . ehu . eus / ccwintco / index . php ? title =
Hyperspectral_Remote_Sensing_Scenes

3https : / / www . cs . columbia . edu / CAVE / databases /
multispectral/

4http://jacarini.dinf.usherbrooke.ca/static/dataset/
5https : / / sites . google . com / site /

hyperspectralcolorimaging/dataset/general-scenes
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Table 2. The average quantitative results for completion. The best
and second-best values are highlighted.

Sampling rate 0.1 0.2 0.3 Time
(s)Data Method PSNR SSIM PSNR SSIM PSNR SSIM

HSIs
WDC mall

(256×256×191)
Pavia

(200×200×80)

TNN 32.69 0.954 38.08 0.984 41.77 0.991 1212
DMF 20.41 0.476 22.21 0.611 23.78 0.711 1249
TCTF 19.28 0.413 20.24 0.528 21.34 0.618 504
DCTNN 36.27 0.979 43.67 0.994 48.68 0.997 761
TRLRF 28.58 0.895 31.06 0.936 31.84 0.946 2530
FTNN 37.82 0.984 44.64 0.995 49.05 0.998 4016
FCTN 40.35 0.982 47.05 0.998 48.99 0.999 4829
HLRTF* 41.11 0.984 47.73 0.998 50.32 0.999 407
HLRTF 41.70 0.990 51.41 0.999 54.68 0.999 491

MSIs
Beans

(256×256×31)
Cloth

(256×256×31)

TNN 24.19 0.796 29.11 0.924 32.82 0.964 254
DMF 17.35 0.334 19.32 0.495 20.96 0.617 157
TCTF 17.15 0.349 18.50 0.450 19.95 0.549 109
DCTNN 24.69 0.814 30.21 0.940 34.49 0.975 190
TRLRF 25.21 0.818 27.69 0.891 29.54 0.926 1054
FTNN 26.89 0.887 32.33 0.962 36.27 0.982 977
FCTN 27.44 0.883 30.85 0.940 32.17 0.955 571
HLRTF* 28.57 0.916 34.00 0.972 37.24 0.985 328
HLRTF 32.13 0.964 36.71 0.986 38.77 0.991 370

Videos
Backdoor

(240×320×30)
Yard

(240×320×30)

TNN 30.60 0.928 36.75 0.980 38.07 0.985 294
DMF 18.64 0.559 32.42 0.963 38.86 0.988 329
TCTF 18.33 0.563 19.35 0.682 20.79 0.725 124
DCTNN 33.57 0.966 36.64 0.981 38.07 0.985 202
TRLRF 32.30 0.952 34.29 0.969 35.11 0.975 754
FTNN 35.36 0.976 37.78 0.985 39.05 0.989 1308
FCTN 34.94 0.972 37.81 0.985 38.97 0.988 791
HLRTF* 36.30 0.980 38.32 0.987 39.28 0.989 331
HLRTF 36.69 0.982 38.45 0.987 39.30 0.989 377

nonlocal low-rank and sparse factorization (SNLRSF) [5],
the residual convolutional neural network (D-CNN) [53],
the deep convolutional neural network (SDeCNN) [36],
the enhanced 3DTV regularization (E3DTV) [40], and the
ℓ0-ℓ1 hybrid total variation (ℓ0-ℓ1 HTV) [47].

Snapshot Spectral Imaging The snapshot spectral imaging
aims at recovering the underlying multi-dimensional image
from its low-dimensional measurement and masks [31].
We adopt two HSIs (WDC mall and Pavia) and three MSIs
(Toy, Flowers [50], and Bird6) to conduct the experiments.
Due to the high computational costs of the compared
method DeSCI [31], all datasets are cut with 10 spectral
bands. For the same reason, the spatial resolution of MSI
Bird is manually reduced. The SRs of the masks are set
to 0.1, 0.3, and 0.5. The compared methods include the
generalized alternating projection (GAP)-based methods
(GAPTV [54], GAPBM4D [31], and DeSCI [31]), the
shearlet transform and sparsity-based method (SeSCI) [49],
the plug-and-play deep neural network-based method
(PnP) [55], the combined TV and PnP (PnP-TV) [43], and
the combined 3DTV and PnP (PnP-3DTV) [43].

4.2.2 Experimental Results

The quantitative results of multi-dimensional image com-
pletion, denoising, and snapshot spectral imaging are re-
spectively reported in Tables 2-4. We can observe that
the proposed HLRTF* and HLRTF perform competitively

6https : / / github . com / liuyang12 / DeSCI / tree / master /
dataset

Table 3. The average quantitative results for MSI denoising. The
best and second-best values are highlighted.

Case Case 1 Case 2 Case 3 Time
(s)Data Method PSNR SSIM PSNR SSIM PSNR SSIM

HSIs
WDC mall

(256×256×191)
Pavia

(200×200×80)

LRMR 28.62 0.901 30.94 0.940 23.64 0.817 226
LRTDTV 30.16 0.915 32.81 0.953 23.97 0.826 193
SNLRSF 34.47 0.970 29.55 0.941 23.41 0.808 755
D-CNN 29.67 0.919 25.93 0.858 22.26 0.749 829
SDeCNN 31.94 0.947 26.77 0.892 22.45 0.766 87
E3DTV 29.76 0.911 33.10 0.959 23.98 0.827 75
ℓ0-ℓ1 HTV 27.04 0.844 29.80 0.911 23.58 0.788 494
HLRTF* 31.40 0.941 33.50 0.961 24.16 0.836 67
HLRTF 32.75 0.954 34.00 0.969 30.69 0.936 73

MSIs
Balloons

(256×256×31)
Fruits

(256×256×31)

LRMR 28.36 0.779 31.32 0.866 25.14 0.822 74
LRTDTV 33.58 0.941 34.22 0.914 25.55 0.852 61
SNLRSF 33.61 0.917 27.16 0.719 23.62 0.653 901
D-CNN 29.59 0.864 24.25 0.599 22.70 0.564 382
SDeCNN 34.80 0.942 25.29 0.656 22.85 0.594 24
E3DTV 31.86 0.928 33.71 0.931 25.43 0.860 18
ℓ0-ℓ1 HTV 32.35 0.907 35.13 0.938 25.48 0.838 128
HLRTF* 31.41 0.887 32.18 0.894 24.49 0.727 23
HLRTF 35.19 0.945 35.89 0.953 34.06 0.943 27

MSIs
Pool

(256×288×49)
Doll

(256×288×49)

LRMR 30.20 0.824 33.37 0.921 24.76 0.828 127
LRTDTV 31.47 0.943 33.31 0.957 24.61 0.855 94
SNLRSF 34.43 0.942 29.59 0.877 23.94 0.779 1035
D-CNN 28.95 0.859 24.93 0.744 22.13 0.669 563
SDeCNN 31.57 0.941 26.19 0.823 22.73 0.730 38
E3DTV 29.69 0.927 31.19 0.943 24.26 0.845 32
ℓ0-ℓ1 HTV 31.78 0.911 34.65 0.949 24.70 0.835 215
HLRTF* 31.02 0.920 33.73 0.923 24.79 0.832 51
HLRTF 35.13 0.953 35.50 0.961 34.42 0.951 58

Table 4. The average quantitative results for snapshot spectral
imaging. The best and second-best values are highlighted.

Sampling rate 0.1 0.3 0.5 Time
(s)Data Method PSNR SSIM PSNR SSIM PSNR SSIM

HSIs
WDC mall

(256×256×10)
Pavia

(200×200×10)

GAPTV 20.57 0.739 21.81 0.751 22.17 0.742 51
GAPBM4D 28.43 0.918 27.42 0.902 24.93 0.839 263
DeSCI 29.04 0.924 28.07 0.910 26.24 0.869 14685
SeSCI 21.25 0.694 22.03 0.698 22.05 0.672 256
PnP 17.55 0.560 18.26 0.582 19.17 0.612 239
PnP-TV 23.32 0.848 24.21 0.842 24.09 0.813 33
PnP-3DTV 22.80 0.803 25.17 0.830 25.28 0.824 33
HLRTF* 29.60 0.924 29.93 0.928 28.38 0.905 136
HLRTF 30.90 0.938 30.90 0.937 30.46 0.936 156

MSIs
Toy

(256×256×10)
Flowers

(256×256×10)

GAPTV 25.35 0.736 26.16 0.771 26.10 0.760 60
GAPBM4D 29.53 0.852 28.23 0.818 26.60 0.766 324
DeSCI 30.52 0.860 30.67 0.856 30.04 0.863 16756
SeSCI 26.49 0.832 26.77 0.846 26.28 0.837 350
PnP 22.86 0.807 23.16 0.765 23.60 0.742 158
PnP-TV 28.88 0.898 29.09 0.873 28.29 0.838 38
PnP-3DTV 31.74 0.914 31.11 0.888 29.58 0.848 42
HLRTF* 31.85 0.916 31.59 0.911 31.12 0.897 138
HLRTF 33.23 0.948 34.07 0.955 34.23 0.958 153

MSIs
Bird

(235×341×10)

GAPTV 24.92 0.780 26.31 0.808 26.20 0.792 28
GAPBM4D 21.73 0.892 21.17 0.806 20.81 0.701 208
DeSCI 25.28 0.851 26.76 0.874 27.45 0.872 8904
SeSCI 24.29 0.778 25.80 0.827 25.99 0.839 277
PnP 21.55 0.788 21.53 0.780 22.17 0.752 96
PnP-TV 28.30 0.927 28.78 0.915 28.76 0.886 34
PnP-3DTV 28.10 0.940 30.98 0.936 30.03 0.907 27
HLRTF* 29.25 0.922 30.64 0.924 30.47 0.916 74
HLRTF 30.46 0.941 31.51 0.941 32.18 0.936 87

against compared methods, while HLRTF achieves better
results than HLRTF* due to the ability of PTV to explore
the local smoothness of multi-dimensional images. From
the running time comparison, we can observe that the pro-
posed methods are efficient compared with other methods.

Some visual results for different tasks are shown in Figs.
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PSNR 14.65 PSNR 23.40 PSNR 16.82 PSNR 16.52 PSNR 23.37 PSNR 25.42 PSNR 25.35 PSNR 26.74 PSNR 32.68 PSNR Inf

PSNR 11.94 PSNR 24.98 PSNR 17.88 PSNR 17.77 PSNR 26.02 PSNR 24.99 PSNR 28.44 PSNR 28.14 PSNR 31.58 PSNR Inf
Observed TNN [58] DMF [10] TCTF [61] DCTNN [33] TRLRF [52] FTNN [18] FCTN [60] HLRTF Original

Figure 5. The results of multi-dimensional image completion by different methods on MSI Beans and MSI Cloth (SR = 0.1).

PSNR 13.46 PSNR 26.80 PSNR 27.43 PSNR 24.67 PSNR 23.31 PSNR 23.44 PSNR 27.10 PSNR 27.22 PSNR 34.79 PSNR Inf

PSNR 13.81 PSNR 24.02 PSNR 23.95 PSNR 23.16 PSNR 22.19 PSNR 22.73 PSNR 23.69 PSNR 24.15 PSNR 34.29 PSNR Inf
Observed LRMR [56] LRTDTV [48] SNLRSF [5] D-CNN [53] SDeCNN [36] E3DTV [40] ℓ0-ℓ1 HTV [47] HLRTF Original

Figure 6. The results of MSI denoising by different methods on MSI Fruits and MSI Pool for Case 3.

PSNR 26.81 PSNR 27.01 PSNR 30.15 PSNR 27.04 PSNR 23.81 PSNR 28.45 PSNR 29.32 PSNR 34.21 PSNR Inf

PSNR 26.20 PSNR 20.81 PSNR 27.45 PSNR 25.99 PSNR 22.17 PSNR 28.76 PSNR 30.03 PSNR 32.18 PSNR Inf
Observed GAPTV [54] GAPBM4D [31] DeSCI [31] SeSCI [49] PnP [55] PnP-TV [43] PnP-3DTV [43] HLRTF Original

Figure 7. The results of snapshot spectral imaging by different methods on MSI Flowers and MSI Bird (SR = 0.5).

5-7. In Fig. 5, we can observe that HLRTF recovers the
multi-dimensional images and captures the fine details bet-
ter than compared methods with the help of the represen-
tation ability brought by the DNN. In Fig. 6, we can ob-
serve that HLRTF removes the challenging deadline noise
with the help of PTV regularization, while compared meth-
ods fail to do so. In Fig. 7, we can observe that HLRTF
has cleaner results and can preserve the image details and
colors better than compared methods. Please refer to sup-
plementary materials for more visual results.

5. Conclusion
In this paper, we embed a DNN in the t-SVD frame-

work and propose the HLRTF for multi-dimensional im-

age recovery. To address the vanishing gradient issue, we
propose the PTV regularization. Extensive experiments on
multi-dimensional image completion, denoising, and snap-
shot spectral imaging verify the effectiveness and superior-
ity of our method over state-of-the-art methods.
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