
Black-Box Tuning for Language-Model-as-a-Service

Tianxiang Sun 1 Yunfan Shao 1 Hong Qian 2 Xuanjing Huang 1 Xipeng Qiu 1 3

Abstract
Extremely large pre-trained language models
(PTMs) such as GPT-3 are usually released as
a service. It allows users to design task-specific
prompts to query the PTMs through some black-
box APIs. In such a scenario, which we call
Language-Model-as-a-Service (LMaaS), the gra-
dients of PTMs are usually unavailable. Can we
optimize the task prompts by only accessing the
model inference APIs? This paper proposes the
black-box tuning framework to optimize the con-
tinuous prompt prepended to the input text via
derivative-free optimization. Instead of optimiz-
ing in the original high-dimensional prompt space,
which is intractable for traditional derivative-free
optimization, we perform optimization in a ran-
domly generated subspace due to the low intrinsic
dimensionality of large PTMs. The experimen-
tal results show that the black-box tuning with
RoBERTa on a few labeled samples not only sig-
nificantly outperforms manual prompt and GPT-
3’s in-context learning, but also surpasses the
gradient-based counterparts, i.e., prompt tuning
and full model tuning.

1. Introduction
Scaling pre-trained language models (PTMs) has shown
increasing power on a wide range of NLP tasks (Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020; Fedus
et al., 2021; Zhang et al., 2020; 2021b; Zeng et al., 2021;
Sun et al., 2021; Qiu et al., 2020). Extremely large PTMs
can easily generalize to various downstream tasks with a
few labeled samples (Brown et al., 2020). However, making
these large PTMs benefit everyone is a challenge. On the
one hand, running such models can be very expensive or
even infeasible for most users. On the other hand, the model
parameters are often not open-sourced due to commercial

1Fudan University 2East China Normal University 3Peng
Cheng Laboratory. Correspondence to: Tianxiang Sun <tx-
sun19@fudan.edu.cn>, Xipeng Qiu <xpqiu@fudan.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Users

Query

Response

Server

Mixed-Task

Batch

PTM Inference

(Black-Box)

Task Prompt (Tunable)

Samples

Update Prompt

Figure 1. Illustration of Language-Model-as-a-Service (LMaaS).
Users can query the PTM deployed on the server through a black-
box API. In each query, users can input a task prompt and a batch
of texts. On the server side, the samples can be mixed in a large
batch to be fed into the PTM. By iteratively querying the PTM
through the black-box API, users can optimize and finally obtain
good prompts to solve the language tasks of interest.

considerations and the potential risk of misuse.1 Therefore,
large PTMs such as GPT-3 (Brown et al., 2020), ERNIE
3.0 (Sun et al., 2021) and Yuan 1.0 (Wu et al., 2021) are
usually released as a service, allowing users to access these
powerful models through black-box APIs.

In this scenario, called Language-Model-as-a-Service
(LMaaS), users can solve the language tasks of interest using
the black-box APIs by crafting task-specific text prompts
or including training samples in the input texts (a.k.a. in-
context learning (Brown et al., 2020)). Due to the great
power of the general-purpose PTMs underlying the APIs,
such approaches can achieve considerable performance on
simple language tasks, and therefore have powered many
interesting applications2. However, querying large PTMs
through hand-crafted text prompts cannot fully exploit la-
beled data, resulting in unsatisfactory performance in many
use cases.

Instead of designing discrete text prompts, recently much
effort has been devoted to continuous prompt tuning (Li
& Liang, 2021; Hambardzumyan et al., 2021; Liu et al.,

1https://openai.com/blog/openai-api/
2See https://gpt3demo.com/ for examples.

ar
X

iv
:2

20
1.

03
51

4v
4

 [
cs

.C
L

]
 2

7
Ju

n
20

22

https://openai.com/blog/openai-api/
https://gpt3demo.com/

Black-Box Tuning for Language-Model-as-a-Service

2021b), which is to optimize the continuous prompt injected
to the text while keeping the PTM parameters frozen. Such
methods only require storing a small continuous prompt
for each task, and therefore are highly deployment-efficient.
Besides, tuning the continuous prompt can be as effective
as fine-tuning the entire model when the PTM becomes
large (Lester et al., 2021). However, in all the previous
methods, the continuous prompts are learned through back-
propagation, which is unavailable in the scenario of LMaaS.

Can we optimize the task-specific continuous prompts
when we only have access to the PTM inference API?
Since gradients are unavailable, we can only invoke
derivative-free optimization (DFO)3 (Kolda et al., 2003;
Conn et al., 2009; Rios & Sahinidis, 2013). DFO involves a
kind of optimization algorithms that do not depend on gra-
dients, but only relies on function values (or fitness values)
of sampled solutions. However, DFO algorithms are known
to suffer from slow convergence rate when the dimension-
ality of the search space is high. Thus, it is intractable to
optimize even only the continuous prompts, which can be
tens of thousands of parameters, using DFO algorithms.

Fortunately, recent work found that common PTMs, despite
their large numbers of parameters, have a very low intrinsic
dimensionality (Aghajanyan et al., 2021; Qin et al., 2021).
That means, there exists a low-dimensional reparameteriza-
tion that is as effective for fine-tuning as the full parameter
space. It has been demonstrated that optimizing only hun-
dreds (Aghajanyan et al., 2021) or even dozens (Qin et al.,
2021) of parameters can achieve non-trivial performance.
Given that the intrinsic dimensionality of the objective func-
tion (in our case is the forward computation of PTMs) is
low, the optimization can be effectively solved via DFO al-
gorithms with random embedding (Wang et al., 2016; Qian
et al., 2016; Letham et al., 2020).

Based on the these insights, this paper proposes the Black-
Box Tuning (BBT) to solve various language understand-
ing tasks by only accessing the PTM inference API. In
particular, we manage to optimize the continuous prompt
prepended to the input text by iteratively querying the PTM
inference API, as briefly depicted in Figure 1. To han-
dle the high dimensionality of the continuous prompt, we
project the original prompt space using a random linear
projection onto a much smaller subspace and solve this
optimization problem with some derivative-free optimizer
in that smaller subsapce. In contrast to conventional fine-
tuning methods that can only be performed by the service
side, black-box tuning allows users to optimize their task-
specific prompts locally on resource-limited devices (even
without GPUs). Our experimental results demonstrate that
prompting RoBERTaLARGE (Liu et al., 2019) using BBT on

3Also termed as black-box, zeroth-order or gradient-free opti-
mization.

a few labeled samples not only outperforms manual prompt
and in-context learning (Brown et al., 2020), but also out-
performs its gradient-based counterparts, namely prompt
tuning (Lester et al., 2021) and full model tuning.

The contribution of this paper is three folds:4

• This paper proposes a novel scenario (LMaaS) where
one should learn to prompt the PTMs by only accessing
their inference APIs.

• This paper offers a solution (BBT) for such a scenario
to accomplish common language understanding tasks
without access to model parameters and gradients, such
that large-scale PTMs can better benefit users.

• Empirical results show that DFO can successfully deal
with real-world language tasks by learning to prompt
large-scale PTMs with more than millions of parame-
ters. Thus, this work pioneers the work of optimizing
large-scale PTMs through DFO methods.

2. Background
Large-Scale PTMs as APIs. It is a promising way to de-
ploy large-scale PTMs to serve downstream applications
by providing general-purpose APIs. For the service side,
wrapping the computation of the PTM into an easy-to-use
API has become a common practice (Brown et al., 2020; Sun
et al., 2021; Wu et al., 2021). In contrast to training, the in-
ference speed of large-scale PTMs can be highly optimized
with acceleration techniques such as ORT and TensorRT.
In addition, large-scale PTMs are often not open-sourced
due to the commercial reasons and the potential risk of mis-
use. For the user side, even if the large-scale PTMs are
available, it is expensive or even infeasible to locally run
them. Thus, how to exploit the PTM inference API to solve
conventional language tasks is a promising direction.

Intrinsic Dimensionality of PTMs. The intrinsic dimen-
sionality of an objective function is the minimum number
of parameters needed to obtain satisfactory solutions (Li
et al., 2018). In particular, the intrinsic dimensionality in-
dicates the lowest dimensional reparameterization that is
as effective for optimizing as the full parameter space. Li
et al. (2018) propose to measure the intrinsic dimensionality
of neural networks by finding the minimal dimensionality
of the subspace that is randomly projected from the full
trainable parameters, in which they can optimize the neural
networks to achieve satisfactory solutions. Aghajanyan et al.
(2021) empirically show that large-scale pre-training implic-
itly compresses the intrinsic dimensionality of downstream
NLP tasks. By tuning only hundreds of parameters that

4Our code is publicly available at https://github.com/
txsun1997/Black-Box-Tuning

https://github.com/txsun1997/Black-Box-Tuning
https://github.com/txsun1997/Black-Box-Tuning

Black-Box Tuning for Language-Model-as-a-Service

are then randomly projected onto the full parameter space
of RoBERTa, they can achieve 90% performance relative
to full model tuning. Qin et al. (2021) show that intrinsic
subspace on various tasks can be compressed to less than
100 dimensions with multi-task supervision. This line of
research, along with the work of parameter-efficient tun-
ing (Houlsby et al., 2019; Li & Liang, 2021; Lester et al.,
2021; Sun et al., 2022; Hu et al., 2021a; He et al., 2021),
demonstrate that PTMs can well adapt to downstream tasks
by tuning a very small proportion of parameters, which im-
plies the possibility of optimizing large-scale PTMs with
derivative-free algorithms.

Prompt-Based Learning. Prompt-based learning is to
formulate downstream tasks as a (masked) language mod-
eling task, and therefore reduces the gap between PTM
pre-training and fine-tuning (Brown et al., 2020; Schick &
Schütze, 2021a;b; Gao et al., 2021; Sun et al., 2022). For
instance, one can use BERT (Devlin et al., 2019) to predict
whether the sentence ”This is a fantastic movie” is positive
or negative by appending the prompt ”It was [MASK]” and
see if BERT predicts ”great” or ”terrible” at the masked
position. Note that the prompt is not necessarily discrete, it
can also be optimized efficiently in continuous space with
gradient descent (Li & Liang, 2021; Hambardzumyan et al.,
2021; Qin & Eisner, 2021; Liu et al., 2021b; Zhong et al.,
2021). In the case of only tuning the continuous prompt
while keeping the parameters of large PTMs untouched,
one can retain the efficient serving benefits while matching
the performance of full model tuning (Lester et al., 2021).
Our work also proposes to optimize the continuous prompt
while keeping the PTM parameters unchanged, but without
gradient descent.

Derivative-Free Optimization. Derivative-free optimiza-
tion (DFO) realizes optimization only via the function val-
ues f(x) on the sampled solutions x. Most DFO algorithms
share a common structure of sampling-and-updating to en-
hance the quality of solutions. Representative DFO algo-
rithms include evolutionary algorithms (Hansen et al., 2003),
Bayesian optimization (Shahriari et al., 2016), etc. Due
to their ability of addressing complex optimization tasks,
DFO algorithms have achieved many impressive applica-
tions in automatic machine learning (Snoek et al., 2012),
reinforcement learning (Salimans et al., 2017; Hu et al.,
2017), objective detection (Zhang et al., 2015b), etc.

3. Approach
3.1. Problem Formulation

Common language understanding tasks can be formulated
as a classification task, which is to predict for a batch of
input texts X the labels Y . To solve the target language

understanding task with a general-purpose PTM, we should
modify X with some template (e.g., adding some trigger
words and a special token [MASK] for BERT-like PTMs)
and map the labels Y to some words in the PTM vocab-
ulary (e.g., the sentiment label ”positive” can be mapped
to ”great”). The modified inputs and labels are denoted as
X̃ and Ỹ . Assume the BERT-like PTM inference API f
takes a continuous prompt p and a batch of modified texts
X̃ as input, and outputs the logits on the masked positions,
i.e., Ŷ = f(p; X̃). With the output logits, we can calculate
the loss on this batch of data, which is not necessarily to
be differentiable. Our goal is to find the optimal prompt
p? = argminp∈P L(f(p; X̃), Ỹ), where P is some search
space of interest and L is some loss function such as nega-
tive accuracy. The black-box function f is not available to
the optimizer in closed form, but can be evaluated at a query
point (p; X̃).

3.2. Black-Box Tuning

As demonstrated by Lester et al. (2021), dozens of prompt to-
kens are required to obtain a competitive performance when
only tuning continuous prompts. Given that the embedding
dimensionality of large-scale PTMs is usually larger than
one thousand (e.g., the word embeddings of RoBERTaLARGE
are 1024-dimensional), the dimensionality of the continuous
prompt p ∈ RD that we are interested to optimize can be
tens of thousands, which makes derivative-free optimization
intractable. To handle this high-dimensional optimization,
since large-scale PTMs have a low intrinsic dimensional-
ity (Aghajanyan et al., 2021; Qin et al., 2021), we manage
to optimize z ∈ Rd in a much smaller subspace (d � D),
and use a random projection matrix A ∈ RD×d to project z
on the original prompt space P .

Note that directly projecting z onto the prompt space that
is compatible with the PTM is non-trivial. To ease the
optimization, we instead optimize the increment of some
initial prompt p0. For simplicity, we randomly sample n
tokens from the PTM vocabulary as initialization. Thus, our
objective becomes

z? = argmin
z∈Z

L(f(Az+ p0; X̃), Ỹ) , (1)

where Z is the search space. Previous work (Wang et al.,
2016; Qian et al., 2016; Letham et al., 2020) in derivative-
free optimization usually sets each entry in the random
matrix A by sampling from some normal distribution. How-
ever, this sampling strategy does not perform well in our
scenario. Instead, we set values of the random matrix A by
sampling from a uniform distribution adopted in He et al.
(2015) (cf. Appendix A for the comparison). We restrict the
search space to Z = [−5, 5]d.

For the loss function L, a straightforward alternative is using
negative accuracy. However, the reward of accuracy can be

Black-Box Tuning for Language-Model-as-a-Service

Best film ever . It was <MASK> .

A totally boring movie ! It was <MASK> .

You 'll probably love it . It was <MASK> .

great

terrible

great

෩𝒀

throne arrow apple

𝒛

𝑨 ∈ ℝ𝐷×𝑑

𝑨𝒛

𝒑𝟎

𝒑

Copy

Pre-Trained Language Model Inference

(Black-Box API)

good:10.2 great:7.9 movie:7.1 …

terrible:11.2 bad:9.9 boring:8.0 …

great:9.8 love:5.2 film:3.3 …

𝒀𝓛(෩𝒀, 𝒀)

Derivative-Free Optimizer

Best film ever . It was <MASK> .

A totally boring movie ! It was <MASK> .

You 'll probably love it . It was <MASK> .

෩𝑿

Server

User Labeled Data

Figure 2. A single iteration of the optimization. Given z ∈ Rd provided by the derivative-free optimizer, we project it to the prompt
space by a random matrix A ∈ RD×d. By adding the projected prompt embeddings Az with some initial prompt embeddings p0 (in this
illustration are the embeddings of tokens randomly sampled from the PTM’s vocabulary), we obtain the final prompt embeddings that are
then concatenated with the input texts X̃ . By calling the black-box API f , which implements the forward computation of the PTM, the
predictions on the masked positions are obtained, i.e., Ŷ = f(p; X̃). With the prediction Ŷ and the golden labels Ỹ at hand, we can
calculate the loss that is used by the derivative-free optimizer to suggest a new z.

sparse and less informative, especially when training data is
limited. Thus, we also consider two loss functions that are
more sensitive to predictions, i.e., cross entropy and hinge
loss. Given the output logits ŷ over a candidate set of label
words, and the golden label word ỹ of a certain sample, the
cross entropy is defined as

LCE(ŷ, ỹ) = − log Softmaxỹ(ŷ). (2)

For hinge loss, we adopt a multi-class extension (Weston &
Watkins, 1999),

LHinge(ŷ, ỹ) =
∑
i 6=ỹ

max(0, γ + ŷi − ŷỹ). (3)

In this work we set the margin γ = 2. The performances of
using cross entropy, hinge loss, and negative accuracy are
compared in Figure 3.

3.3. The CMA Evolution Strategy

As demonstrated in Aghajanyan et al. (2021), the intrinsic
dimensionality of PTMs like RoBERTaLARGE on various
tasks can be hundreds. To handle optimization of such scale,
we adopt the CMA-ES (Covariance Matrix Adaptation Evo-
lution Strategy) (Hansen & Ostermeier, 2001; Hansen et al.,
2003), which is a widely used evolutionary algorithm for
non-convex black-box optimization in continuous domain.

In particular, CMA-ES maintains a parameterized search
distribution model, i.e., multivariate normal distribution. In

each iteration, CMA-ES samples a population of new query
solutions (also referred to as individuals or offspring) from
the multivariate normal distribution model

z
(t+1)
i ∼m(t) + σ(t)N (0,C(t)) , (4)

where i = 1, . . . , λ and λ is the population size. m(t) ∈ Rd

is the mean vector of the search distribution at iteration step
t, σ(t) ∈ R+ is the overall standard deviation that controls
the step length, and C(t) ∈ Rd×d is the covariance matrix
that determines the shape of the distribution ellipsoid. By
maximizing the likelihood of successful steps, m(t), σ(t),
C(t) are updated (cf. Hansen (2016) for more details).

3.4. Pre-Training Prompt Embedding

Considering that sentence-pair tasks can share the same
template and label words, as shown in Table 1, we can pre-
train a prompt embedding p0 on some publicly available
NLI task (in our experiments we use the MNLI (Williams
et al., 2018) training set) for a better initialization. For other
classification tasks we set p0 as word embeddings randomly
drawn from the vocabulary of RoBERTaLARGE.

4. Experiments
4.1. Setup

Dataset. We conduct experiments on several common
language understanding tasks including sentiment analy-
sis, topic classification, natural language inference (NLI),

Black-Box Tuning for Language-Model-as-a-Service

Table 1. Statistics, manual templates, and label words used in our experiments. | Y |: number of classes.
Category Dataset | Y | |Train| |Test| Type Template Label words

single-
sentence

SST-2 2 67k 0.9k sentiment 〈S〉. It was [MASK]. great, bad
Yelp P. 2 560k 38k sentiment 〈S〉. It was [MASK]. great, bad
AG’s News 4 120k 7.6k topic [MASK] News: 〈S〉 World, Sports, Business, Tech
DBPedia 14 560k 70k topic [Category: [MASK]] 〈S〉 Company, Education, Artist, Athlete, Office,

Transportation, Building, Natural, Village,
Animal, Plant, Album, Film, Written

sentence-
pair

MRPC 2 3.7k 0.4k paraphrase 〈S1〉 ? [MASK], 〈S2〉 Yes, No
RTE 2 2.5k 0.3k NLI 〈S1〉 ? [MASK], 〈S2〉 Yes, No
SNLI 3 549k 9.8k NLI 〈S1〉 ? [MASK], 〈S2〉 Yes, Maybe, No

and paraphrase. For sentiment analysis, we choose SST-
2 (Socher et al., 2013) and Yelp polarity (Zhang et al.,
2015a). For topic classification, we choose AG’s News
and DBPedia (Zhang et al., 2015a). For NLI, we choose
SNLI (Bowman et al., 2015) and RTE (Wang et al., 2019).
For paraphrase, we choose MRPC (Dolan & Brockett, 2005).
The statistics, manual templates and label words of these
datasets are shown in Table 1.

Few-Shot Setting. For a broad range of users, the amount
of labeled data can be limited, in which case they can resort
to the deployed large PTMs due to their great power of few-
shot learning (Brown et al., 2020). Hence, in this paper we
conduct experiments in the few-shot setting. We randomly
select k samples for each class to construct a k-shot training
set Dtrain, and compose a development set Ddev by randomly
drawing another k samples from the original training set and
ensure that |Dtrain| = |Ddev| to simulate the true few-shot
learning setting (Perez et al., 2021). Following Zhang et al.
(2021a), Gao et al. (2021), and Gu et al. (2021), we use the
original development sets as the test sets. For datasets with-
out development sets, we use the original test sets. Hence,
in our experiments |Dtest| � |Dtrain| = |Ddev|.

Backbone Model. We choose RoBERTaLARGE (Liu et al.,
2019) as our backbone model because: (1) We mainly fo-
cus on language understanding tasks; (2) Aghajanyan et al.
(2021) have demonstrated that RoBERTaLARGE has a very
small intrinsic dimensionality (about hundreds) on many
tasks. It is worth noting that generative PTMs such as
GPT (Brown et al., 2020), T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020) are also compatible with our
framework if we convert downstream tasks into a unified
text-to-text format. We leave for future work the applica-
tions of generative PTMs.

Baselines. We compare our proposed black-box tuning
with two kinds of methods: gradient-based methods and
gradient-free methods. For gradient-based methods, we
consider three baselines: (1) Prompt Tuning: Following
Lester et al. (2021), we only train the continuous prompts

Table 2. Default configuration of hyper-parameters.

Hyper-parameter Default

Prompt length (L) 50
Subspace dimension (d) 500
Population size (λ) 20
Random projection (A) Uniform
Loss function L Cross Entropy
Budget (# of API calls) 8000

prepended to the input texts while keeping the PTM frozen.
We use an Adam optimizer (Kingma & Ba, 2015) with learn-
ing rate of 5e-4 and batch size of 16 for 1000 epochs. For
fair comparison, we use the same prompt length, manual
template, label words, and the same pre-trained prompt em-
bedding for initialization on sentence-pair tasks as black-box
tuning. (2) P-Tuning v2 (Liu et al., 2021a) is an improved
variant of prompt tuning. Instead of injecting continuous
prompts merely into the input layer, P-Tuning v2 prepends
and optimizes continuous prompts at every layer of the PTM.
We optimize the prompts of length 128 at each layer using
an Adam optimizer with learning rate of 5e-4 and batch size
of 32 for 2000 epochs. (3) Model Tuning: We fine-tune
the entire PTM on each task using an Adam optimizer with
learning rate of 1e-5 and batch size of 16 for 200 epochs.
For gradient-free methods, we consider three baselines: (1)
Manual Prompt: We directly use the templates and label
words in Table 1 to conduct zero-shot evaluation. The re-
sults of manual prompt can be seen as initial points of our
method. (2) In-context Learning: Following Brown et al.
(2020), we randomly select up to 32 training samples and
concatenate them with the input texts. (3) Feature-based
Methods: Feature-based methods (Peters et al., 2019) is
also a competitive baseline for LMaaS, where one can re-
quest the features encoded by the large PTM and locally
train a classifier to accomplish the task of interest. Here we
consider two implementations: (a) Feature-MLP: We train
a two-layered MLP classifier on the [CLS] representation
of the PTM. (b) Feature-BiLSTM: We train a bidirectional
LSTM (Hochreiter & Schmidhuber, 1997) on the repre-
sentations of the sequence of tokens, followed by a linear
classifier on the top. For both implementations of feature-

Black-Box Tuning for Language-Model-as-a-Service

based methods, we use an Adam optimizer with learning
rate of 3e-4 and batch size of 16 to train the attached clas-
sifiers for 1000 epochs. For black-box tuning, we give in
Table 2 the default configuration of hyper-parameters used
in our experiments. The effect of each hyper-parameter is
explored in § 4.3.

4.2. Results

Overall Comparison. We first demonstrate the experi-
mental results of black-box tuning and the baselines across
7 datasets in Table 3. The proposed black-box tuning sig-
nificantly outperforms the other four gradient-free methods.
We observe that in-context learning performs even worse
than manual prompt on some tasks, and suffers from high
variance. That means, in-context learning cannot effectively
utilize labeled samples included in the context. Feature-
based methods perform slightly better than manual prompt
and in-context learning. Meanwhile, Feature-BiLSTM out-
performs Feature-MLP due to its advantage of using more
informative features. Surprisingly, black-box tuning also
outperforms its gradient-based counterparts, namely prompt
tuning, p-tuning v2, and model tuning, on average perfor-
mance of the 7 tasks. Note that the only difference between
prompt tuning and black-box tuning is whether we use gra-
dient descent (i.e., Adam optimizer) or DFO algorithm (i.e.,
CMA-ES). Based on the experimental results, we suspect
that gradient-based optimization tends to overfit the small
training data while DFO tends to find better solutions due to
its exploration mechanism. In addition, we find that model
tuning performs much better than prompt tuning and black-
box tuning when number of classes is large (e.g., DBPedia).
On NLI tasks (i.e., SNLI and RTE), when using pre-trained
prompt embedding (§ 3.4), prompt tuning and black-box
tuning significantly outperform model tuning, which also
confirms the effectiveness of prompt pre-training (Gu et al.,
2021) in the context of black-box tuning.

Detailed Comparison. In the scenario of LMaaS, there
are many other factors to be considered. In Table 4 we com-
pare black-box tuning and the baseline methods in terms
of deployment efficiency, viability of as-a-service, training
time, memory usage on the user side and the server side, and
the amount of data to be uploaded and downloaded. Model
tuning is not deployment-efficient because it needs to main-
tain a copy of the entire model for each user. Gradient-based
methods cannot make the PTM serve as a service due to
the requirement of gradients. Feature-based methods and
black-box tuning are suitable for LMaaS. However, feature-
based methods cannot achieve competitive results when
labeled data is limited. Therefore, among all the considered
methods, only black-box tuning can achieve satisfactory
performance while maintaining reasonable training time,
memory footprint, and network load. Unlike gradient-based

methods, in which the optimization cost is proportional to
the size of the PTM, the optimization cost of black-box
tuning is decoupled from the scale of the PTM, and only
relies on the subspace dimensionality. For fair compari-
son of training time, we perform early stopping for all the
compared methods, i.e., we stop learning if the development
accuracy does not increase after 1000 steps. All the methods
are implemented with PyTorch (Paszke et al., 2019) and ex-
perimented on a single NVIDIA GTX 3090 GPU. Note that
the process of model inference can be further accelerated via
better implementations (e.g., using ONNX and TensorRT).
In Table 4 we also report the training time of black-box
tuning using ONNX Runtime. Detailed calculation of the
amount of data to be uploaded/downloaded can be found in
Appendix C.

4.3. Ablation Study

In this section, we conduct ablation experiments on various
hyper-parameters. To control experimental variables, we
explore the effect of each hyper-parameter while keeping
the other hyper-parameters as default as listed in Table 2.
To stablize the experimental results and reduce the variance
over different runs, we conduct ablation experiments in 64-
shot setting. Each run is performed on the same data split
with different random seeds. Experimental results of abla-
tions on loss functions L, subspace dimensionality d, and
prompt length L are demonstrated in Figure 3. Additional
ablation studies on the effect of the random projection A,
the effect of the population size λ, and the ablations in the
16-shot setting are in Appendix A.

For each ablation, we show results under different budget,
which is measured by the number of PTM inference API
calls. In each API call, one can provide a continuous prompt
p and query the results of the PTM forward computation
on a batch of training data. In our few-shot setting, we can
put all the training data into one batch, and therefore the
objective function to be optimized is deterministic instead
of stochastic.

CMA-ES vs. Adam. We compare our used derivative-
free optimizer, CMA-ES, with a competitive first-order opti-
mizer, Adam (Kingma & Ba, 2015). For fair comparison,
we update the continuous prompt using Adam with the gra-
dients over the entire training data (i.e., batch size equals
to |Dtrain|). We use learning rate of 1e-3 for Adam opti-
mizer. As shown in the top row of Figure 3, Adam optimizer
achieves faster convergence on both SST-2 and AG’s News
due to the gradients it used. On the development sets, Adam
performs slight worse than CMA-ES with cross entropy on
SST-2 but better on AG’s News. But as demonstrated in Ta-
ble 3, using Adam optimizer performs worse than CMA-ES
on the average performance across seven task test sets.

Black-Box Tuning for Language-Model-as-a-Service

Table 3. Overall comparison on various language understanding tasks. We report mean and standard deviation of performance over 3
different splits (§ 4.1). All of the results are obtained with pre-trained RoBERTaLARGE in 16-shot (per class) setting.

Method SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg.acc acc acc acc F1 acc acc

Gradient-Based Methods

Prompt Tuning 68.23 ±3.78 61.02 ±6.65 84.81 ±0.66 87.75 ±1.48 51.61 ±8.67 36.13 ±1.51 54.69 ±3.79 63.46
+ Pre-trained prompt / / / / 77.48 ±4.85 64.55 ±2.43 77.13 ±0.83 74.42
P-Tuning v2 64.33 ±3.05 92.63 ±1.39 83.46 ±1.01 97.05 ±0.41 68.14 ±3.89 36.89 ±0.79 50.78 ±2.28 70.47
Model Tuning 85.39 ±2.84 91.82 ±0.79 86.36 ±1.85 97.98 ±0.14 77.35 ±5.70 54.64 ±5.29 58.60 ±6.21 78.88

Gradient-Free Methods

Manual Prompt 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56
In-Context Learning 79.79 ±3.06 85.38 ±3.92 62.21 ±13.46 34.83 ±7.59 45.81 ±6.67 47.11 ±0.63 60.36 ±1.56 59.36
Feature-MLP 64.80 ±1.78 79.20 ±2.26 70.77 ±0.67 87.78 ±0.61 68.40 ±0.86 42.01 ±0.33 53.43 ±1.57 66.63
Feature-BiLSTM 65.95 ±0.99 74.68 ±0.10 77.28 ±2.83 90.37 ±3.10 71.55 ±7.10 46.02 ±0.38 52.17 ±0.25 68.29
Black-Box Tuning 89.56 ±0.25 91.50 ±0.16 81.51 ±0.79 87.80 ±1.53 61.56 ±4.34 46.58 ±1.33 52.59 ±2.21 73.01
+ Pre-trained prompt / / / / 75.51 ±5.54 83.83 ±0.21 77.62 ±1.30 83.90

Table 4. Comparison of deployment efficiency, viability of as-a-service, test accuracy, training time, memory footprint, and the amount of
data to be uploaded/downloaded. ? indicates the training time of the implementation with ONNX Runtime. All the compared methods are
performed on the same 16-shot splits of SST-2 and AG’s News.

Deployment- As-A- Test Training Memory Footprint Upload Download
Efficient Service Accuracy Time User Server per query per query

SST-2 (max sequence length: 47)

Prompt Tuning
√

× 72.6 15.9 mins - 5.3 GB - -
Model Tuning × × 87.8 9.8 mins - 7.3 GB - -
Feature-MLP

√ √
63.8 7.0 mins 20 MB 2.8 GB 4 KB 128 KB

Feature-BiLSTM
√ √

66.2 9.3 mins 410 MB 2.8 GB 4 KB 6016 KB
Black-Box Tuning

√ √
89.4 10.1 (6.1?) mins 30 MB 3.0 GB 6 KB 0.25 KB

AG’s News (max sequence length: 107)

Prompt Tuning
√

× 84.0 30.2 mins - 7.7 GB - -
Model Tuning × × 88.4 13.1 mins - 7.3 GB - -
Feature-MLP

√ √
71.0 13.5 mins 20 MB 3.6 GB 20 KB 256 KB

Feature-BiLSTM
√ √

73.1 19.7 mins 500 MB 3.6 GB 20 KB 27392 KB
Black-Box Tuning

√ √
82.6 21.0 (17.7?) mins 30 MB 4.6 GB 22 KB 1 KB

Loss Functions. We consider three loss functions: cross
entropy, hinge loss, and negative accuracy. As depicted in
the top row of Figure 3, cross entropy and hinge loss signif-
icantly outperform the negative accuracy. In the few-shot
setting, the accuracy as a reward can be sparse, and cannot
provide informative directions for optimization. On SST-
2 and AG’s News, we obtain that cross entropy performs
slightly better than hinge loss.

Subspace Dimensionality. The subspace of dimensional-
ity d is the space where the optimization actually performs.
According to the intrinsic dimensionality found in Agha-
janyan et al. (2021), we explore the subspace dimensionality
of {100, 200, 500, 1000} within the budget of {2k, 4k, 6k,
8k}. Accordingly, we set population size λ = 4 + 3 log(d).
As shown in the middle row of Figure 3, the best subspace
dimensionality can be different on different tasks (d = 200

performs the best on SST-2 development set and d = 500
performs the best on AG’s News development set), which
is related to the observation that intrinsic dimensionality
varies across different tasks (Aghajanyan et al., 2021). In
general, a small subspace (e.g., d = 100) is hard to cover a
good solution, while a large subspace (e.g., d = 1000) may
lead to poor generalization.

Prompt Length. Prompt length L determines the di-
mensionality of the original parameter space (in our case
D = L× 1024). We evaluate black-box tuning under each
budget in {2k, 4k, 6k, 8k} while varying the prompt length
in {10, 20, 50, 100}. As shown in the bottom row of Fig-
ure 3, shorter prompt confers faster convergence on the
training sets but does not yield better generalization on the
development sets. L = 50 achieves the best accuracy on
both SST-2 and AG’s News development sets.

Black-Box Tuning for Language-Model-as-a-Service

0 2000 4000 6000 8000
Iterations over entire training data (| train|=128)

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

SST-2 (train)

Adam (cross entropy)
CMA-ES (cross entropy)
CMA-ES (hinge loss)
CMA-ES (-accuracy)

0 2000 4000 6000 8000
Iterations over entire training data (| train|=128)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

De
v

ac
cu

ra
cy

 (c
ur

re
nt

 b
es

t)

SST-2 (dev)

Adam (cross entropy)
CMA-ES (cross entropy)
CMA-ES (hinge loss)
CMA-ES (-accuracy)

0 2000 4000 6000 8000
Iterations over entire training data (| train|=128)

75

80

85

90

95

100

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

AG's News (train)

Adam (cross entropy)
CMA-ES (cross entropy)
CMA-ES (hinge loss)
CMA-ES (-accuracy)

0 2000 4000 6000 8000
Iterations over entire training data (| train|=128)

78

80

82

84

86

88

90

De
v

ac
cu

ra
cy

 (c
ur

re
nt

 b
es

t)

AG's News (dev)

Adam (cross entropy)
CMA-ES (cross entropy)
CMA-ES (hinge loss)
CMA-ES (-accuracy)

2000 4000 6000 8000
Budget (number of API calls)

94

95

96

97

98

99

100

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

SST-2 (train)

d = 1000
d = 500
d = 200
d = 100

2000 4000 6000 8000
Budget (number of API calls)

89

90

91

92

93

94
De

v
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

SST-2 (dev)

d = 1000
d = 500
d = 200
d = 100

2000 4000 6000 8000
Budget (number of API calls)

84

86

88

90

92

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

AG's News (train)

d = 1000
d = 500
d = 200
d = 100

2000 4000 6000 8000
Budget (number of API calls)

83

84

85

86

87

88

De
v

ac
cu

ra
cy

 (c
ur

re
nt

 b
es

t)

AG's News (dev)

d = 1000
d = 500
d = 200
d = 100

2000 4000 6000 8000
Budget (number of API calls)

95

96

97

98

99

100

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

SST-2 (train)

L = 10
L = 20
L = 50
L = 100

2000 4000 6000 8000
Budget (number of API calls)

88

89

90

91

92

93

94

De
v

ac
cu

ra
cy

 (c
ur

re
nt

 b
es

t)

SST-2 (dev)

L = 10
L = 20
L = 50
L = 100

2000 4000 6000 8000
Budget (number of API calls)

82

84

86

88

90

92

94

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

AG's News (train)

L = 10
L = 20
L = 50
L = 100

2000 4000 6000 8000
Budget (number of API calls)

83

84

85

86

87

88

De
v

ac
cu

ra
cy

 (c
ur

re
nt

 b
es

t)

AG's News (dev)

L = 10
L = 20
L = 50
L = 100

Figure 3. Ablations of loss function, subspace dimensionality, and prompt length. We show mean and standard deviation of performance
over 3 runs with different random seeds. Ablations of the random projection and the population size can be found in Appendix A.

5. Discussion and Future Work
In this section we discuss our proposed method in the con-
text of (1) derivative-free optimization and (2) prompt-based
learning, respectively. By drawing comparisons with these
two lines of research, we highlight some directions that
could improve this work in future.

Comparison with Previous Derivative-Free Approaches.
Our proposed method lies in the same framework of previ-
ous work that solves high-dimensional derivative-free op-
timization problems via random embedding (Wang et al.,
2016). In contrast, we set the random embedding A by
sampling from a uniform distribution instead of normal dis-
tributions, and use the CMA-ES to perform optimization in
the generated subspace. In previous work, the target black-
box functions are usually synthetic functions where only a
few dimensions can affect the function values, and therefore
most of the dimensions are strictly non-effective. In our real-
world scenario, the intrinsic dimension can be approximate.
In the context of PTMs, a more appropriate substitution for
the term intrinsic dimensionality can be ε-effective dimen-
sionality (Qian et al., 2016). Considering the relaxation
to the intrinsic dimensionality of PTMs, more suitable ap-

proaches such as sequential random embedding (Qian et al.,
2016) and other more advanced methods of constructing the
random projection matrix (Letham et al., 2020) should be
explored in future work. Besides, the subspace generated
by random projection can be sub-optimal. As demonstrated
in Qin et al. (2021), training the projection A with multi-
task supervision can result in better and smaller subspace.
Besides, larger PTMs generally have lower intrinsic dimen-
sionalities (Aghajanyan et al., 2021), as a result, we can use
smaller subspace and more efficient DFO algorithms such
as Bayesian optimization on larger PTMs.

Comparison with Previous Prompt-Based Learning Ap-
proaches. From the perspective of prompt-based learning,
our method is similar to prompt-tuning (Lester et al., 2021),
where only the continuous prompt prepended to the input
text is tuned, so our method also retains the benefits of effi-
cient serving and mixed-task inference. In addition to the
continuous prompt, we also insert some hard prompt tokens
(e.g., ”It was [MASK]”) in the input text, which has been
demonstrated to be effective in previous work (Gu et al.,
2021) in the name of hybrid prompt tuning. Different from
previous prompt-based learning approaches, our prompt tun-

Black-Box Tuning for Language-Model-as-a-Service

ing does not require backpropagation and gradient descent.
Considering our used templates and label words are hand-
crafted without trial-and-error, the performance reported in
this paper is just a lower bound. More advanced techniques
such as prompt engineering (Gao et al., 2021), label words
engineering (Schick et al., 2020; Shin et al., 2020; Hu et al.,
2021b), prompt pre-training (Gu et al., 2021), and prompt
ensembling (Lester et al., 2021) are orthogonal to this work
and therefore can further improve the performance. For
simplicity, we do not integrate these methods and leave for
future work.

Acknowledgements
The authors would like to thank Yang Yu for the valu-
able suggestions of the methods and presentation of the
paper, and the anonymous reviewers for their construc-
tive comments. This work was supported by the National
Key Research and Development Program of China (No.
2020AAA0108702), the National Natural Science Founda-
tion of China (No. 62022027), the major key project of PCL
(No. PCL2021A12), and the Natural Science Foundation of
Shanghai (No. 21ZR1420300).

References
Aghajanyan, A., Gupta, S., and Zettlemoyer, L. Intrin-

sic dimensionality explains the effectiveness of language
model fine-tuning. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021, pp.
7319–7328, 2021.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. A
large annotated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP
2015, Lisbon, Portugal, September 17-21, 2015, pp. 632–
642, 2015.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction

to Derivative-Free Optimization. SIAM, Philadelphia, PA,
2009.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
4171–4186, 2019.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In Proceedings
of the Third International Workshop on Paraphrasing,
IWP@IJCNLP 2005, Jeju Island, Korea, October 2005,
2005, 2005.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv:2101.03961, 2021.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-
guage models better few-shot learners. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Con-
ference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, August
1-6, 2021, pp. 3816–3830, 2021.

Gu, Y., Han, X., Liu, Z., and Huang, M. PPT: pre-trained
prompt tuning for few-shot learning. arXiv:2109.04332,
2021.

Hambardzumyan, K., Khachatrian, H., and May, J. WARP:
word-level adversarial reprogramming. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Con-
ference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, August
1-6, 2021, pp. 4921–4933, 2021.

Hansen, N. The CMA evolution strategy: A tutorial.
arXiv:1604.00772, 2016.

Hansen, N. and Ostermeier, A. Completely derandomized
self-adaptation in evolution strategies. Evol. Comput., 9
(2):159–195, 2001.

Hansen, N., Müller, S. D., and Koumoutsakos, P. Reducing
the time complexity of the derandomized evolution strat-
egy with covariance matrix adaptation (CMA-ES). Evol.
Comput., 11(1):1–18, 2003.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient transfer
learning. arXiv:2110.04366, 2021.

Black-Box Tuning for Language-Model-as-a-Service

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pp. 1026–1034, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 2790–2799, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., and Chen, W. Lora: Low-rank adaptation of large
language models. arXiv:2106.09685, 2021a.

Hu, S., Ding, N., Wang, H., Liu, Z., Li, J., and Sun,
M. Knowledgeable prompt-tuning: Incorporating
knowledge into prompt verbalizer for text classification.
arXiv:2108.02035, 2021b.

Hu, Y.-Q., Qian, H., and Yu, Y. Sequential classification-
based optimization for direct policy search. In Proceed-
ings of the 31st AAAI Conference on Artificial Intelli-
gence, pp. 2029–2035, San Francisco, CA, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Kolda, T. G., Lewis, R. M., and Torczon, V. Optimization
by direct search: New perspectives on some classical and
modern methods. SIAM Review, 45(3):385–482, 2003.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November, 2021,
pp. 3045–3059, 2021.

Letham, B., Calandra, R., Rai, A., and Bakshy, E.
Re-examining linear embeddings for high-dimensional
Bayesian optimization. In Advances in Neural Informa-
tion Processing Systems 33, virtual, 2020.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pp. 7871–7880, 2020.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measuring
the intrinsic dimension of objective landscapes. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021, (Vol-
ume 1: Long Papers), Virtual Event, August 1-6, 2021,
pp. 4582–4597, 2021.

Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., and Tang, J. P-tuning
v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv:2110.07602,
2021a.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z.,
and Tang, J. GPT understands, too. arXiv:2103.10385,
2021b.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. Roberta: A robustly optimized BERT pretraining
approach. arXiv:1907.11692, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 8024–8035, 2019.

Perez, E., Kiela, D., and Cho, K. True few-shot learning
with language models. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 11054–11070, 2021.

Peters, M. E., Ruder, S., and Smith, N. A. To tune or not
to tune? adapting pretrained representations to diverse
tasks. In Proceedings of the 4th Workshop on Representa-
tion Learning for NLP, RepL4NLP@ACL 2019, Florence,
Italy, August 2, 2019, pp. 7–14, 2019.

Qian, H., Hu, Y., and Yu, Y. Derivative-free optimization
of high-dimensional non-convex functions by sequential
random embeddings. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp.
1946–1952, 2016.

Black-Box Tuning for Language-Model-as-a-Service

Qin, G. and Eisner, J. Learning how to ask: Querying
lms with mixtures of soft prompts. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online, June
6-11, 2021, pp. 5203–5212, 2021.

Qin, Y., Wang, X., Su, Y., Lin, Y., Ding, N., Liu, Z., Li,
J., Hou, L., Li, P., Sun, M., and Zhou, J. Exploring low-
dimensional intrinsic task subspace via prompt tuning.
arXiv:2110.07867, 2021.

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., and Huang, X.
Pre-trained models for natural language processing: A
survey. SCIENCE CHINA Technological Sciences, 2020.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Rios, L. M. and Sahinidis, N. V. Derivative-free optimiza-
tion: A review of algorithms and comparison of software
implementations. Journal of Global Optimization, 56(3):
1247–1293, 2013.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I.
Evolution strategies as a scalable alternative to reinforce-
ment learning. arXiv:1703.03864, 2017.

Schick, T. and Schütze, H. Exploiting cloze-questions for
few-shot text classification and natural language infer-
ence. In Proceedings of the 16th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: Main Volume, EACL 2021, Online, April 19 -
23, 2021, pp. 255–269, 2021a.

Schick, T. and Schütze, H. It’s not just size that matters:
Small language models are also few-shot learners. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pp. 2339–2352, 2021b.

Schick, T., Schmid, H., and Schütze, H. Automatically
identifying words that can serve as labels for few-shot text
classification. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020, pp.
5569–5578, 2020.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A review
of Bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2016.

Shin, T., Razeghi, Y., IV, R. L. L., Wallace, E., and Singh, S.
Autoprompt: Eliciting knowledge from language models
with automatically generated prompts. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, November
16-20, 2020, pp. 4222–4235, 2020.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems
25, pp. 2960–2968, Lake Tahoe, NV, 2012.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models
for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle, Wash-
ington, USA, A meeting of SIGDAT, a Special Interest
Group of the ACL, pp. 1631–1642, 2013.

Sun, T., Liu, X., Qiu, X., and Huang, X. Paradigm shift
in natural language processing. Machine Intelligence
Research, 2022.

Sun, Y., Wang, S., Feng, S., Ding, S., Pang, C., Shang, J.,
Liu, J., Chen, X., Zhao, Y., Lu, Y., Liu, W., Wu, Z., Gong,
W., Liang, J., Shang, Z., Sun, P., Liu, W., Ouyang, X., Yu,
D., Tian, H., Wu, H., and Wang, H. ERNIE 3.0: Large-
scale knowledge enhanced pre-training for language un-
derstanding and generation. arXiv:2107.02137, 2021.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. In 7th
International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and de Fre-
itas, N. Bayesian optimization in a billion dimensions via
random embeddings. J. Artif. Intell. Res., 55:361–387,
2016.

Weston, J. and Watkins, C. Support vector machines for
multi-class pattern recognition. In ESANN 1999, 7th Eu-
ropean Symposium on Artificial Neural Networks, Bruges,
Belgium, April 21-23, 1999, Proceedings, pp. 219–224,
1999.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 1112–
1122, 2018.

Black-Box Tuning for Language-Model-as-a-Service

Wu, S., Zhao, X., Yu, T., Zhang, R., Shen, C., Liu, H., Li,
F., Zhu, H., Luo, J., Xu, L., and Zhang, X. Yuan 1.0:
Large-scale pre-trained language model in zero-shot and
few-shot learning. arXiv:2110.04725, 2021.

Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z.,
Jiang, X., Yang, Z., Wang, K., Zhang, X., Li, C., Gong,
Z., Yao, Y., Huang, X., Wang, J., Yu, J., Guo, Q., Yu,
Y., Zhang, Y., Wang, J., Tao, H., Yan, D., Yi, Z., Peng,
F., Jiang, F., Zhang, H., Deng, L., Zhang, Y., Lin, Z.,
Zhang, C., Zhang, S., Guo, M., Gu, S., Fan, G., Wang,
Y., Jin, X., Liu, Q., and Tian, Y. Pangu-α: Large-scale
autoregressive pretrained chinese language models with
auto-parallel computation. arXiv:2104.12369, 2021.

Zhang, T., Wu, F., Katiyar, A., Weinberger, K. Q., and
Artzi, Y. Revisiting few-sample BERT fine-tuning. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021a.

Zhang, X., Zhao, J. J., and LeCun, Y. Character-level con-
volutional networks for text classification. In Advances
in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada,
pp. 649–657, 2015a.

Zhang, Y., Sohn, K., Villegas, R., Pan, G., and Lee, H.
Improving object detection with deep convolutional net-
works via Bayesian optimization and structured predic-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 249–258, Boston, MA, 2015b.

Zhang, Z., Han, X., Zhou, H., Ke, P., Gu, Y., Ye, D., Qin,
Y., Su, Y., Ji, H., Guan, J., Qi, F., Wang, X., Zheng, Y.,
Zeng, G., Cao, H., Chen, S., Li, D., Sun, Z., Liu, Z.,
Huang, M., Han, W., Tang, J., Li, J., Zhu, X., and Sun,
M. CPM: A large-scale generative chinese pre-trained
language model. arXiv:2012.00413, 2020.

Zhang, Z., Gu, Y., Han, X., Chen, S., Xiao, C., Sun, Z., Yao,
Y., Qi, F., Guan, J., Ke, P., Cai, Y., Zeng, G., Tan, Z., Liu,
Z., Huang, M., Han, W., Liu, Y., Zhu, X., and Sun, M.
CPM-2: large-scale cost-effective pre-trained language
models. arXiv:2106.10715, 2021b.

Zhong, Z., Friedman, D., and Chen, D. Factual probing is
[MASK]: learning vs. learning to recall. In Proceedings
of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online, June
6-11, 2021, pp. 5017–5033, 2021.

Black-Box Tuning for Language-Model-as-a-Service

A. Additional Experimental Results
Random Projection. The random projection matrix A ∈ RD×d is a key factor that determines whether and how hard it is
to find a good solution in the generated subspace. Here we compare two design choices of setting A: The first choice is
commonly used in previous high-dimensional derivative-free optimization work (Wang et al., 2016; Qian et al., 2016), that
is setting each entry of A by sampling from a normal distribution. Following Qian et al. (2016), we use N (0, 1/d) where d
is the subspace dimensionality5. The second choice is setting each entry of A by sampling from a uniform distribution,
which is widely used for initializing linear layers in modern neural networks. Here we use the uniform distribution proposed
in He et al. (2015). As shown in Figure 4, both random projections can achieve a considerable cross entropy loss on SST-2
and AG’s News within reasonable budgets but faster convergence is obtained using uniform distribution.

0 2000 4000 6000 8000
Number of API calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

s E
nt

ro
py

 L
os

s

SST-2
Normal
Uniform

0 2000 4000 6000 8000
Number of API calls

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

s E
nt

ro
py

 L
os

s

AG's News
Normal
Uniform

Figure 4. Effect of random projection A.

Population Size. In each iteration of the CMA-ES, a population of solutions are sampled from a multivariate normal
distribution model. The evaluation of the population is then used to update the parameters of the multivariate normal
distribution model. Here we study the effect of the population size on SST-2. In our experiments, we sequentially evaluate
each solution in a population, and therefore larger population size will result in more API calls given the same CMA-ES
iterations. As shown in Figure 5, smaller population size confers faster convergence in terms of number of API calls. We
also demonstrate the comparison in terms of the CMA-ES iterations, which can be found in the following section.

0 2000 4000 6000 8000
Number of API calls

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

SST-2 (train)

Pop. size=5
Pop. size=10
Pop. size=15
Pop. size=20
Pop. size=25

0 2000 4000 6000 8000
Number of API calls

84

86

88

90

92

94

De
v

ac
cu

ra
cy

 (c
ur

re
nt

 b
es

t)

SST-2 (dev)

Pop. size=5
Pop. size=10
Pop. size=15
Pop. size=20
Pop. size=25

Figure 5. Effect of population size λ.

5We also triedN (0, 1) as used in Wang et al. (2016), which does not work in our case. ForN (0, 1/d), we adopt a larger search space
Z instead of [−5, 5]d to get it work.

Black-Box Tuning for Language-Model-as-a-Service

0 250 500 750 1000
Subspace dimension d

84

86

88

90

Te
st

 A
cc

ur
ac

y
SST-2

25 50 75 100
Prompt Length

84

86

88

90

Te
st

 A
cc

ur
ac

y

SST-2

0 250 500 750 1000
Subspace dimension d

35

40

45

50

Te
st

 A
cc

ur
ac

y

SNLI

25 50 75 100
Prompt Length

35

40

45

50

Te
st

 A
cc

ur
ac

y

SNLI

Figure 6. Ablation of subspace dimensionality and prompt length in 16-shot setting.

0 5000 10000
TFLOPs

0.1

0.2

0.3

0.4

0.5

0.6

cr
os

s e
nt

ro
py

 lo
ss

d = 200

0 5000 10000
TFLOPs

d = 400

0 5000 10000
TFLOPs

d = 600

0 2500 5000 7500 10000
TFLOPs

d = 800

0 5000 10000
TFLOPs

d = 1000
CMA-ES
Adam (lr=0.01)
Adam (lr=0.1)

Figure 7. Optimization in low-dimensional subspaces using CMA-ES and Adam.

Ablation of Subspace Dimensionality and Prompt Length in 16-shot Setting. In § 4.3, we conduct ablation experi-
ments in the 64-shot setting to reduce the variance over different runs. To keep consistent with the experimental setting in
Table 3, we demonstrate in Figure 6 the ablation results on subspace dimensionality and prompt length in the 16-shot setting.

CMA-ES vs. Adam in Subspaces. In Figure 3, we compare the convergence of prompt tuning (with Adam optimizer)
and black-box tuning (with CMA-ES), where Adam performs optimization in the original prompt space (P) while CMA-ES
performs in the generated subsapce (Z). Here we also compare the effectiveness and efficiency of Adam and CMA-ES in
subspaces. As shown in Figure 7, CMA-ES is more efficient and stable than Adam in low-dimensional subspaces. When the
dimensionality of the subsapce becomes large (e.g., d = 1000), Adam with a appropriate learning rate can perform on par
with CMA-ES. Note that CMA-ES does not require back-propagation, so the computation cost of one iteration for CMA-ES
and Adam can be very different. For fair comparison, we convert the number of iterations into FLOPs. The FLOPs of one
iteration of Adam is estimated to be three times greater than CMA-ES.

B. Parallel Evaluation
If the training data is smaller, or the server allows larger batches, a promising way to improve training efficiency is to use
parallel evaluation. That is, we can evaluate the entire population in parallel, as depicted in Figure 8(a). As demonstrated in
Figure 8(b), we can achieve 100% accuracy on the SST-2 training set with population size of 20 and 25 in 300 iterations
(API calls). In case of the batch size per API call is limited, we can also use asynchronous queries to simulate the parallel
evaluation.

C. Estimation of Uploaded/Downloaded Data Size
In this section we describe how we estimate the amount of data to be uploaded and downloaded (Table 4).

For black-box tuning, there are two kinds of data to be uploaded: (1) training samples, and (2) continuous prompt. A training
sample is comprised of two parts: input ids and attention mask. We can use the unsigned short (representation
range: 0∼65535, 2 bytes per value) for input ids and use the bool type (1 byte per value) for attention mask. For
continuous prompt, which contains hundreds of values, we can use the float type (4 bytes per value) for representation.

Black-Box Tuning for Language-Model-as-a-Service

Serial Evaluation

Population

Logits

Data

Parallel Evaluation

(a)

0 100 200 300
Iterations of CMA-ES

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Tr
ai

n
ac

cu
ra

cy
 (c

ur
re

nt
 b

es
t)

SST-2 (train)

Pop. size=5
Pop. size=10
Pop. size=15
Pop. size=20
Pop. size=25

(b)

Figure 8. (a) Illustration of the parallel evaluation. (b) Comparison of the convergence rate with different population sizes using parallel
evaluation.

Take SST-2 16-shot split as an example, the input ids and attention mask are in shape of 32 × 47, where 32 is
the batch size and 47 is the maximum sequence length, so there are ∼2.9KB data for input ids and ∼1.5KB data for
attention mask. Assume the prompt is 500-dimensional, we need to upload additional ∼2KB data for prompt. The
data to be downloaded is the output logits of the candidate words, which is a dictionary containing | Y | float values. Take
SST-2 16-shot split as an example, the size of data to be downloaded is 32× 2× 4bytes = 0.25KB.

For feature-based methods we use similar estimation methods. The data size for upload is the same for Feature-MLP and
Feature-BiLSTM. The data to be downloaded for Feature-MLP is the representation of the [CLS] token while the data
to be downloaded for Feature-BiLSTM is the representation of all the tokens. Note that this estimation, without any data
compression, is an upper bound of the real scenario.

