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Abstract

In this paper, we study an untouched problem in visible-
infrared person re-identification (VI-ReID), namely, Twin
Noise Labels (TNL) which refers to as noisy annotation and
correspondence. In brief, on the one hand, it is inevitable
to annotate some persons with the wrong identity due to the
complexity in data collection and annotation, e.g., the poor
recognizability in the infrared modality. On the other hand,
the wrongly annotated data in a single modality will even-
tually contaminate the cross-modal correspondence, thus
leading to noisy correspondence. To solve the TNL prob-
lem, we propose a novel method for robust VI-ReID, termed
DuAlly Robust Training (DART). In brief, DART first com-
putes the clean confidence of annotations by resorting to
the memorization effect of deep neural networks. Then, the
proposed method rectifies the noisy correspondence with the
estimated confidence and further divides the data into four
groups for further utilizations. Finally, DART employs a
novel dually robust loss consisting of a soft identification
loss and an adaptive quadruplet loss to achieve robustness
on the noisy annotation and noisy correspondence. Exten-
sive experiments on SYSU-MM01 and RegDB datasets ver-
ify the effectiveness of our method against the twin noisy
labels compared with five state-of-the-art methods. The
code could be accessed from https://github.com/
XLearning-SCU/2022-CVPR-DART.

1. Introduction
Person re-identification (ReID) aims to match a specified

person from the gallery set. However, most existing per-
son Re-ID methods [3, 4, 28, 32–34] only focus on search-
ing RGB images captured by visible cameras, which might
fail to achieve encouraging results under poor illumination
environments (e.g., at night). To solve this problem, some
visible-infrared person re-identification (VI-ReID) meth-
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Figure 1. The twin noisy labels in VI-ReID. In the figure, Vj
i /Rj

i

denotes sample i with the annotated identity j from the vi-
sual/infrared modality, and the color indicates the latent correct
identity. (a) Noisy annotations: due to the poor recognizability in
the infrared modality, samples 2 of identity 1 and 2 will be mixed
up thus being wrongly annotated with identity 2 and 1, respec-
tively, i.e., R1

2 and R2
2 are noisy annotations. (b) Noisy correspon-

dence: as the cross-modal pairs are constructed resorting to the an-
notations, both the positive and negative pairs might be false due
to noisy annotations, leading to the mismatching phenomenons.
With such noisy correspondences, the false-positive and -negative
would be wrongly pulled and pushed during training, respectively.

ods [17, 18, 23, 26, 29] have been proposed to find the cor-
responding identities across two modalities. More specif-
ically, these methods usually leverage the identity annota-
tions to establish the cross-modal correspondence so that
the identity-aware discrimination is enlarged and the cross-
modal discrepancy is eliminated.

Although VI-ReID has achieved promising performance,
its success heavily relies on high-quality annotated data.
In practice, however, it is daunting and even impossible
to precisely annotate all samples due to the poor recog-
nizability, especially the color information is lost in the
infrared modality as shown in Fig. 1(a). As a result, it
is inevitable to result in noisy annotations (NA) problem,
thus degrading the performance of ReID models. Although
some studies [30,31] have devoted to mitigating the perfor-
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mance degradation caused by the noisy annotations, all of
them only focus on the noisy annotation problem in vis-
ible modality ReID, while ignoring multi-modality cases
such as VI-ReID. Furthermore, once multi-modality Re-ID
is considered, another special noisy label will be encoun-
tered, i.e., noisy correspondence (NC). More formally, we
define the noisy correspondence as the mismatched cross-
modal pairs whose correspondence is established by using
the noisy annotations from their respective modalities. As
illustrated in Fig. 1(b), such a cross-modal pair construction
approach will inevitably lead to noisy correspondence for
VI-ReID, i.e., False Positive (FP) pairs, and False Negative
(FN) pairs.

Based on the above observation, in this paper, we re-
veal a new problem for VI-ReID, termed Twin Noisy La-
bels (TNL). Different from the traditional noisy label stud-
ies [6, 6, 10, 12, 16] which only consider the NA challenge,
TNL simultaneously consider NA in category and NC in
cross-modal pairs. It should be pointed out that, it is in-
tractable to adopt existing NA-oriented methods to rectify
the noisy annotations in VI-ReID so that the TNL problem
is solved due to the following reasons. First, the success of
most existing noisy label methods is mainly limited to the
case of small category numbers, whereas the category (per-
son) number in ReID is in hundreds at least. Second, despite
the issue of category number, it is impossible to fully rectify
all noisy annotations and accordingly avoid the noisy corre-
spondence problem. In other words, TNL is unavoidable in
practice. Third, it is nontrivial and hard to achieve a promis-
ing result by employing the existing noisy annotation meth-
ods such as [10] to correct wrong annotations for VI-ReID
due to the difficulty in sampling and joint optimization. For
a comprehensive study, we present experiments to verify the
above claim in the supplementary.

To solve the TNL problem in VI-ReID, we propose a
novel method for learning with both noisy annotations and
correspondence. The proposed DuAlly Robust Training
(DART) consists of co-modeling and pair-division modules
with a novel objective function. In detail, the co-modeling
module first computes the clean confidence for each sam-
ple resorting to the memorization effect of deep neural net-
works. Then the pair-division module rectifies the noisy
correspondence with the confidence and further divides the
noisy pairs into four subsets, i.e., true positive pairs (TP),
true negative pairs (TN), false positive pairs (FP), and false
negative pairs (FN). Finally, to achieve robust VI-ReID,
we propose a novel dually robust objective function which
consists of a soft identification loss and adaptive quadru-
plet loss. In short, the soft identification loss is employed
to penalize samples of noisy annotation while learning the
identity-aware representation. The adaptive quadruplet loss
leverages the above four kinds of pairs to alleviate the
modality discrepancy.

The contributions and novelties of this work could be
summarized as follows:

• We reveal a new problem for VI-ReID, termed twin
noisy labels, which could be a new paradigm for noisy
labels. Different from the existing noisy label studies
which only consider the NA problem, TNL refers to
both the NA in the category and accompanying NC be-
tween cross-modal pairs. Notably, as far as we know,
there is no study on VI-ReID with noisy annotation,
not to mention the more practical and challenging TNL
problem.

• To achieve robust VI-ReID, we propose a novel
method for learning with TNL, termed dually robust
training. To the best of our knowledge, the proposed
method could be the first successful solution towards
TNL.

• Extensive experiments on SYSU-MM01 and RegDB
datasets verify the effectiveness of our method against
twin noisy labels compared with five state-of-the-art
methods.

2. Related Works
In this section, we will briefly introduce two related top-

ics with this study, namely, VI-ReID and learning with
noisy labels.

2.1. Visible-infrared Person Re-identification

To alleviate the cross-modality discrepancy, a number of
VI-ReID approaches [2, 11, 14, 17, 22, 23] have been pro-
posed during past years. According to the choice in al-
leviating the discrepancy, the existing methods could be
divided into the following three groups: i) the network-
design based methods [2, 11, 22, 23, 27] which aim at learn-
ing the discriminative representation shared across modal-
ities; ii) metric-design based methods [28, 29] which aim
at designing different metrics or losses to alleviate the
modality discrepancy; iii) modality-transform based meth-
ods [7,18,20,21,26] which aim at finding transformation or
augmentation strategies to bridge the gap of modalities.

Almost all existing VI-ReID methods assume that the an-
notations are faultless. However, the noisy annotations are
inevitably introduced in the data collection, which would si-
multaneously result in noisy correspondence as elaborated
above. Noticed again, as far as we know, there is no effort
has been devoted to VI-ReID with noisy annotation so far,
not mention to the twin noisy labels revealed in this paper.

2.2. Learning with Noisy Labels

Learning with noisy labels is a long-standing problem
in the machine learning community. Most of the existing
methods [5, 6, 10, 12, 16, 19] aim at combating the noisy
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annotation in the classification task by designing a robust
loss, noise filter, or robust architecture. Recently, [30, 31]
focuses on handling the noisy annotation in the visible per-
son re-identification (ReID) task by proposing the instance-
reweighing strategy and the feature uncertainty loss, respec-
tively. In terms of cross-modal retrieve, [8] proposes to
combat with noisy annotation by resorting to the negative
learning strategy. Besides the noisy annotation, in very re-
cent, [24,25] finds that the correspondence of negative pairs
in contrastive learning might be false, i.e., false negatives,
and designs a noise-robust contrastive loss to handle with
that. [9] formally releases that the correspondence of cross-
modal pair may be false and proposes to handle the false
positives to achieve robust cross-modal matching.

Among the aforementioned studies, [8, 9, 24, 25, 30, 31]
might be the most relevant, while they are remarkably dif-
ferent in the following aspects. First, [30, 31] only consid-
ers the noisy annotation problem in single-modality ReID,
whereas our study reveals the noisy correspondence prob-
lem accompanied with the noisy annotation in VI-ReID.
Second, [8] directly uses the off-the-shelf cross-modal pairs
at the instance-level which is unavailable in the VI-ReID
task. Besides, [24,25] and [9] show the existence of FN and
FP respectively and the proposed methods could be only ei-
ther robust against FN or FP. In contrast, DART takes all the
possible noisy correspondence cases into consideration and
the proposed loss is robust to TP, TN, FP, and FN.

3. Method
In this section, we elaborate on the proposed DART

which could be one of the first attempts to solve the twin
noisy label problem in VI-ReID. In brief, Section 3.1 will
present a formal definition of the TNL problem in VI-
ReID. Then, Section 3.2 introduces the co-modeling mod-
ule which aims to compute the correctly annotated confi-
dence for each sample by resorting to the memory effect of
deep neural networks (DNNs). Based on the confidences,
Section 3.3 elaborates on how to divide pairs into differ-
ent groups and rectify their correspondences. Finally, based
on the confidences and pair partitions, Section 3.4 details
the proposed robust objective function which consists of the
soft identification and adaptive quadruplet losses.

3.1. Problem Formulation

For clarity, we use V = {xv
i ,y

v
i }

Nv

i=1 and R =

{xr
i ,y

r
i }

Nr

i=1 to denote the visible images xv
i and infrared

images xr
i with the corresponding annotation yt

i, where Nt

is the number of images and t ∈ {v, r}. Given a visi-
ble/infrared query, VI-ReID aims to match the images of
the same identity from the infrared/visible gallery set. To
this end, most existing methods first construct cross-modal
positive and negative pairs, i.e., (xv

i ,x
r
j), where the cor-

respondence ypij = 1 i.f.f. yv
i = yr

j , otherwise ypij = 0.

After that, the triplet-based loss and identification loss are
employed to alleviate the modality discrepancy while guar-
anteeing the identity-aware discrimination. However, the
noisy annotations would probably result in some noisy cor-
respondences. More specifically, the correspondence be-
tween positive pairs (ypij = 1) or negative pairs (ypij = 0)
may be wrongly established as ypij = 0 or ypij = 1 because
it is intractable to known the sample i with clean annota-
tion ŷt

i. To solve such a twin noisy label problem, we pro-
pose DART which consists of co-modeling and pair division
modules, and a joint robust objective function as shown in
Fig. 2.

3.2. Co-modeling

To begin, DART will project the visible and infrared
modalities into a shared latent space to compute features
and predict identity of {xv

i }
Nv

i=1 and {xr
i }

Nr

i=1 via two
modal-specific networks of {F v, Cv} and {F r, Cr}, where
F v and F r are two feature extractors with some shared lay-
ers [26, 28], and Cv and Cr are two classifiers. With fea-
tures F t(xt

i) and annotations yt
i, the pairwise correspon-

dence matrix Yp and distance matrix D are obtained re-
spectively, where ypij is the noisy correspondence and dij
denotes the distance between (xv

i ,x
r
j) in the latent space.

Namely,
dij = ‖F v(xv

i )− F r(xr
j)‖2. (1)

As discussed in 3.1, both the annotation yt
i and corre-

spondence ypij might be noisy. To handle the noisy annota-
tion problem, we adopt the empirical finds [?] in the mem-
ory effect of DNNs. More specifically, DNNs are apt to fit
the simple patterns, thus leading to a relatively small loss for
the clean (i.e., simple) samples in the initial training phase.
Based on this observation, one could compute the probabil-
ity of samples being correctly annotated by modeling the
loss distribution. Specifically, given the modal-specific net-
work {F t, Ct} with parameter θt (t ∈ {v, r}), we compute
the per-sample identification (cross-entropy) loss via

`id(θt) =
{
`idi
}Nt

i=1
=
{
Lid(xt

i,y
t
i)
}Nt

i=1
, (2)

where Lid is the vanilla identification loss defined by

Lid(xt
i,y

t
i) = − logP

(
yt
i | Ct

(
F t
(
xt
i

)))
. (3)

Following [10], we fit the per-sample loss distribution
of all training data by modeling a two-component Gaussian
Mixture Model as below:

p(`id | θt) =
K∑

k=1

γkφ(`
id | k), (4)

where γk and φ(`id | k) are the mixture coefficient and
probability density of the k-th component, respectively. Ac-
cording to the memory effect of DNNs, we could compute
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(a) Training pipeline (b) Dually robust training framework
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Figure 2. Overview of the proposed method. (a): Training pipeline of DART. In brief, DART consists of two individual networks (A,B)
which work in a co-teaching manner. More specifically, DART first warmups both A and B by using Eq. 2 for initialization. After that, at
each epoch, the following procedure is performed. First, the network A/B models the per-sample identification loss distribution to estimate
the correctly annotated confidence w for each sample and then feed w into B/A for further training. The next step will divide the data
pairs into four subsets, i.e., TP, FP, TN, and FN, and rectify their correspondence. Finally, the estimated confidence and rectified pairs are
used to train the networks. (b): Dually robust training framework for A and B. In the figure, “S”, “+”, and “-” denote the anchor, positive,
and negative samples, respectively. The sample whose confidence is above a specific threshold would be in green, otherwise in red. As
shown, the backbone will first extract the features for visible and infrared modalities, respectively. Then, the features are fed to classifiers
to get predictions and used to construct the correspondence matrix. After that, the correspondence matrix is established with the estimated
confidence and the anchor in red would be discarded due to over-low confidence. With the help of the pair division module, the pairs would
be categorized into four groups which are then combined as triplets (see (b) for some combination examples) for optimization. Finally, the
predictions, triplets, and confidences are used to achieve dually robust training by minimizing our losses.

the correctly annotated confidence wi for each sample i via
poster probability over the small mean value component κ,
i.e.,

wi = p(κ | `idi ). (5)

However, as pointed in [6], it may introduce error ac-
cumulation if the neural network is simply trained with the
self-modeling confidence. To avoid the bias, we adopt a co-
modeling approach. To be specific, we individually train
two sets of network which are with the same architecture
while different initializations, i.e., A = {F v

A, C
v
A, F

r
A, C

r
A}

and B = {F v
B , C

v
B , F

r
B , C

r
B}. At each epoch, the networks

A or B will model a GMM to fit the loss distribution for
computing the confidences, respectively. Then, the con-
fidences are fed into the other network for further train-
ing. Notably, following [1, 6, 10, 25], a warm-up strategy is
adopted for each network by using the vanilla cross-entropy
loss (Eq. 3) for initialization.

3.3. Pair Division

Thanks to the co-modeling module, the clean confidence
of the annotation could be estimated, which will be used to
partition the data pairs into clean and noise portions. Af-
ter that, we will further divide these portions into four sub-
sets, i.e., true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) pairs.

Following [28], we adopts the modality mix strategy to

construct pairs from both within and across modalities. For
given pairs (xt1

i ,x
t2
j ) with the noisy correspondence ypij

where tk ∈ {v, r}, k ∈ {1, 2}, we set a threshold η on the
estimated annotation confidence to divide them into clean
portion Sc = {(xt1

i ,x
t2
j ), ypij | wi > η,wj > η} and noisy

portion Sn = {(xt1
i ,x

t2
j ), ypij | wi > η,wj ≤ η}, where

i and j index the anchor and positive (ypij = 1) or negative
(ypij = 0) sample, respectively. Notably, we discard pairs
whose anchors’ confidences are less than η as they cannot
be correctly divided. After rectifying the correspondence of
{Sc,Sn}, the newly obtained correspondence is denoted by
{Ŝc, Ŝn}. The rectifying operation is as below:

ŷpij = I(ypij ∈ S
c)� ypij , (6)

where I(ypij ∈ Sc) denotes whether the pair belongs to the
clean portion or not, and � is the xnor operation. Eq 6
means that if the positive pair (ypij = 1) comes from Sc,
then it is TP; otherwise FP. Similarly, the negatives from Sc
and Sn are treated as TN and FN, respectively.

For FN pairs, we will further refine it to improve the ac-
curacy. To be specific, for a negative sample xt2

j ∈ Sn, it
should be TN but wrongly treated as FN, if its confidence
wj is not larger than η (i.e.,wj ≤ η) and meanwhile its iden-
tity is different from the anchor sample (i.e., yt1

i 6= yt2
j ). To

14311



—

+
S

Anchor

m

—+
AS

Anchor

m

—

Re-sampled True Positive/Negative+ True Positive — False Negative

+

—S
Anchor

m

+

— True Negative + False Positive

—

+
S

Anchor

m

(a) (b) (c) (d)

Figure 3. Four kinds of triplets due to twin noisy labels. For each triplet, the proposed quadruplet loss (Eq. 10) would adaptively turn into
different variants to achieve robust learning.

recall such TN pairs, we revised their correspondence by

ŷpij = I(Ct(F t(xt1
i )) = Ct(F t(xt2

j ))),∀(xt1
i ,x

t2
j ) ∈ Sn

(7)
whereCt(F t(xt

i)) is the annotation prediction. With Eq. 6–
7, all training pairs will be divided into one of the TP, FP,
TN and FN subsets.

3.4. Dually Robust Objective Function

Thanks to the co-modeling and divide modules, DART
could obtain the annotation confidence and rectify the cor-
respondence of pairs. Then, we employ the following loss
to achieve robust VI-ReID:

L = Lsid + Lqdr, (8)

where Lsid and Lqdl are soft identification loss and quadru-
plet loss which are proposed to combat noisy annotations
and noisy correspondence, respectively. In the following,
we elaborate on each loss one by one.

Robust on Noisy Annotations: Instead of simply dis-
carding the samples with noisy annotations [6], for either
the network A or B, we utilize the confidence wi to penal-
ize the noise during optimization. To this end, the following
soft identification loss is proposed:

Lsid = −wi logP
(
yt
i | Ct

(
F t
(
xt
i

)))
, (9)

where t ∈ {v, r} denotes the visible or infrared modality.
Robust on Noisy Correspondences: With the four pair

subsets (TP, FP, TN, and FN), DART needs to alleviate the
modality discrepancy with their help. As the vanilla triplet
losses can only handle the combination of TP and TN, it
is necessary to develop a novel method that could handle
all possible combinations (in a form of triplets) of the four
subsets.

To this end, Lqdr is designed, which could be adap-
tive to different combinations. Formally, given a triplet(
xt1
i ,x

t2
j ,x

t3
k

)
, where tk ∈ {v, r}, k ∈ {1, 2, 3}, its pair-

wise distances are denoted as dij and dik, where i, j, k de-
note the index of anchor, positive (ypij = 1) and negative

(ypik = 0) samples, respectively. Thanks to our pair divi-
sion module, these triplets could be grouped into one com-
bination of TP-TN (ŷpij = 1, ŷpik = 0), FP-FN (ŷpij = 0,
ŷpik = 1), TP-FN (ŷpij = 1, ŷpik = 1), FP-TN (ŷpij = 0,
ŷpik = 0) with their rectified correspondence. Notably, the
last three combinations are with noisy correspondence fo-
cused in this paper.

To combat such a noisy correspondence problem, we
propose the following adaptive quadruplet loss:

Lqdr = Ltri + Lqdt, (10)

where Ltri is defined as:

Ltri = m+
(−1)(ŷ

p
ij⊗ŷ

p
ik

)(1−ŷ
p
ij)dij + (−1)(ŷ

p
ij⊗ŷ

p
ik

)(1−ŷ
p
ik

)
dik

(−1)(1−ŷ
p
ij)(1−ŷ

p
ik

)
2
ŷ
p
ij�ŷ

p
ik

,

(11)
where m is a margin fixed as a constant in our experiment,
⊗ and � denote the xor and xnor operations, respectively.
As both TP-FN and FP-TN consist of homogeneous pairs,
the existing triplet losses cannot handle such a case. Hence,
we propose additionally sampling a pair (xt1

i ,x
t4
s ) of con-

fidence ws > η for use of the following quadruplet term:

Lqdt = (−1)ŷ
p
ij ŷ

p
ik(ŷpij � ŷ

p
ij)dis. (12)

Eq. 12 will take effect when the pairs (xt1
i ,x

t2
j ) and

(xt1
i ,x

t3
k ) are of the same correspondence, i.e., they are TP-

FN or FP-TN triplet. In the following, we will elaborate on
the robustness enjoyed by Lqdr in different situations:

• TP-TN (Fig. 3(a)): For the pair divided into TP (ŷpij =
1) or TN (ŷpik = 0), the goal is to decrease the pairwise
distance of TP while increasing that of TN. In the case,
Lqdr will adaptively turn into the vanilla triplet loss as
below:

Lqdr = [dij − dik +m]+. (13)

• FP-FN (Fig. 3(b)): For the pair divided into FP (ŷpij =
0) or FN (ŷpik = 1), the goal is to increase the pairwise
distance of FP while decreasing that of FN. Then, Lqdr

becomes:

Lqdr = [−dij + dik +m]+, (14)
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• TP-FN (Fig. 3(c)): For the pair divided into TP (ŷpij =
1) or FN (ŷpik = 1), the goal is to increase the pair-
wise distance of both TP and FN pairs. Then, Lqdr

becomes:

Lqdr = [−dis +
dij + dik

2
+m]+. (15)

• FP-TN (Fig. 3(d)):For the pair divided into FP (ŷpij =
0) or TN (ŷpik = 0), the goal is to decrease the pairwise
distance of both FP and TN. Then, Lqdr becomes:

Lqdr = [dis −
dij + dik

2
+m]+. (16)

4. Experiment
In this section, we carry out experiments on the SYSU-

MM01 [22] and RegDB [13] datasets to verify the robust-
ness of DART against twin noisy labels. Due to the space
limitation, we present more experiments in the supplemen-
tary materials.

4.1. Experiment Settings

DART is a general framework which could endow al-
most all existing VI-ReID methods with robustness against
twin noisy labels. Hence, ADP [26] is used to verify the
effectiveness of DART, which is a very recently-proposed
VI-ReID method. In detail, we retain the backbone and
pipeline of ADP except for the loss function. To endow
the robustness on ADP, we adopt the co-modeling and pair
division modules with the dually robust objective function
instead.

In the experiment, DART is implemented in PyTorch
1.7.0 [15] and all the evaluations are carried out on GeForce
RTX 3090 GPUs on Ubuntu 20.04 OS. The margin in
Eq. 11, the threshold for confidence estimation, and the
warm-up epoch are fixed as 0.3, 0.5, and 1 for all exper-
iments, respectively. In the testing phase, similar to most
multi-view learning methods [?,?], we simple use the mean
outputs of model A and B as the final representation for in-
ference.

For evaluation, we use all two publicly available
datasets. To be specific,

• SYSU-MM01 [22]: It is a large-scale VI-ReID dataset
collected in the SYSU campus using four visible cam-
eras and two near-infrared ones under both indoor
and outdoor environments. The training set consists
of 22,258 visible images and 11,909 infrared images
distributed over 395 identities, while the query and
gallery set is composed of 3,803 infrared images and
301 randomly sampled visible images from 96 identi-
ties for single-shot evaluation, respectively.

• RegDB [13]: The dataset contains 8,240 images of 412
identities collected by a dual-camera (one visible and
one infrared) system. For each of the identities, there
are 10 visible and 10 infrared images.

To verify the robustness of DART against noisy labels,
we refer to the setting used in [31]. In detail, we randomly
select a specific percentage of training images from each
modality and randomly assign wrong identities to them.

For fair comparisons, we follow the common testing set-
tings used in the most existing VI-ReID methods. In brief,
the SYSU-MM01 dataset consists of two testing modes,
namely, the all-search and indoor-search modes. The
RegDB dataset contains two test settings, namely, visible-
to-infrared and infrared-to-visible. Following [17, 23, 26],
for the SYSU-MM01 dataset, we evaluate the performance
under both testing modes with 10 random gallery sets cho-
sen. For the RegDB dataset, we perform 10 trials with dif-
ferent training/testing splits under both testing settings. In
the evaluation, we report the average results on Cumula-
tive Matching Characteristic (CMC), mean Average Preci-
sion (mAP), and mINP [26, 28].

4.2. Comparison with State of the Arts

In this section, we compare DART with five state-of-
the-art VI-ReID methods, namely, AGW [28], DDAG [27],
LbA [14], MAPNet [23], and ADP [26] on the SYSU-
MM01 and RegDB dataset. For extensive evaluations, the
noise ratio varies from 0%, 20%, to 50%. In addition, we
also report the results of ADP on the clean SYSU-MM01
and RegDB datasets by discarding samples with noisy an-
notation, denoted by ADP-C. Clearly, ADP-C is a quite
strong baseline since the used data does not contain any
noisy labels.

When the noise ratio is 0%, we refer to the results re-
ported in the corresponding papers. For other noise ratios,
we train the baselines with the recommended settings and
report the corresponding results in Table 1 and 2. From the
results, one could observe that DART is competitive to ADP
under the noise-free setting even though DART is specially
designed for combating twin noisy labels. When the data
is contaminated by the noisy annotations, DART remark-
ably outperforms all the baselines by a large margin. Be-
sides, even comparing with ADP-C which is trained on the
clean data, DART improves mAP by 4.16%, 2.87%, 3.89%,
and 3.94% on SYSU-MM01 and 5.94%, 4.02%, 0.43% and
2.11% on RegDB in the four valuations under noise ratio of
20% and 50%.

4.3. Ablation Study

In this section, we perform ablation studies on SYSU-
MM01 to verify the importance of each component in
DART. As DART endows ADP the robustness with three
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Table 1. Comparisons with state-of-the-art methods on the SYSU-MM01 dataset under the noise ratio of 0%, 20% and 50%, respectively.
The best and second best results are highlight in bold and underline.

Noise Methods All-Search Indoor-Search
Rank-1 Rank-10 Rank-20 mAP mINP Rank-1 Rank-10 Rank-20 mAP mINP

0%

AGW (TPAMI2021) 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23
DDAG (ECCV2020) 54.75 90.39 95.81 53.02 39.62 61.02 94.06 98.41 67.98 62.61
LbA (ICCV2021) 55.41 – – 54.14 – 58.46 – – 66.33 –
MPANet (CVPR2021) 70.58 96.21 98.8 68.24 – 76.74 98.21 99.57 80.95 –
ADP (ICCV2021) 69.88 95.71 98.46 66.89 53.61 76.26 97.88 99.49 80.37 76.79
DART (Ours) 68.72 96.39 98.96 66.29 53.26 72.52 97.84 99.46 78.17 74.94

20%

AGW (TPAMI2021) 17.68 56.80 72.45 18.15 8.55 20.83 65.01 82.43 29.80 25.31
DDAG (ECCV2020) 14.55 46.58 61.81 13.99 5.56 15.13 50.68 69.33 22.37 18.34
LbA (ICCV2021) 9.86 39.47 55.85 10.23 3.84 10.10 44.06 64.45 17.39 13.97
MPANet (CVPR2021) 21.59 63.58 78.71 21.21 – 23.80 70.18 86.44 33.17 –
ADP (ICCV2021) 25.44 67.55 80.88 23.71 11.05 26.61 70.68 85.19 34.97 29.61
ADP-C (ICCV2021) 63.67 94.13 97.78 61.57 48.02 68.52 96.13 98.73 73.82 69.66
DART (Ours) 66.31 95.31 98.38 64.13 50.69 70.52 97.08 99.03 75.94 72.30

50%

AGW (TPAMI2021) 7.93 37.56 55.78 9.75 4.38 9.61 47.87 70.47 18.14 15.22
DDAG (ECCV2020) 6.68 28.95 43.77 7.52 2.93 8.39 37.87 57.86 15.12 12.33
LbA (ICCV2021) 2.67 17.78 30.27 4.15 1.85 4.87 29.39 48.97 10.96 8.63
MPANet (CVPR2021) 6.98 32.75 49.16 8.20 – 8.47 40.71 61.37 15.85 –
ADP (ICCV2021) 8.00 42.55 62.14 10.83 5.21 11.49 52.99 76.77 20.81 17.53
ADP-C (ICCV2021) 59.17 92.52 97.28 56.49 41.80 62.99 94.84 98.08 69.05 64.29
DART (Ours) 60.27 93.41 97.47 58.69 45.33 65.74 95.04 98.23 71.77 68.14

Table 2. Comparisons with state-of-the-art methods on the RegDB
dataset under the noise ratio of 0%, 20% and 50%, respec-
tively. The best and second best results are highlight in bold and
underline.

Noise Methods Visible to Thermal Thermal to Visible
Rank-1 mAP mINP Rank-1 mAP mINP

0%

AGW (TPAMI2021) 70.05 66.37 50.19 70.49 65.9 51.24
DDAG (ECCV2020) 69.34 63.46 49.24 68.06 61.80 48.62
LbA (ICCV2021) 74.17 67.64 – 72.43 65.46 –
MPANet (CVPR2021) 83.70 80.90 – 82.80 80.70 –
ADP (ICCV2021) 85.03 79.14 65.33 84.75 77.82 61.56
DART (Ours) 83.60 75.67 60.60 81.97 73.78 56.70

20%

AGW (TPAMI2021) 47.77 31.35 12.43 47.18 30.86 11.85
LbA (ICCV2021) 35.99 23.48 7.49 36.18 22.75 6.74
DDAG (ECCV2020) 39.27 25.74 10.03 37.69 25.07 9.61
MPANet (CVPR2021) 33.83 23.50 – 32.62 22.06 –
ADP (ICCV2021) 50.71 35.92 14.12 49.98 34.75 12.62
ADP-C (ICCV2021) 78.39 70.02 51.80 75.81 68.95 51.19
DART (Ours) 82.04 74.18 57.89 79.48 71.72 54.47

50%

AGW (TPAMI2021) 21.87 13.40 3.93 20.98 12.95 3.70
DDAG (ECCV2020) 24.03 14.44 4.25 21.46 13.38 4.28
LbA (ICCV2021) 11.65 6.68 1.53 10.24 6.34 1.46
MPANet (CVPR2021) 9.51 6.13 – 11.41 6.67 –
ADP (ICCV2021) 17.04 11.25 3.55 20.28 12.31 3.24
ADP-C (ICCV2021) 77.43 66.75 47.25 74.89 63.05 41.83
DART (Ours) 78.23 67.04 48.36 75.04 64.38 43.62

components, we conduct the study on the following vari-
ants. More specifically, the proposed co-modeling module
and soft identification loss (Eq. 9) are added on ADP to ver-
ify the robustness of DART on noisy annotation, which is
denoted as “B + Lsid”. Besides, the pair division module
and special triplet loss (Eq. 11) are added to verify the ro-
bustness against the noisy correspondence. The third vari-
ant is adding the quadruplet term (Eq. 12) to verify the ca-
pacity of DART in handling the FP-TN and TP-FN triplets,
and such a capacity could further boost the robustness on
noisy correspondence. The results are summarized in Ta-
ble 3 which illustrates that each component plays an insep-
arable role in combating the twin noisy labels.

Table 3. Ablation studies on SYSU-MM01 with noise ratio of 20%
under the all-search mode.

Method SYSU-MM01 under All-search Evaluation
Rank-1 Rank-10 Rank-20 mAP mINP

B 25.44 67.55 80.88 23.71 11.05
B + Lsid 49.24 89.14 95.66 46.78 31.32
B + Lsid + Ltri 65.44 95.01 98.13 63.15 50.35
B + Lsid + Ltri + Lqdt 66.31 95.31 98.38 64.13 50.69

(a) Before warmup (b) After warmup

(c) Without Eq. 9 (d) With Eq. 9

Figure 4. Per-sample loss distribution under different situations.

4.4. Visualization on the Robustness

In this section, we qualitatively analyze the robustness of
DART against the noisy annotations and noisy correspon-
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dence on the SYSU-MM01 dataset with the noise ratio of
20%.

Robustness against Noisy Annotations: As discussed
in Section 3.2 and 3.4, DART enjoys robustness against
noisy annotations with the help of the soft identification loss
(Eq. 9). To visually show the achieved robustness, we illus-
trate the per-sample identification loss distribution of all the
training samples before and after warmup, as well as with-
out and with the help of Eq. 9. The results are shown in
Fig. 4, from which one could have the following observa-
tions. First, after the warmup stage, the losses of most clean
sample are smaller than that of noisy sample, which veri-
fies that the neural networks will fit the clean samples first.
As there is still a non-negligible mixture of clean and noisy
samples, DNNs would continually fit the noise as the opti-
mization goes without Eq. 9. In other words, our loss will
prevent the noisy annotations from dominating the network
optimization.

Table 4. Statistics of fours kinds of pair
Type TP FP TN FN
Percentage(%) 60.62 39.38 95.99 4.01

(a) TP-FP distributions of variant (b) TP-FP distributions of DART

(c) TN-FN distributions of variant (d) TN-FN distributions of DART

Figure 5. Pairwise distance distributions of TP and FP pairs, TN
and FN pairs computed through ADP [26] and DART, respectively.

Robustness against Noisy Correspondence: As dis-
cussed in Section 3.3 and 3.4, DART enjoys robustness
against noisy correspondence by resorting to the adaptive
quadruplet loss (Eq. 10) and pair division module. To show
the achieved robustness, we visualize the pairwise distance
distribution of TP and FP pairs, and TN and FN pairs on
DART compared with the variant which only uses Eq. 9 and
vanilla triplet loss. The statistics of the four kinds of pairs

and their distribution are shown in Table 4 and Fig. 5. From
Fig. 5, one could observe that the variant cannot handle the
noisy correspondence. As a result, TP and FP pairs, as well
as TN and FN pairs are mixed up. In contrast, DART could
correctly distinguished these cases because it will prevent
the noisy correspondence from dominating the network op-
timization. In other words, DART will enforce the distance
of TN and FP larger than that of FN and TP during training,
thus eliminating the influence of the noisy correspondence.

(a) (b)

Figure 6. Performance comparisons between DART+AGW and
AGW on SYSU-MM01 and RegDB with varying noise ratios.

4.5. Study on the Generalizability

In this section, we verify the generalizability of DART
by endowing AGW [28] the robustness to twin noisy la-
bels. As shown in Fig. 6, our method (DART + AGW)
performs better than AGW by a considerable performance
margin when the noise ratio varies from 0% to 50% with an
interval of 10%. This demonstrates the generalizability and
robustness of DART.

5. Conclusion
In this paper, we study a new problem in VI-ReID, i.e.,

twin noisy labels (TNL), which refers to the noisy anno-
tations and noisy correspondence. To solve this problem,
we propose DART which estimates the clean confidences
of annotation and then rectifies the noisy correspondence.
By dividing data pair into four subsets, DART employs a
novel dually robust loss for learning with twin noisy labels.
We believe this work might remarkably enrich the learning
paradigm with noisy labels by simultaneously considering
the noisy annotations and accompanying noisy correspon-
dence, especially, in the VI-ReID community. In the future,
we plan to explore other scenarios of the twin noisy labels,
such as category-level cross-modal retrieve, face recogniza-
tion, and so on.
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