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ABSTRACT
Zero-shot node classification is a very important challenge for
classical semi-supervised node classification algorithms, such as
Graph Convolutional Network (GCN) which has been widely ap-
plied to node classification. In order to predict the unlabeled nodes
from unseen classes, zero-shot node classification needs to trans-
fer knowledge from seen classes to unseen classes. It is crucial to
consider the relations between the classes in zero-shot node classifi-
cation. However, the GCN only considers the relations between the
nodes, not the relations between the classes. Therefore, the GCN
can not handle the zero-shot node classification effectively. This
paper proposes a Dual Bidirectional Graph Convolutional Networks
(DBiGCN) that consists of dual BiGCNs from the perspective of the
nodes and the classes, respectively. The BiGCN can integrate the
relations between the nodes and between the classes simultane-
ously in an united network. In addition, to make the dual BiGCNs
work collaboratively, a label consistency loss is introduced, which
can achieve mutual guidance and mutual improvement between
the dual BiGCNs. Finally, the experimental results on real-world
graph data sets verify the effectiveness of the proposed method.
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1 INTRODUCTION
Graph is an important representation of data in many real-world
applications, such as social network [8, 17, 19], citation network
[18] etc. The graph data analysis is ubiquitous and attracts increas-
ing attentions recently. And one of the most frequently applied
tasks on graph data is node classification. The traditional node clas-
sification aims to predict the unlabeled nodes with a few labeled
nodes and usually assumes that the classes of labeled nodes covers
all the classes. With the rapid development of deep learning, the
Graph Convolutional Network (GCN) [10] becomes one of the most
widely used method for traditional node classification task on graph
data. However, in many practical applications, the classes from the
labeled nodes can not cover the all classes, since some novel classes
usually emerge. For example, as shown in Figure 1, there is a need
to assign the scientific papers from a citation network into topics,
but new research topics are emerging all the time. Besides, in a
biological interaction network, the role of a protein is needed to be
classified. But the new roles of proteins will continue to be discov-
ered. Therefore, the labeling process of data is hard to cover the all
classes.

To sum up, node classification on graph data faces the challenge
of zero-shot node classification [24] that is how to classify the
nodes from novel classes with only labeled nodes from seen classes.
The key step of the traditional GCN is to aggregate the neighbor
information on graph, which results in similar nodes on graph with
similar representations. Because of the labeled nodes only from seen
classes in zero-shot node classification, the learned representations
of nodes by traditional GCN is not discriminative to seen and unseen
classes. Therefore, the traditional GCN methods can not handle the
zero-shot node classification effectively.

In addition, zero-shot learning has received great attention in
computer vision [4, 20, 26] and natural language processing [2, 29,
30]. And the goal of zero-shot learning is to recognize the novel
(unseen) classes with the labeled training data from seen classes.
Generally, classes semantic descriptions are introduced to establish
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Figure 1: An example of zero-shot node classification.

a communication between seen and unseen classes. The key of zero-
shot learning is to transfer knowledge learned from seen classes to
unseen classes. But these methods are not designed for graph data
and can not deal with directly the zero-shot node classification.

Recently, the literature is already emerging and has achieved
some success for zero-shot node classification. For example, De-
composed Graph Prototype Network (DGPN) [24] was proposed.
In this method, the representations of nodes are learned by follow-
ing the principles of locality and compositionality in GCN, and
then the learned representations of nodes are needed to be close
to corresponding classes semantic descriptions. In test phase, the
predictions of nodes from unseen classes are made by computing
the similarity between the representations of nodes and classes
semantic descriptions. Similar to zero-shot learning, the key of the
zero-shot node classification also is to transfer knowledge from
seen classes to unseen classes. Thus, full consideration of the rela-
tions between the classes is helpful to improve the performance of
the zero-shot node classification. However, the relations between
the classes are not fully considered in the method DGPN.

To solve the above challenges, this paper proposes a Dual Bidi-
rectional Graph Convolutional Networks (DBiGCN) for zero-shot
node classification. The graph is an effective and commonly used
data structure for mining the relations contained in data. There-
fore, the adjacency graph of the classes is constructed, which can
intuitively reflect the relations between the classes in this paper.
What’s more, the joint representations of the nodes and the classes
are learned, which is the more discriminative for zero-shot node
classification. And the joint representations not only can fuse the
relations between the nodes, but also fuse the relations between
the classes simultaneously. Finally, it is natural that the two joint
representations can be learned from perspective of the nodes and
the classes, respectively. And the consistency of two joint represen-
tations are considered, so that their mutual guidance and mutual
improvement can be achieved.

In summary, the high-lights of the proposed method are as fol-
lows:

• To obtain the more discriminative joint representations of
the nodes and the classes, the BiGCN is designed for zero-
shot node classification. And the two joint representations
are obtained based on BiGCN from perspective of the nodes
and classes, respectively.

• To achieve the cooperation of the two BiGCNs, the label
consistency loss is designed to constrain the two joint repre-
sentations of the nodes and the classes.

• Experimental results demonstrate that the proposed method
DBiGCN performs well on 3 real-world graph data sets. And

Table 1: Notations

Notation Doamin Description

𝐺 - the graph data
𝑉 - the set of the 𝑛 nodes
𝐸 - the set of edges between the nodes
𝑛 N the number of the nodes
𝑑 N the dimension of node features
𝑑𝑐 N the dimension of classes semantic descriptions
𝑐𝑠 N the number of seen classes
𝑐𝑢 N the number of unseen classes
𝑐 N the total number of classes
x𝑖 R𝑑 the vector description of the 𝑖th node
a𝑘 R𝑑𝑐 the vector description of the 𝑘th class
X R𝑛×𝑑 the features matrix of the nodes
A R𝑐×𝑑𝑐 the attribute matrix of the classes
S𝑉 R𝑛×𝑛 the adjacency matrix of the nodes
Ytrue
𝐿

R𝑙×𝑐 the true label matrix of the 𝑙 labeled nodes
SA R𝑐×𝑐 the adjacency matrix of the classes
Y𝑉 R𝑛×𝑐 the joint representations matrix based on the BiGCN_X
YA R𝑐×𝑛 the joint representations matrix based on the BiGCN_A

we conduct ablation study that furthermore illustrates the
effectiveness of the proposed method.

2 RELATEDWORK
2.1 Node Classification
Node classification is one of the frequent task on graph data. The
proposal of Graph Convoluntional Network (GCN) [10] that can
directly operate on graph has greatly promoted the development of
node classification. The GCN can encode both adjacency informa-
tion and the features of nodes. Subsequently, the Graph Attention
Network (GAT) [21] is proposed, which introduce the attention-
based architecture to distribute different weights for different neigh-
bors. Up to now, various graph neural network (GNN) based meth-
ods [25, 31] have been proposed and become popular for node
classification.

The traditional node classification usually assumes that the
classes of the labeled nodes can cover the all classes. However,
the novel classes will emerge all the time. Unfortunately, the GNNs
can not deal with the scenario of the unlabeled nodes from novel
classes effectively.

2.2 Zero-shot Learning
Zero-shot learning has received a lot of attentions especially in the
field of computer vision. The existing zero-shot learning methods
can be roughly grouped into two-types: embedding-based methods
[1, 5, 11] and generative-based methods [3, 7, 16, 27, 28]. The for-
mer methods aim to learn a embedding function that can align the
features of images and the corresponding classes semantic descrip-
tions. The goal of the latter methods is to learn a generator that can
generate features of unseen classes, which can alleviate the domain
shift problems in zero-shot learning. The key of zero-shot learning
is to transfer knowledge from seen classes to unseen classes. Specif-
ically, the relations between features and corresponding classes
semantic descriptions are transferred to image recognition from
unseen classes. Besides, there are some zero-shot learning methods
in the field of natural language processing [2, 29, 30].
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Figure 2: A schematic overview of DBiGCN. The DBiGCN consists of the dual BiGCNs from perspective of the nodes and the
classes respectively and the mutual guidance between the dual BiGCNs is achieved via the consistency loss, which is united
into a network. The aggregator 1 and 2 are used for aggregating the adjacency information of the nodes and the classes.

Among the above methods, some zero-shot learning methods
have realized the importance of the relations between the classes. In
these methods, the graph of the classes is constructed to model the
relations between the classes. And then the Graph Convolutional
Network is used for learning the more discriminative represen-
tations of classes[14, 23]. However, the above methods are not
designed for graph data, so they can not handle directly the graph
data.

Recently, the zero-shot node classification on graph data begins
to be concerned [24]. Up to now, the number of the studies for
zero-shot node classification on graph data is still very few.

3 PROPOSED METHOD
This section presents a formalized expression of the proposed
method, and illustrates the function and work mechanism of each
part of the expression.

3.1 Problem Formulation
Let 𝐺 = (𝑉 , 𝐸,X, S𝑉 ) denote an attribute graph with vertices 𝑉 =

{𝑣1, 𝑣2, ..., 𝑣𝑛} and edges 𝐸 ⊆ 𝑉 ×𝑉 . Let S𝑉 ∈ R𝑛×𝑛 be the adjacency
matrix, where 𝑠𝑉

𝑖 𝑗
is the edge weight between node 𝑣𝑖 and 𝑣 𝑗 . Each

node 𝑣𝑖 is described by an attribute vector x𝑖 ∈ R𝑑 and X ∈ R𝑛×𝑑
is the attribute matrix of the nodes.

For zero-shot node classification, the space of class labels consists
of two disjoint parts, i.e. Y = Ys

⋃Yu and Ys
⋂Yu = 𝜙 . For the

sake of discussion, we assume that there are 𝑐s seen classes: Ys =
{1, 2, · · · , 𝑐s} and 𝑐u unseen classes:Yu = {𝑐s+1, 𝑐s+2, · · · , 𝑐s+𝑐u =

𝑐}. Each class is described by a semantic description vector a𝑘 ∈ R𝑑c ,
𝑘 = 1, 2, · · · , 𝑐 and A ∈ R𝑐×𝑑c is the matrix of semantic description
vectors of all classes.

Without loss of generality, we assume that the first 𝑙 nodes are
labeled and the rest 𝑢 nodes are unlabeled and 𝑙 + 𝑢 = 𝑛. All the

labeled nodes are from the seen classes Ys and all the unlabeled
nodes are from the unseen classes Yu. The goal of zero-shot node
classification is to predict the class labels of the 𝑢 unlabeled nodes.

Besides, let Ytrue
𝐿

∈ {0, 1}𝑙×𝑐s be the true label matrix of the 𝑙
labeled nodes. And ∀𝑖 = 1, 2, · · · , 𝑙 , ∀𝑗 ∈ Ys, if the class label of 𝑖th
node is 𝑗 , then 𝑦true

𝐿𝑖 𝑗
= 1, otherwise 𝑦true

𝐿𝑖 𝑗
= 0. And more notations

are listed in Table 1.

3.2 Preliminaries on GCNs
For traditional node classification on graph data, the Graph Con-
volutional Network (GCN) [10] is a most popular method. Given
a symmetric adjacency matrix S𝑉 , let D = diag (𝑑1, 𝑑2, · · · , 𝑑𝑛),
𝑑𝑖 =

∑𝑛
𝑗=1 𝑠

𝑉
𝑖 𝑗
be the degree matrix of S𝑉 . The Ŝ𝑉 = D− 1

2 S𝑉D− 1
2 is

calculated first. Then the general form of GCN can be written as
Y𝑉 = 𝜎

(
Ŝ𝑉XW

)
, whereW ∈ R𝑑×𝑑′

is a matrix of filter parameters
and 𝜎 (·) is the nonlinear activation function.

For the traditional semi-supervised node classification on graph
data, we consider briefly a one-layer GCN and we have

Y𝑉 = softmax
(
Ŝ𝑉XW

)
, (1)

where softmax(·) is a nonlinear activation function andW ∈ R𝑑×𝑐s
is an input-output weight matrix. Traditional semi-supervised node
classification assumes that the the classes of the labeled nodes can
cover the classes of the unlabeled nodes. Therefore, the dimension
of predicting label vector is the same as the number of classes
of the labeled nodes. The rows of the Y𝑉 can be regarded as the
representations of the nodes, and the columns of the Y𝑉 can be
regarded as the representations of the classes. So the goal of the
GCN is learning the joint representations of the nodes and the
classes.
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Finally, the cross-entropy loss is calculated over all labeled nodes,
and we have

L = −
𝑙∑︁

𝑖=1

𝑐s∑︁
𝑗=1

𝑦true
𝐿𝑖 𝑗

ln𝑦𝑉𝑖 𝑗 , (2)

where the 𝑦true
𝐿𝑖 𝑗

is the 𝑖th row and 𝑗th column entity of the matrix
Ytrue
𝐿

and denotes the membership of the 𝑖th node belonging to
the class 𝑗 . And the 𝑦𝑉

𝑖 𝑗
is the 𝑖th row and 𝑗th column entity of the

matrix Y𝑉 and denotes the predicting probability of the 𝑖th node
belonging to the class 𝑗 by the GCN.

The GCN for semi-supervised node classification only aggregates
the relations between the nodes, not considers the relations between
the classes. But zero-shot nodes classification assumes that the
classes of the unlabeled nodes are not emerging at the classes of the
labeled nodes. And full consideration of the relations between the
classes is crucial for zero-shot node classification. Therefore, the
traditional GCN can not deal with the zero-shot node classification
effectively.

3.3 Model Formulation
This paper proposes DBiGCN for zero-shot node classification. The
classes of labeled nodes can not cover the classes of the unlabeled
nodes, so it is crucial that how to fully consider the relations be-
tween the classes in the zero-shot node classification. In this paper,
the BiGCN is designed for obtaining the joint representations of
the nodes and the classes. Specifically, the BiGCN can integrate the
adjacency information between the nodes and between the classes
in an united network. Therefore, the learned joint representations
is more discriminative for zero-shot node classification. In addition,
the BiGCN can be implemented on the nodes and the classes, re-
spectively. Thus the two joint representations of the nodes and the
classes can be learned. Finally, we hope these dual BiGCNs from
perspective of the nodes and the classes can work collaboratively,
which can achieve their mutual guidance and mutual improvement.
Therefore, the label consistency loss is introduced to constrain the
two joint representations. These above three aspects are consid-
ered simultaneously in the proposed method. The final objective
function can be formulated as

Loverall = Lnodes + 𝛼Lclasses + 𝛽Lconsistency, (3)

where Lnodes and Lclasses are the loss terms of BiGCN from per-
spective of the nodes and the classes, respectively and Lconsistency
is the loss term of constraining the dual BiGCNs to collaboratively
work. Besides, 𝛼 and 𝛽 are the trade-off parameters to balance the
terms Lclasses and Lconsistency.

As seen from formula (3), the dual BiGCNs are collaboratively
trained in an unified framework, which enables the joint represen-
tations of nodes and classes to fuse the relations between the nodes
and between the classes simultaneously. And the pipeline of the
DBiGCN is shown in Figure 2.

The functions of these three terms are described in the following
sections. We first introduce the BiGCN for zero-shot node classifi-
cation and illustrate the difference between the BiGCN and GCN.

3.3.1 BiGCN. For zero-shot node classification, the relations be-
tween the classes should be fully considered during the learning
process of the joint representations of the nodes and the classes.

Motivated by this, a BiGCN is proposed in this paper. The graph
of the classes is constructed first, which can be used for exploring
the relations between the classes. Then, the relations between the
nodes and between the classes need to be considered in a network.
Simply, we consider a one-layer BiGCN that adopts bidirectional
aggregation mechanism. And the general form can be written as

Y𝑉 = softmax
(
relu

(
Ŝ𝑉XW(1)

)
W(2) ŜA

)
, (4)

where ŜA is the normalized adjacency matrix of the classes defined
by the distances between the classes, which can intuitively reflect
the relations between the classes. AndW(1) ∈ R𝑑×𝑑′

,W(2) ∈ R𝑑′×𝑐

are the learnable parameters. In BiGCN, dimension of predicting
label vector is the same as the number of all classes including
seen and unseen classes. The learned joint representations of the
nodes and the classes via the BiGCN not only fuses the relations
between the nodes, but also fuses the relations between the classes
simultaneously in an united network .

Therefore, the BiGCN can learn and transfer knowledge from
seen classes to unseen classes, which is consistent with the goal of
zero-shot node classification. As shown in Figure 3, the difference

Figure 3: A schematic depiction of BiGCN. The circles repre-
sent the nodes and the black lines between the circles rep-
resent the relations between the nodes. And the triangles
represent the classes and the black lines between the trian-
gles represent the relations between the classes.

between the GCN and the BiGCN is exhibited. The GCN aggre-
gates the adjacency information of nodes that reflects the relations
between nodes, while the BiGCN can aggregate the adjacency in-
formation of the nodes and the classes simultaneously. Therefore,
the learned joint representations of the nodes and the classes by
the BiGCN is more discriminative for seen and unseen classes. So
the BiGCN is more suitable for zero-shot node classification.

To sum up, the idea of the BiGCN is two-fold: (1) The learned
joint representations of the nodes and the classes fuses the relations
between the nodes, which results in the similar nodes on graph with
the similar representations; (2) The learned joint representations of
the nodes and the classes fuses the relations between the classes,
which results in the similar classes on the graph with similar repre-
sentations. Benefit from the aggregation of the relations between
the classes, the zero-shot node classification become possible.

3.3.2 BiGCN from Perspective of the Nodes. The definition of the
BiGCN from perspective of the nodes is shown as formula (4),
and the output-layer is used for classification. The BiGCN from
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Table 2: Information of the graph data sets

Data set Nodes Edges Features Classes The space of class labels

Cora 2708 5429 1433 7 { Neural Network, Rule Learning, Reinforcement Learning, Probabilistic
Methods, Theory, Genetic Algorithms, Cased based }

Citeseer 3312 4732 3703 6 { Agent, Information Retrieval, Database, Artificial Intelligence, Human
Computer Interaction, Machine Learning }

C-M10M 4464 5804 128 6 { Biology, Computer Science, Finacial Economics, Industrial Engineer-
ing, Physics, Social Science }

perspective of the nodes learns the joint representations of the
nodes and the classes, which can preserve the relations between the
nodes and between the classes in an united network. So transferring
knowledge from seen classes to unseen classes can be achieved.

After obtaining the joint representations of the nodes and the
classes Y𝑉 by the formula (4), the cross-entropy loss function is
also employed over all labeled nodes and the loss can be defined as

Lnodes = −
𝑙∑︁

𝑖=1

𝑐∑︁
𝑗=1

𝑦true
𝐿𝑖 𝑗

ln𝑦𝑉𝑖 𝑗 , (5)

where 𝑦𝑉
𝑖 𝑗
is the 𝑖th row and 𝑗th column entity of the matrix Y𝑉

and denotes the predicting probability of the 𝑖th nodes belonging to
class 𝑗 based on BiGCN from perspective of the nodes. The BiGCN
from perspective of the nodes is referenced as BiGCN_X.

3.3.3 BiGCN from Perspective of the Classes. The BiGCN from
perspective of the classes also can learn the joint representations of
the nodes and the classes, which can preserve the relations between
the nodes and between the classes in an united network. Therefore,
the BiGCN from perspective of the classes can be formulated as

YA = softmax
(
ŜAAW(3) Ŝ𝑉

)
, (6)

where ŜA is the normalized adjacency matrix of the classes that is
can be defined by the distances between the classes and W(3) ∈
R𝑑𝑐×𝑛 is the learnable parameter. The rows of YA ∈ R𝑐×𝑛 can be
regarded as the representations of the classes, and the columns
can be regarded as the representations of the nodes. Finally, the
cross-entropy loss function also be applied to all labeled nodes, we
have

Lclasses = −
𝑙∑︁

𝑖=1

𝑐∑︁
𝑗=1

𝑦true
𝐿𝑖 𝑗

ln𝑦A𝑗𝑖 , (7)

where 𝑦A
𝑗𝑖
is the 𝑗th row and 𝑖th column entity of the matrix YA

and denotes the predicting probability of the 𝑖th nodes belonging
to class 𝑗 based on the BiGCN from perspective of the classes.

Different from the formula (4), the joint representations of the
nodes and the classes can be learned from the aspect of classes,
which can better exploit the relations between seen and unseen
classes. This implement is fully consistent with the basic assumption
of zero-shot node classification. The BiGCN from perspective of
the classes is referenced as BiGCN_A.

3.3.4 Label Consistency Loss. We can obtain the two joint repre-
sentations of the nodes and the classes by the BiGCN_X and the
BiGCN_A, respectively. It is a natural idea that how can these two

BiGCNs work collaboratively to achieve mutual guidance and mu-
tual improvement between them. To achieve the goal, the label
consistency loss is designed, which constrains the outputs of the
BiGCN_X consistent with the outputs of the BiGCN_A. In addition,
these two outputs need to be aligned with the true labels on all
pairs of the labeled nodes.

Therefore, the label consistency loss is defined as

Lconsistency =

𝑙∑︁
𝑖=1

𝑙∑︁
𝑗=1

(
y𝑉𝑖 y

A
𝑗 − ytrue𝑖

(
ytrue𝑗

)𝑇 )2
, (8)

where y𝑉
𝑖

∈ [0, 1]1×𝑐 denotes the 𝑖th row of the Y𝑉 and is the
predicting label probability vector of the 𝑖th nodes based on the
BiGCN_X. Similarly, yA

𝑖
∈ [0, 1]𝑐×1 denotes the 𝑖th column of the

YA and is the predicting label probability vector of the 𝑖th nodes
based on the BiGCN_A. And ytrue

𝑖
is the true one-hot label vector

of the 𝑖th nodes.
For simplicity, formula (8) can be formulated as

Lconsistency =





Y𝑉𝐿 YA𝐿 − Ytrue
𝐿

(
Ytrue
𝐿

)𝑇 



2
𝐹

, (9)

where Y𝑉
𝐿
∈ [0, 1]𝑙×𝑐 is the predicting label matrix of the 𝑙 labeled

nodes based on the BiGCN_X. Similarly, YA
𝐿
∈ [0, 1]𝑐×𝑙 is the pre-

dicting label matrix of the 𝑙 labeled nodes based on the BiGCN_A.
Ytrue
𝐿

is the true label matrix of the 𝑙 labeled nodes.

3.4 Solution and Prediction
In this paper, the gradient descent method is employed to solve
the optimization problem (3). Specifically, the Adam optimizer [9]
implemented by Pytorch1 is used in this paper.

In the test phase, the goal of the zero-shot node classification
is predicting the 𝑢 unlabeled nodes from unseen classes, and the
predicting label of the 𝑖th unlabeled node based on the method
DBiGCN is

𝑦𝑖 = arg max
𝑗 ∈Yu

𝑦𝑉𝑖 𝑗 . (10)

Finally, the procedure of DBiGCN is summarized in Algorithm 1.

4 EXPERIMENTS
To evaluate the performance of DBiGCN proposed in this paper, we
conduct the experiments compared with the representative zero-
shot learning metods in computer vision and the latest zero-shot
node classification method. In addition, we design the different

1https://pytorch.org/
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Algorithm 1: Dual Bidirectional Graph Neural Network
for Zero-shot Node Classification (DBiGCN)
Input: The graph data 𝐺 = (𝑉 , 𝐸,X, S𝑉 ), the classes

semantic descriptions matrix A, the true labels
matrix of the 𝑙 labeled nodes Ytrue

𝐿
, and the trade-off

parameters 𝛼 , 𝛽 .
Output: the predicting labels of the 𝑢 unlabeled nodes.

1 Initialize the network parameters W(1) ,W(2) , and W(3) ;
2 Calculate and normalize the adjacency matrix of the classes;
3 repeat
4 Update the network parameters W(1) ,W(2) , and W(3)

with the formula (3);
5 until Loverall convergence;
6 Predict the labels of 𝑢 unlabeled nodes with the formula (10).
7 Return 𝑦𝑖 , 𝑖 = 1, 2, · · · , 𝑢.

experimental settings to exhibit the effectiveness and applicability
of the proposed method DBiGCN for zero-shot node classification.

4.1 Data Sets
We conduct experiments on three real-world citation network,
which are Cora [13], Citeseer [6], and C-M10M [24]. And the basic
information of the three data sets are summarized as Table 2.

For zero-shot node classification, two kind of classes semantic
descriptions (CSDs) [24], LABEL-CSDs and TEXT-CSDs, are used
in the experiments. And the splits of the seen and unseen classes
follows the setting of the literature [24] for comparison.

4.2 Experimental Settings
In the method DBiGCN proposed in this paper, there are two trade-
off parameters 𝛼 and 𝛽 that both are selected within {0.01, 0.1, 1,
10, 100}. And the output dimension of W(1) is simply fixed 512 in
the whole experiment.

Some classical and recent Zero-shot learning methods are se-
lected for comparison, including DAP (Direct Attribute Prediction)
[11] and the variant DAP (CNN), ESZSL (Embarrassingly Sim-
ple Zero-shot Learning) [15], ZS-GCN (GCN for Zero-shot Learn-
ing) [23] and the variant ZS-GCN (CNN), WDVSc (Wasserstein-
Distance-based Visual Structure Constraint) [22] and Hyperbolic-
ZSL [12], which are designed for image recognition in computer
vision. In addition, the method DGPN [24] concerned on zero-shot
node classification also is selected as comparison method. Finally,
the RandomGuess (randomly guessing the label for the unlabel
nodes) is regarded as a baseline. And the more detail experimental
setting can be found in Appendix.

4.3 Performance Analysis on the Proposed
Method for Zero-shot Node Classification

The zero-shot node classification accuracy using the TEXT-CSDs of
the proposed method and comparison methods on the three graph
data sets are presented in Table 3.

For the class split I, we have the following observations:

(a) The method DBiGCN outperforms the RandomGuess and
eight comparison methods for zero-shot node classification accu-
racy on the all experimental data sets. First, compared with the
classical zero-shot learning methods, the DBiGCN has a signifi-
cant improvement. Second, the DBiGCN also performs well com-
pared with the DGPN desighed for zero-shot node classification
and achieves 16.55% average accuracy improvement.

(b) The performance of the method DGPN and DBiGCN that
are designed for the zero-shot node classification on graph data is
superior to the methods that are designed for image recognition in
computer vision. The main reason is that the method DGPN and
DBiGCN can better integrate the information of the graph data.

(c) Compared with the method DGPN, the method DBiGCN
achieves higher performance on all data sets. The main reason
is that the method DBiGCN can obtain more discriminative rep-
resentations for zero-shot node classification by integrating the
BiGCN_X and BiGCN_A into an united network.

Table 3: Zero-shot node classification accuracy (%) using the
TEXT-CSDs

Cora Citeseer C-M10M

C
la
ss

Sp
li
tI

RandomGuess 25.35 24.86 33.21
DAP 26.56 34.013 38.713
DAP(CNN) 27.80 30.45 32.97
ESZSL 27.35 30.32 37.00
ZS-GCN 25.73 28.62 37.89
ZS-GCN(CNN) 16.01 21.18 36.44
WDVSc 30.623 23.46 38.12
Hyperbolic-ZSL 26.36 34.18 35.80
DGPN 33.782 38.022 41.982
DBiGCN 45.141 40.971 45.451

Improve rate 33.63% 7.76% 8.27%

C
la
ss

Sp
li
tI
I

RandomGuess 32.69 50.48 49.73
DAP 30.22 53.30 46.79
DAP(CNN) 29.83 50.07 46.29
ESZSL 38.823 55.323 56.073
ZS-GCN 29.53 52.22 56.07
ZS-GCN(CNN) 33.20 49.27 51.37
WDVSc 34.13 52.70 46.26
Hyperbolic-ZSL 37.02 46.27 55.07
DGPN 46.402 61.901 62.462
DBiGCN 49.201 60.112 71.861

Improve rate 6.03% -2.89% 15.05%

Under the class split II, there are similar conclusions with the
class split I. And the method DBiGCN obtains a improved perfor-
mance on the data sets Cora and C-M10M. On the data set Citeseer,
the performance of the is inferior to the method DPGN. Finally, the
method DBiGCN achieves 5.26% average accuracy improvement.

4.4 The Comparison of the Zero-shot Node
Classification Accuracy Using the Different
CSDs

There are two kind of classes semantic descriptions provided in the
literature [24], the TEXT-CSDs and the LABEL-CSDs. According
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Table 4: The Comparison of zero-shot node classification accuracy (%) using the different CSDs

Cora Citeseer C-M10M
TEXT LABEL Decline rate TEXT LABEL Decline rate TEXT LABEL Decline rate

C
la
ss

Sp
li
tI

DAP 26.56 25.34 -4.59% 34.01 30.01 -11.76% 38.71 32.67 -15.60%
ESZSL 27.35 25.79 -5.70% 30.32 28.52 -5.94% 37.00 35.02 -5.35%
ZS-GCN 25.73 23.73 -7.77% 28.62 26.11 -8.77% 37.89 33.32 -12.06%
WDVSc 30.62 18.73 -38.83% 23.46 19.70 -16.02% 38.12 30.82 -19.15%
Hyperbolic-ZSL 26.36 25.47 -3.38% 34.18 21.04 -38.44% 35.80 34.49 -3.66%
DGPN 33.78 32.55 -3.64% 38.02 31.83 -16.28% 41.98 35.05 -16.51%
DBiGCN 45.14 39.05 -13.49% 40.97 39.10 -3.10% 45.45 43.71 -3.83%
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Figure 4: The comparison of the different methods based on Graph Convolutional Network for zero-shot node classification.
The abscissa represents the different methods and the ordinate represents the accuracy of the zero-shot node classification.

the literature [24], the quality of the TEXT-CSDs is higher that the
LABEL-CSDs. In this section, we conduct the experiments of the
zero-shot node classification using these two different CSDs. The
comparison results are exhibited in the Table 4 and we have

(a) In the zero-shot node classification using the LABEL-CSDS,
the performance of the method DBiGCN has a significant improve-
ment, compared with the other zero-shot learning or zero-shot
node classification methods.

(b) The performance of zero-shot node classification using the
LABEL-CSD is lower than the performance using the TEXT-CSDs,
which is consistent with the conclusion concluded by literature
[24]. The reason is that the TEXT-CSDs contains more information
than the LABEL-CSDs during the process of the feature extraction.

(c) Some methods, including the ESZSL and DBiGCN, have more
stable performance, though the quality of the classes semantic
descriptions deteriorates. However, the others have a sharp decline
under the same scenario.

Therefore, the method proposed in this paper achieves a better
and more stable performance under the scenario of using the classes
semantic descriptions of different qualities.

4.5 Advantages of the BiGCN
To demonstrate the advantages of BiGCN, this section designs
the experiments of the traditional GCN [10] and BiGCN under

different scenarios. Specifically, the comparison methods includes
GCN, GCN+A, DGPN, BiGCN_X, BiGCN_A and DBiGCN.

The method GCN is the traditional Graph Convolutional Net-
work that does not consider the classes semantic descriptions.

The method GCN+A is that the learned representations of nodes
by the traditional Graph Convolutional Network are needed to be
aligned with the corresponding classes semantic description.

The method DGPN is implemented by the Decomposed Graph
Convolutional Network that considers the local and global informa-
tion. Besides, the classes semantic descriptions also are considered.

The method BiGCN_X is the Bidirectional Graph Convolutional
Network from perspective of the nodes (see section 3.3.2).

The method BiGCN_A is the Bidirectional Graph Convolutional
Network from perspective of the classes (see section 3.3.3).

The method DBiGCN integrates the BiGCN_X and BiGCN_A
into an united framework, namely the full model.

The performance of the above methods is shown in the Figure 4.
And we have the following conclusions:

(a) The performance of the method GCN+A is equal to or better
than the method GCN. Because the GCN does not consider the
classes semantic descriptions.

(b) The method DGPN is superior to the GCN+A. The method
DGPN considering the local and global information is a variation
of the GCN.

(c) Comparedwith the DGPN, themethod BiGCN_Xwith Bidirec-
tional Graph Convolutional Network has an improved performance
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Figure 5: The zero-shot node classification accuracy of the five ablative methods from the proposed model.
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Figure 6: The variations of the zero-shot node classification accuracy of the proposed method under different parameters 𝛼 and
𝛽 on all data sets.

on the data sets Cora and Citeseer. However, the performance of the
method BiGCN_X is less than the method DGPN. The main reason
is that the classes semantic descriptions are not fully exploited.

(d) The performance of the method BiGCN_A is inferior to the
method BiGCN_X. This phenomenon shows that the features of
nodes is more informative and discriminative than the the attributes
of the classes.

(e) Compare with all the other methods, the method DBiGCN
has a significant improvement on the all data sets. The main rea-
son is that the method DBiGCN integrates the BiGCN_X and the
BiGCN_A into an united network and the more discriminative joint
representations of the nodes and the classes can be obtained for
zero-shot node classification.

4.6 Ablation Study
To provide further insight into the method DBiGCN, we conduct
the ablation studies to evaluate the effectiveness and function of
the different components. The method DBiGCN consists of three
components. And the following 5 different variants are designed.

• Method 1: refers to BiGCN_X and BiGCN_A with the loss
term Lnodes

• Method 2: refers to BiGCN_X and BiGCN_A with the loss
term Lnodes and the loss term Lconsistency

• Method 3: refers to BiGCN_X and BiGCN_A with the loss
term Lclasses

• Method 4: refers to BiGCN_X and BiGCN_A with the loss
term Lclasses and the loss term Lconsistency

• Method 5: refers to BiGCN_X and BiGCN_A with the all
loss terms, namely the full model

The zero-shot node classification accuracy of the above fivemethods
are shown in Figure 5. The following observations can be seen

(a) The performance of the Method 2 considering the consistency
loss is better than the Method 1 on the all data sets. Similarly, the
performance of the Method 4 considering the label consistency
loss is better than the Method 3 on the data set Citeseer and C-
M10M and equal to the Method 3 on the data set Cora. The results
intuitively illustrate that the effectiveness of the label consistency
loss Lconsistency .

(b) On the all data sets, the performance of the Method 5 consist-
ing of dual Bidirectional Convolutional Networks is superior to the
Method 1 and the Method 3 with singe BiGCN. The experimental
results demonstrate the effectiveness and necessity of the DBiGCN.
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4.7 Parameters Sensitivity Analysis
There are two trade-off parameters, 𝛼 and 𝛽 , needed to be deter-
mined for the method DBiGCN. This section conducts the exper-
iments on the three data sets to study the parameter sensitivity
of the method DBiGCN to parameters variations of the 𝛼 and 𝛽

in terms of the zero-shot node classification accuracy using the
TEXT-CSDs under the class split I (see Figure 6).

Figure 6 shows that the zero-shot node classification accuracy
of the method DBiGCN is not sensitive to parameters variations on
the all data sets. And the competitive performance can be easily
obtained over a limited range.

5 CONCLUSION
A new Graph Convolutional Network for zero-shot node classifi-
cation is proposed. Its loss function is made up of three terms, i.e.
cross-entropy losses of the BiGCN from perspective of the nodes
and classes, respectively, and the label consistency loss. The cross-
entropy loss of the BiGCN from perspective of the nodes (classes)
can constrain the learned joint representations fuse the informa-
tion of the nodes (classes) and the relations between the nodes
and between the classes in an united network simultaneously. The
label consistency loss can constrain the dual BiGCNs work col-
laboratively. In addition, the bidirectional propagation mechanism
is proposed to implement the new loss. Finally, the experiments
on graph data sets demonstrate the effectiveness of the proposed
method.
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Table 7: The distance and renormalization setting

TEXT-CSDs LABEL-CSDs
Cora Citeseer C-M10M Cora Citeseer C-M10M

Euclidean distance ✓ ✓ ✓
Cosine distance ✓ ✓ ✓
Renormalization ✓ ✓

A APPENDIX
A.1 Date Sets Description
The data set Cora consists of 2708 scientific publications classified
into one of 7 machine learning related classes and 5429 links. Each
publication is described as 1433-dimensional vector and each di-
mension represents a unique word from the dictionary. And the
value is 0/1-value word vector, where 0 indicates the word is absent
and 1 indicates the word is present in this paper.

The data set Citeseer is a link data set built with permission
from the CiteSeer Web database. It consists of 3312 scientific paper
classified into one of 6 classes. And the number of the links in the
citation is 4732. Each paper is described as 3703-dimensional vector
and each dimension represents a unique word from the dictionary.

The data set C-M10M includes 4464 publications from 6 classes
and 5804 citation links. And each publication is described in plain-
text form. In the experiment, the 128-dimensional vector is used.

A.2 Data Split
In the experiment, the split of seen and unseen classes follows the
literature [24]. For the class split I, the train and test classes are
involved. For the class split II, the train, validation and test classes
are involved. For each data set, the first few classes are the train
classes, the middle ones are the validation classes. And the last ones
are the test classes. The detailed partition is presented in Table 5.

Table 5: The partition of the data set

Class split I Class split II
Train Test Train Validation Test

Cora { 1, 2, 3 } { 4, 5, 6, 7 } { 1, 2 } { 3, 4 } { 5, 6, 7 }
Citeseer { 1, 2 } { 3, 4, 5, 6 } { 1, 2 } { 3, 4 } { 5, 6 }
C-M10M { 1, 2, 3 } { 4, 5, 6 } { 1, 2 } { 3, 4 } { 5, 6 }

A.3 Parameter Setting
Under the class split I, we adopt the grid search for the parameters
of the network. And the search space of each parameter is listed
in Table 6. The number of the training epoch is fixed as 10000
under the class split I. And under the class split II, the parameters
of the network and the trade-off parameters are determined by the
validation classes, and the number of the training epoch is fixed
600. The stop condition is that the loss on validation classes does
not decrease for several consecutive epochs.

Table 6: The search space of the parameters of the DBiGCN

Parameter the range of the value

Dropout rate { 0, 0.1, 0.2, 0.3 }
Learning rate { 1e-1, 1e-2, 1e-3, 1e-4 }
Weight decay { 0, 1e-4, 1e-5, 1e-6 }

𝛼 { 1e-2, 1e-1, 1e0, 1e1, 1e2 }
𝛽 { 1e-2, 1e-1, 1e0, 1e1, 1e2 }

A.4 The Renormalization Setting
In the experiment, we employ the 𝑘-nearest neighbors to construct
the graph of the classes, and the computing formula is

𝑠A𝑖 𝑗 =

{
𝑒−

dis(a𝑖 ,a𝑗 )
𝑡 , a𝑖 ∈ N

(
a𝑗
)

0, otherwise,
where the dis(·, ·) is a distance function and Euclidean distance or
cosine distance is adopted in the experiment. N

(
a𝑗
)
denotes the

nearest neighbors’ set of the node a𝑗 . What’s more, the renormaliza-
tion trick of the graph is wildly used in graph neural network. In this
experiment, we also adopt the renormalization trick on the graph
based on classes. The detail experimental scheme are presented in
Table 7.

A.5 Code Release
Code for reproducible experiments is available at https://github.
com/warmerspring/DBiGCN.
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