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Introduction

p Each instance is associated
with multiple candidate
labels

pOnly one of candidate labels
is true but unknown
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Object
Partial Label (PL) Learning

PL Feature Selection
• In PL learning, most existing works focus on manipulating the label space while the task of

manipulating the feature space by dimensionality reduction has been rarely investigated.

• Feature selection is a common strategy to perform dimensionality reduction, which helps
remove irrelevant and redundant features, increase classification accuracy and enhance
learning comprehensibility. However, it is challenge in PL learning framework due to the
concealed ground-truth label.

The SAUTE Approach

The CENDA Approach (Cont.)

Notations

SAUTE performs feature selection via iteratively maximizing the dependency between selected
feature variables and the latent label variable, which is evaluated by mutual information.

Dependency Maximization
The original objective function of MI-based dependency maximization is formulated as:

This problem is NP-Hard. However, is a non-decreasing, non-negative submodular function
under weak conditional independence assumption. As a result, the solution of the above problem
can be approximated by a tailored greedy algorithm according to the properties of submodularity:

In order to further eliminate the influence of redundant features, we revise the greedy policy as:

To fulfill the alternative procedure, we construct the labeling confidence matrix 1
where each element denotes the estimated confidence of being the ground-truth label for
1. and initialize it as follows:

The labeling confidence matrix is updated by resorting to kNN aggregation in the lower-
dimensional feature space.

We generate the synthetic PL data set from multi-class data set with controlling parameter 𝑟 which
denotes the number of false positive labels in candidate label set.

• Against 𝒜-baselines, 𝒜-SAUTE wins in 91.7% cases and never losses.

• Against 𝒜, 𝒜-SAUTE wins in 71.2% cases and loses only in 4.4% cases.

Conclusion
In this paper, we make the first attempt towards partial label feature selection problem. Accordingly,
a novel approach named SAUTE is proposed which performs partial label feature selection by
maximizing the mutual-information-based dependency between selected features and labeling
information in an iterative manner. In each iteration, the near-optimal features are selected greedily
according to properties of submodular function, while the density of latent label variable is
estimated from updated labeling confidences over candidate labels by resorting to 𝑘NN aggregation
in the induced lower-dimensional feature space. Comprehensive experiments over synthetic as well
as real-world partial label data sets show that SAUTE is an effective partial label feature selection
approach to improve the performance of state-of-the-art partial label learning algorithms. It is worth
mentioning that the labeling confidence matrix Y derived from SAUTE may bring further
improvement of predictive performance for specific partial label learning algorithms with proper
utilization.

Sensitivity Analysis
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p = argmax

f2F\Ap�1

I(f ; c)

For PL examples, it is infeasible to directly calculate the value of entropy corresponding to latent 
label variable. In this paper, we make the first attempt to estimate conditional entropy              in 
partial label learning framework: 

PL Data Set
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Y(i, j) > 1

ni

Assuming that class conditional 
probability                            
on                .
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Latent Label Inference
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ApAccording to the selected feature subset , we construct the lower-dimensional PL
training set .
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D0 = {(x0
i, Si)|1 6 i 6 m}

The learning matrix:

The intermediate matrix: 

Normalization:

Win/tie/loss counts (pairwise t-test at 0.05 significance level) between 𝒜-SAUTE and 𝒜

Win/tie/loss counts (pairwise t-test at 0.05 significance level) between 𝒜-SAUTE and 𝒜-baselines

<latexit sha1_base64="MqEte1goTn9WUPIiQu0FgGAcPbE=">AAACBHicbVDLSsNAFJ3UV42vqks3g0Wom5JIUZdFN11WsA9oQplMJ+3QmSTM3AgldOsnuNUPcCdu/Q/X/ojTNgvbeuDC4Zx7OZcTJIJrcJxvq7CxubW9U9y19/YPDo9KxydtHaeKshaNRay6AdFM8Ii1gINg3UQxIgPBOsH4fuZ3npjSPI4eYZIwX5JhxENOCRjJa1Qo9owPOLzsl8pO1ZkDrxM3J2WUo9kv/XiDmKaSRUAF0brnOgn4GVHAqWBT20s1SwgdkyHrGRoRybSfzX+e4gujDHAYKzMR4Ln69yIjUuuJDMymJDDSq95M/M/rpRDe+hmPkhRYRBdBYSowxHhWAB5wxSiIiSGEKm5+xXREFKFgarKXYgI5tU0r7moH66R9VXWvq7WHWrl+l/dTRGfoHFWQi25QHTVQE7UQRQl6Qa/ozXq23q0P63OxWrDym1O0BOvrF3YDl3A=</latexit>

H(c|f)

scheme according to the properties of submodular function, while
the density of latent label variable is further estimated from updated
labeling con�dences by resorting to :NN aggregation in the lower-
dimensional space induced by selected features. Comprehensive
experiments over synthetic and real-world partial label data sets
show that S���� serves as an e�ective feature selection approach to
improve the generalization ability of well-established partial label
learning algorithms.

The rest of this paper is organized as follows. Section 2 brie�y
reviews related works on partial label learning. Section 3 presents
technical details of the proposed S���� approach. Section 4 reports
experimental results over a broad range of partial label data sets.
Finally, section 5 concludes this paper.

2 RELATEDWORKS
Partial label learning induces a multi-class classi�er from ambigu-
ously labeled training examples each associated with a candidate
label set, where the ground-truth label is concealed. To learn from
partial label examples, most existing works adopt the strategy of
candidate label disambiguation to reveal the ground-truth labeling
information. Identi�cation-based disambiguation treats the ground-
truth label as latent variable and utilizes iterative optimization
procedure to estimate the value of latent variable, where the opti-
mization objective can be instantiated with di�erent methods such
as maximum likelihood criterion [24, 30, 31] or maximum margin
criterion [6, 33, 56]. Averaging-based disambiguation treats all can-
didate labels equally and yields the �nal prediction via modifying
their modeling outputs according to di�erent averaging strategies,
such as distinguishing the averaged modeling outputs from can-
didate labels between the modeling outputs from non-candidate
labels for discriminative models [10, 44, 48] , or aggregating the
votes among candidate labels of the unseen instance’s neighboring
examples for instance-based models [17, 22, 59].

As the fundamental approach to alleviating the issue of curse of
dimensionality, dimensionality reduction [20, 38, 40, 49] has been
studied extensively and is expected to signi�cantly improve the
generalization ability of the learning system. A number of advanced
feature-transformation-based and feature-selection-based dimen-
sionality reduction techniques have been introduced into weakly-
supervised learning frameworks such as semi-supervised learning
[41, 51], multi-instance learning [47, 52] and multi-label learning
[45, 46, 61] to improve their less satisfactory generalization perfor-
mance caused by limited supervision information retrieved from
training set. Nevertheless, for partial label learning, most existing
works focus on classi�cation model induction by disambiguating
the candidate label set while the task of manipulating the feature
space by dimensionality reduction has been rarely investigated.

To the best of our knowledge, there are only two available feature-
transformation-based partial label dimensionality reduction meth-
ods, namely D���� [53, 58] and C���� [2], while the application
of feature selection [7, 19, 26] which not only facilitates removing
irrelevance and redundancy in the feature space, but also brings
about the advantages of interpretability and e�ciency, has not been
well studied in partial label learning framework. D���� utilizes the
LDA technique to maximize the inter-class separability in the pro-
jected feature space, whose dimensionality is upper-bounded by

the number of class labels due to the intrinsic properties of LDA.
C���� adapts HSIC to assist maximizing the dependence between
the projected feature information and the con�dence-based label-
ing information. The above methods both assume the existence of
a meaningful and computable distance metric in the input space,
which brings extra bias to the learning procedure and might lead
to suboptimal performance with inappropriate metric assumption.

3 THE PROPOSED APPROACH
Let X = R3 and L = {;1, ;2, ..., ;@} denote the 3-dimensional in-
stance space and the label space with @ class labels respectively.
Given the partial label training set D = {(x8 , (8 ) |1 6 8 6 <} ,
where x8 2 X is a 3-dimensional feature vector (G81 , G82 , ..., G83 )>
and (8 ✓ L is the candidate label set associated with x8 , partial
label learning aims to derive a multi-class classi�er ⌘ : X ! L
from the training set D.

Let � = {51, ..., 53 } denote the original feature set and latent
variable 2 denote the unknown ground-truth label of the instance.
The task of partial label feature selection is trying to select a subset
�( |�| = 3 0,3 0 ⌧ 3) from original features, i.e., � ✓ � , which is
recognized as the essential features of the instances. These essential
features commonly have the maximal statistical dependency on
the target class 2 [36]. Therefore, S���� performs feature selection
via maximizing the dependency between selected features � and
labeling information represented by random variable c, which is
evaluated by mutual information in this paper, as mutual informa-
tion is widely employed to de�ne the dependency of random vari-
ables [4, 13]. Besides, maximizing the mutual information � (�; 2)
also guarantees minimizing the lower bound of the misclassi�ca-
tion probability of classi�er according to Fano’s inequality [11].
To tackle ambiguous labeling information, S���� operates in an
iterative manner by alternating between mutual-information-based
dependency maximization and density estimation of latent label
variable. The two-stage alternating procedure is ful�lled by con-
structing labeling con�dence matrix Y = [Y(8, 9)]<⇥@ where each
element Y(8, 9) represents the estimated con�dence of ; 9 being the
ground-truth label for G8 . The matrix is initialized as Eq.(1) and the
constraints

Õ@
9=1 Y(8, 9) = 1(1 6 8 6 <) hold for each iteration of

S����.

8 1 6 8 6 <, 1 6 9 6 @ : Y(8, 9) =
(

1
|(8 | , if ; 9 2 (8

0, otherwise
(1)

In order to obtain a compact set of 3 0 superior features, we ex-
pect the selected features have the maximal dependency on the con-
cealed labeling information. For the stage of mutual-information-
based dependency maximization, we formulate the objective func-
tion as:

�⇤ = argmax
�✓� , |� |=30

6(�) = argmax
�✓� , |� |=30

� (�; 2) (2)

The above problem is NP-Hard in spite of its simple expres-
sion [37]. It is di�cult and costly to search the best 3 0 features
exhaustively. Nevertheless, the optimization goal 6(�) = � (�; 2) is
a non-decreasing, non-negative submodular function under weak
conditional independence assumption [27] with 6(q) = 0 by de�-
nition. One of the most popular consequences of submodularity is

that the maximum value of a non-negative and monotone submodu-
lar function can be e�ectively approximated with a tailored greedy
algorithm [32, 55]. Therefore we can obtain a near-optimal subset
of original features, i.e., the solution of Eq.(2), with theoretical per-
formance guarantees via a greedy incremental scheme according to
the properties of submodular function. In this scheme, supposing
that we already have the feature subset �?�1 (1 6 ? 6 3 0) with
?�1 selected features which is initialized as�0 = q , the ?th feature
is selected from � \�?�1 according to Eq.(3):

5 ⇤? = argmax
5 2�\�?�1

� (�?�1 [ {5 }; 2) (3)

The �nal selected feature subset �greedy satis�es the theoretical
performance guarantee [32] that:

6(�greedy) > (1 � 1
4
) max
|� |=30

6(�) (4)

In each greedy step, the computation of mutual information
� (�?�1 [ {5 }; 2) involves the estimation of multivariate density
? (5B1 , 5B2 , ..., 5B?�1 , 5 ) and ? (5B1 , 5B2 , ..., 5B?�1 , 5 , 2). Nevertheless, in
high-dimensional space the number of samples is usually insuf-
�cient for accurate multivariate density estimation. Moreover, com-
puting the inverse of the high-dimensional covariance matrix which
is needed for density estimation is time-consuming and usually an
ill-posed problem. In order to avoid the problems mentioned above,
we further assume that features are independent. Then we obtain
the modi�ed greedy policy for the ?th (1 6 ? 6 3 0) step as:

5 ⇤? = argmax
5 2�\�?�1

� (�?�1 [ {5 }; 2)

= argmax
5 2�\�?�1

�
� (�?�1 [ {5 }) � � (�?�1 [ {5 }|2)

�
¨= argmax

5 2�\�?�1

� �
� (�?�1) + � (5 )

�
�
�
� (�?�1 |2) + � (5 |2)

� �
≠= argmax

5 2�\�?�1
(� (5 ) � � (5 |2))

= argmax
5 2�\�?�1

� (5 ; 2) (5)

where � (·) denotes the entropy of random variable. Here, equal-
ity ¨ is derived from the independence assumption. Furthermore,
equality ≠ is derived from the fact that � (�?�1) and � (�?�1 |2)
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mutual information so as to improve the calculation accuracy and
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to select the feature that has the maximal relevance with label-
ing information in each greedy step to maximize the dependency
between eventually selected features and labeling information.

Nevertheless, features generally are not independent of each
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Implementation Issues. For partial label examples, it is infeasible
to directly calculate the value of entropy corresponding to latent
variable 2 due to the concealed ground-truth label. In this paper,
we make the �rst attempt to estimate conditional entropy � (2 |5 )
in partial label learning framework.
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continuous variables. As a result, conditional entropy � (2 |5 ) is
de�ned by:

� (2 |5 ) = �
π
X5

? (5 )
@’
;=1

? (; |5 ) log ? (; |5 ) 3 5 (9)

We replace the integration with a summation of< training samples
and suppose each sample has the same probability [28], then� (2 |5 )
is estimated as:
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where G 59 is the value of the 9th training sample corresponding to
feature 5 .

For terms � (5 ; 58 ) (58 2 �?�1) in Eq.(7), in order to avoid com-
plicated integrals, we simply discretize each feature variable into
�ve intervals according to Eq.(11) to estimate the value of mutual
information between features [36]:
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>>>>>>>>:

�2, if G 58 6 `5 � 2 · f5
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1, if `5 + f5 < G 58 6 `5 + 2 · f5
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where `5 and f5 respectively denote the mean value and standard
deviation of each feature 5 2 � derived from training set D.

Table 1: The pseudo-code of S����.
Inputs:
D : the PL training set {(x8 ,(8 ) | 1 6 8 6<} (X = R3 ,

L = {;1, ;2, . . . , ;@ }, x8 2 X,(8 ✓ L)
30 : the cardinality of selected feature subset
U : the learning rate in Eq.(13)
: : the number of exploited nearest neighbors
Outputs:
D0 : the induced lower-dimensional PL training set

{(x08 ,(8 ) | 1 6 8 6<}
Process:

1: Initialize the< ⇥ @ labeling con�dence matrix Y according to Eq.(1);
2: repeat
3: Initialize �0 = q ;
4: for ?=1 to 30 do
5: Calculate �̂ (2 |5 ) for 85 2 � \�?�1 according to Eq.(10);
6: Calculate

Õ
58 2�?�1 � (5 ; 58 ) for 85 2 � \�?�1 by discretization;

7: Find 5 ⇤? according to Eq.(7);
8: �? = �?�1 [ {5 ⇤? };
9: end for
10: Construct the lower-dimensional PL training set D0 = {(x08 ,(8 ) |1 6

8 6<} where x08 is derived from x8 in accordance with the selected
feature subset;

11: Identify the : nearest neighbors N(G08 ) for 8x08 (1 6 8 6<) ;
12: Calculate the learning matrix L according to Eq.(12);
13: Calculate the intermediate matrix Y0 according to Eq.(13);
14: Calculate the updated labeling con�dence matrix Ynew according to

Eq.(14);
15: Y = Ynew;
16: until convergence
17: Construct the lower-dimensional PL training set D0 according to se-

lected feature subset �? ;
18: Return D0

After determining the selected feature subset, we construct a
lower-dimensional PL training set D 0 = {(x 08 , (8 ) |1 6 8 6 <}
where x 08 is derived from x8 in accordance with selected features.
Thereafter, the density estimation of latent label variable is re�ned
via updating the labeling con�dence matrix by resorting to :NN
aggregation in the lower-dimensional feature space.

For each instance x 08 2 R30
, the probability of each candidate

label being its ground-truth label is re-estimated via exploiting
labeling information of its : nearest neighbors. The learning matrix
L = [L(8, 9))]<⇥@ is de�ned as:

L(8, 9) =
’

x0
80
2N(x0

8 )
Y(80, 9) ⇥ l0 (12)

where N(x 08 ) denotes the : nearest neighbors of x 08 and the voting
weight is set as l0 = : � 0 + 1(1 6 0 6 :) for the 0th nearest
neighbor [22, 59].

Afterwards, the labeling con�dence matrix is updated by:

Y0 = (1 � U) · Y + U · L (13)

where the learning rate is set as U = 0.6(0 < U < 1) in this paper.
In order to ensure that the con�dences of labels outside the

candidate label set are zero and the constraints
Õ@

9=1 Y(8, 9) = 1(1 6
8 6 <) are satis�ed, we make further adjustments to matrix Y0 and

obtain Ynew by:

Ynew (8, 9) =
( Y0 (8, 9)Õ

12(8 Y
0 (8,1) if 9 2 (8

0 otherwise
(14)

Table 1 summarizes the complete procedure of S����. Firstly,
the labeling con�dence matrix is initialized (step 1) based on the as-
signment of the training data set. After that, an iterative procedure
alternating between mutual-information-based dependency maxi-
mization (step 3-9) and density estimation of latent label variable
(step 10-15) is conducted. The iterative procedure terminates if the
selected feature subset does not change or the maximum number
of iteration is reached. 1 Finally, the lower-dimensional PL training
set is constructed according to the selected feature subset.

4 EXPERIMENTS
4.1 Experimental Setup
In this section, S���� is coupled with state-of-the-art partial label
learning algorithms to evaluate the e�ectiveness of the proposed
partial label feature selection approach. Given the partial label
learning algorithm A, its coupling version with S���� is denoted
as A-S����. The performance of A-S���� is compared against
that of A to verify the e�ectiveness of the proposed partial label
feature selection approach in improving the generalization ability
of the learning system.

In this paper, we utilize �vewell-established partial label learning
algorithms with suggested parameter con�guration in respective
literatures to instantiate A:

• P����� [22]: An averaging-based partial label learning ap-
proach which makes prediction on unseen instance by em-
ploying weighted :NN voting strategy [suggested con�gu-
ration: :=10].

• P����� [33]: An identi�cation-based partial label learning
approach which learns the predictive model by maximizing
the classi�cation margin over candidate label set and non-
candidate label set [suggested con�guration: regularization
parameter pool with {10�3, . . . , 103}].

• P������ [60]: A transformation-based partial label learning
approach which learns the predictive model by decomposing
the PL learning problem into a group of binary learning
problems via adapting the error-correcting output codes
(ECOC) techniques [suggested con�guration: ECOC coding
length d10 · log2 (@)e].

• I��� [59]: An instance-based partial label learning approach
which learns the predictive model by adapting label propa-
gation for graph-based disambiguation [suggested con�gu-
ration: balancing parameter U = 0.95].

• S��� [14]: A self-training partial label learning approach
which learns the desiredmodel and performs pseudo-labeling
jointly by solving a tailored convex-concave optimization
problem [suggested con�guration: regularization parameters
_ = 0.3, V = 0.05].

As is shown in Table 1, the parameters U and : are set to be 0.6
and 8 respectively. The cardinality of the selected feature subset is

1In this paper, the maximum number of iterations is set to be 20 which su�ces to yield
stable performance for the proposed approach
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Figure 1: Trend of classi�cation accuracy ofA-S���� (A 2{P�����,P�����,P������, I��� S���}) where the number of selected
features is set as 3 0 = dV · 3e. The coe�cient V increases from 0.05 to 0.6 with step-size 0.05 in (a) amazon (A = 1), (b) delicious
(A = 2) and (c) bookmark (A = 3).
Table 4: Win/tie/loss counts (pairwise t-test at 0.05 signi�cance level) between A-S���� and A in terms of di�erent number
of false positive labels (A = 1, 2, 3).

A-S���� against A
A=P����� A= P����� A=P������ A=I��� A=S���

A = 1 5/1/0 4/1/1 3/2/1 4/2/0 4/2/0
A = 2 5/1/0 4/1/1 4/2/0 4/2/0 5/1/0
A = 3 5/1/0 4/1/1 4/2/0 4/2/0 5/1/0

In Total 15/3/0 12/3/3 11/6/1 12/6/0 14/4/0

Table 5: Characteristics of the real-world experimental data sets.
Data Set # Examples # Features # Class Labels average # Candidate Labels Task Domain
Lost 1,122 108 16 2.23 automatic face naming [10]

Yahoo! News 22,991 163 219 1.91 automatic face naming [18]
FG-NET 1,002 262 78 7.48 facial age estimation [35]

Soccer Player 17,472 279 171 2.09 automatic face naming [57]
Mir�ickr 2,780 1,536 14 2.76 web image classi�cation [21]
Malagasy 5,303 384 44 8.35 POS tagging [62]

Table 6: Win/tie/loss statistics (pairwise t-test at 0.05 signi�cance level) between A-S���� and A, A-baselines on real-world
data sets.

Data Set A-S���� against A and A-baselines (A = P�����) A-S���� against A and A-baselines (A = P������)
A(Ori) A-RS A-MJE A-MR A(Ori) A-RS A-MJE A-MR

Lost win win win win win win win win
Yahoo! News win win win win win win win win

FG-NET win win win win win win win tie
Soccer Player tie win win win win win win win
Mir�ickr tie win win win win win win win
Malagasy win win win win tie win win win
In Total 4/2/0 6/0/0 6/0/0 6/0/0 5/1/0 6/0/0 6/0/0 5/1/0

In order to explore the in�uence of parameter 3 0 on the per-
formance of the proposed algorithm S����, we further conduct a
series of experiments with 3 0 = dV · 3e where V varies from 0.05 to
0.6 with step-size 0.05. Owing to the limited length of the paper,
only parts of experimental results are depicted in Fig. 1.

Based on the above experimental results over synthetic data sets,
we can draw following conclusions:

• The performance improvement of A-S���� against A is
moderate on mediamill which corresponds to the smallest
number of features (Table 3). On the three data sets with
more than 1300 features and relatively small number of exam-
ples (i.e., amazon, DeliciousMIL and bookmark), A-S����
achieves better performance than A in all 45 cases (Table
4), and the classi�cation accuracy has been improved with
S���� by more than 0.1 in 80% cases. These results demon-
strate that the bene�ts brought by S���� are even more

pronounced under challenging circumstances of high dimen-
sionality and insu�cient training examples.

• As is shown in Fig. 1, the classi�cation accuracy of each par-
tial label learning algorithm coupled with S���� �uctuates
moderately as the value of 3 0 changes. The evaluation results
do not monotonously increase or decrease with the number
of selected features in all curves. There is no one single value
of 3 0 which can consistently lead to the best performance,
although 3 0 = d0.15 ·3e is a reasonable default setting in this
paper. Further performance improvement could be achieved
through �ne-tuning the value of 3 0 for di�erent data sets
and learning algorithms.

4.3 Real-World Data Sets
Table 5 summarizes characteristics of the real-world partial label
data sets collected from di�erent task domains, including Lost

[10], Soccer Player [57] and Yahoo! News [18] for automatic face
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Figure 1: Trend of classi�cation accuracy ofA-S���� (A 2{P�����,P�����,P������, I��� S���}) where the number of selected
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Table 5: Characteristics of the real-world experimental data sets.
Data Set # Examples # Features # Class Labels average # Candidate Labels Task Domain
Lost 1,122 108 16 2.23 automatic face naming [10]

Yahoo! News 22,991 163 219 1.91 automatic face naming [18]
FG-NET 1,002 262 78 7.48 facial age estimation [35]

Soccer Player 17,472 279 171 2.09 automatic face naming [57]
Mir�ickr 2,780 1,536 14 2.76 web image classi�cation [21]
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data sets.
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In order to explore the in�uence of parameter 3 0 on the per-
formance of the proposed algorithm S����, we further conduct a
series of experiments with 3 0 = dV · 3e where V varies from 0.05 to
0.6 with step-size 0.05. Owing to the limited length of the paper,
only parts of experimental results are depicted in Fig. 1.

Based on the above experimental results over synthetic data sets,
we can draw following conclusions:

• The performance improvement of A-S���� against A is
moderate on mediamill which corresponds to the smallest
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of selected features in all curves. There is no one single value
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although 3 0 = d0.15 ·3e is a reasonable default setting in this
paper. Further performance improvement could be achieved
through �ne-tuning the value of 3 0 for di�erent data sets
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Figure 3: Trend of classi�cation accuracy of A-S���� (A 2{P�����, P�����, P������, I��� S���}). The number of exploited
nearest neighbors (i.e. :) increases from 3 to 10 with step-size 1 in (a) synthetic data set mediamill (A = 1) and (b) real-world
data set Lost; the number of learning rate (i.e. U) increases from 0.2 to 0.8with step-size 0.1 in (c) synthetic data set Corel16k-s1
(A = 2) and (d) real-world data set Mirflickr.

set. It is worth mentioning that the classi�cation accuracy
of each base classi�er has at least been doubled on FG-NET,
which corresponds to the real-world data set with smallest
number of examples but large average number of candidate
labels. These impressive results indicate that the bene�ts
brought by S���� would be more signi�cant under challeng-
ing circumstances of insu�cient training examples and high
rate of false positive labels.

• Out of the 36 statistical comparisons (6 data sets ⇥ 3 base-
lines ⇥ 2 base classi�ers), the performance of A-S���� is
signi�cantly superior to that of A-baselines in 35 cases (Ta-
ble 6). These results indicate that mutual information is an
appropriate evaluation indicator of dependency in partial
label learning framework and the proposed partial label fea-
ture selection approach S���� could signi�cantly improve
the performance of base classi�ers via e�ectively removing
irrelevant and redundant features.

4.4 Sensitivity Analysis
As is shown in Table 1,3 0 serves as an essential parameter for S����
which determines the cardinality of the selected feature subset. The
in�uence of parameter 3 0 on the performance of S���� has been
shown in Fig. 1 and Fig. 2. Overall, the proposed feature selection
approach behaves smoothly as the value of 3 0 changes within a
certain range. The classi�cation accuracy of partial label learning
algorithms coupled with S���� could achieve further improvement
by �ne-tuning the value of3 0, although3 0 = d0.15·3e is a reasonable
default setting in this paper.

Apart from 3 0, the learning rate U and the number of exploited
nearest neighbors : also serve as critical parameters for S����.
Fig. 3 illustrates how the predictive performance of each partial
label learning algorithm coupled with S���� changes as U increases
from 0.2 to 0.8 with an interval of 0.1 and : increases from 3 to
10 with an interval of 1 respectively. As is shown in Fig. 3, the
performance of each partial label learning algorithm coupled with
S���� is relatively stable as the value of U or : changes. Therefore,
the value of U and : is �xed to be 0.6 and 8 respectively in this
paper.

5 CONCLUSION
In this paper, we make the �rst attempt towards partial label feature
selection problem. Accordingly, a novel approach named S���� is

proposed which performs partial label feature selection by maximiz-
ing the mutual-information-based dependency between selected
features and labeling information in an iterative manner. In each
iteration, the near-optimal features are selected greedily according
to properties of submodular function, while the density of latent
label variable is estimated from updated labeling con�dences over
candidate labels by resorting to :NN aggregation in the induced
lower-dimensional feature space. Comprehensive experiments over
synthetic as well as real-world partial label data sets show that
S���� is an e�ective partial label feature selection approach to
improve the performance of state-of-the-art partial label learning
algorithms. It is worth mentioning that the labeling con�dence
matrix Y derived from S���� may bring further improvement of
predictive performance for speci�c partial label learning algorithms
with proper utilization.

REFERENCES
[1] K. Altun and B. Barshan. 2010. Human activity recognition using iner-

tial/magnetic sensor units. In Proceedings of the 1st International Conference
on Human Behavior Understanding. Istanbul, Turkey, 38–51.

[2] W.-X. Bao, J.-Y. Hang, and M.-L. Zhang. 2021. Partial label dimensionality reduc-
tion via con�dence-based dependence maximization. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Virtual Event,
46–54.

[3] K. Barnard, P. Duygulu, D. A. Forsyth, N. de Freitas, D. M. Blei, and M. I. Jordan.
2003. Matching words and pictures. Journal of Machine Learning Research 3
(2003), 1107–1135.

[4] L. Batina, B. Gierlichs, E. Prou�, M. Rivain, F.-X. Standaert, and N. Veyrat. 2011.
Mutual information analysis: A comprehensive study. Journal of Cryptology 24,
2 (2011), 269–291.

[5] F. Briggs, X. Z. Fern, and R. Raich. 2012. Rank-loss support instance machines for
MIML instance annotation. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Beijing, China, 534–542.

[6] J. Chai, I. W. Tsang, and W. Chen. 2020. Large margin partial label machine. IEEE
Transactions on Neural Networks and Learning Systems 31, 7 (2020), 2594–2608.

[7] G. Chandrashekar and F. Sahin. 2014. A survey on feature selection methods.
Computers & Electrical Engineering 40, 1 (2014), 16–28.

[8] C.-H. Chen, V. M. Patel, and R. Chellappa. 2018. Learning from ambiguously
labeled face images. IEEE Transactions on Pattern Analysis andMachine Intelligence
40, 7 (2018), 1653–1667.

[9] Y.-C. Chen, V. M. Patel, R. Chellappa, and P. J. Phillips. 2014. Ambiguously labeled
learning using dictionaries. IEEE Transactios on Information Forensics and Security
9, 12 (2014), 2076–2088.

[10] T. Cour, B. Sapp, and B. Taskar. 2011. Learning from partial labels. Journal of
Machine Learning Research 12 (2011), 1501–1536.

[11] T. M Cover. 1999. Elements of Information Theory. John Wiley & Sons.
[12] D. Dheeru and E. Karra Taniskidou. 2017. UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml
[13] A. Dionisio, R. Menezes, and D. A. Mendes. 2004. Mutual information: A measure

of dependency for nonlinear time series. Physica A: Statistical Mechanics and its
Applications 344, 1-2 (2004), 326–329.


