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Methodology

The workflow of PET
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Figure. For each row to predict (top-left), PET retrieves a fixed number of relevant data 

instances (bottom-left) and constructs a hypergraph (bottom-right) from the resulting data 

instances set. After a star expansion (top-right), we get a data-feature bipartite graph with data 

instance nodes at the bottom and feature value nodes at the top. We then perform the 

proposed hypergraph neural network on the resulting graph and use the target data instance 

node representation for prediction.

- Initialization.

- Message Generation.
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- Attention-based aggregation

𝑄𝑗
(𝑙)

= 𝑊𝑄
(𝑙)
ℎ𝑗
(𝑙−1)

,

𝐾𝑖𝑗
(𝑙)

= 𝑊𝐾
(𝑙)
𝑚𝑖𝑗

(𝑙)
,

𝑉𝑖𝑗
(𝑙)

= 𝑊𝑉
(𝑙)
𝑚𝑖𝑗

(𝑙)
,

𝑎𝑖𝑗
(𝑙)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑖∈𝑁 𝑗 𝑄𝑗
𝑙
𝐾𝑖𝑗

𝑙
,

𝑛𝑗
(𝑙)

= ෍

𝑖∈𝑁 𝑗

𝑎𝑖𝑗
(𝑙)
𝑉𝑖𝑗
(𝑙)
.

- Update
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Message Passing

Introduction

We model tabular data as a hypergraph, where each distinct feature value forms a node and a 

collection of them, i.e., a data instance, forms a hyperedge. Then we design a novel 

architecture that Propagates and Enhances the Tabular data representations based on the 

hypergraph for target label prediction. 

• We propose a retrieval-based hypergraph to capture the feature and label correlations 

among tabular data instances.

• We design an end-to-end graph neural network prediction model that unifies the product 

feature interaction, locality mining, and label enhancement.

• We utilize the observed labels in the resulting set to guide the feature learning process and 

use the propagated labels to enhance predictions.

Figure. (a) The popular tree models and interaction-based models utilize a single data 

instance for prediction. (b) The retrieval-based methods take multiple data instances as input 

without sufficiently mining the interaction patterns among them. (c) The proposed PET models 

the multiple data instances set as a hypergraph and capture their correlations with the 

assistance of labels.
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