

Blind Super-Resolution

 $Y = (X \otimes K) \downarrow_{s} + N$

- Estimat **blur kernel** *K*
- Estimat high resolution image X

Contributions

- We propose a novel model-driven deep unfolding blind super-resolution network, named KXNet.
- The proposed scheme can explicitly estimate the blur kernel with clear physical structures.
- With intrinsic embedding of the physical generation mechanism, we maintain the essential convolution computation between blur kernel and HR image.

Model Formulation

 $\min_{K,X} \|Y - (X \otimes K) \downarrow_{\mathbf{s}}\|_F^2 + \lambda_1 \phi_1(K) + \lambda_2 \phi_2(X)$

s.t.
$$K_j \ge 0, \sum_j K_j = 1, \forall j,$$

Experimental Results

 Table 1. Averaged PSNR/SSIM results of the
comparison methods

Mathad	Scale	Urban100 [17]		BSD100 [28]		Set14 [52]		Set5 [4]	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Bicubic	x2	23.00	0.6656	25.85	0.6769	25.74	0.7085	27.68	0.8047
RCAN [59]		23.22	0.6791	26.03	0.6896	25.92	0.7217	27.85	0.8095
IKC [14]		27.46	0.8401	29.85	0.8390	30.69	0.8614	33.99	0.9229
DASR [43]		26.65	0.8106	28.84	0.7965	29.44	0.8224	32.50	0.8961
DAN [25]		27.93	0.8497	30.09	0.8410	31.03	0.8647	34.40	0.9291
KXNet(ours)		28.33	0.8627	30.21	0.8456	31.14	0.8672	34.59	0.9315
Bicubic		21.80	0.6084	24.68	0.6254	24.28	0.6546	25.78	0.7555
RCAN [59]	2	21.38	0.6042	24.47	0.6299	24.07	0.6606	25.63	0.7572
IKC [14]		25.36	0.7626	27.56	0.7475	28.19	0.7805	31.60	0.8853
DASR [43]	xə	25.20	0.7575	27.39	0.7379	27.96	0.7727	30.91	0.8723
DAN [25]		25.82	0.7855	27.88	0.7603	28.69	0.7969	31.70	0.8940
KXNet(ours)		26.37	0.8035	28.15	0.7672	29.04	0.8036	32.53	0.9034
Bicubic	x4	20.88	0.5602	23.75	0.5827	23.17	0.6082	24.35	0.7086
RCAN [59]		19.84	0.5307	23.10	0.5729	22.38	0.5967	23.72	0.6973
IKC [14]		24.33	0.7241	26.49	0.6968	27.04	0.7398	29.60	0.8503
DASR [43]		24.20	0.7150	26.43	0.6903	26.89	0.7306	29.53	0.8455
DAN [25]		24.91	0.7491	26.92	0.7168	27.69	0.7600	30.53	0.8746
KXNet(ours)		25.30	0.7647	27.08	0.7221	27.98	0.7659	30.99	0.8815
Bicubic	x2	22.19	0.5159	24.44	0.5150	24.38	0.5497	25.72	0.6241
RCAN [59]		21.28	0.3884	22.98	0.3822	22.96	0.4155	23.76	0.4706
IKC [14]		24.69	0.7208	26.49	0.6828	26.93	0.7244	29.21	0.8260
DASR [43]		24.84	0.7273	26.63	0.6841	27.22	0.7283	29.44	0.8322
DAN [25]		25.32	0.7447	26.84	0.6932	27.56	0.7392	29.91	0.8430
KXNet(ours)		25.45	0.7500	26.87	0.6959	27.59	0.7422	29.93	0.8449
Bicubic	w2	21.18	0.4891	23.55	0.4961	23.28	0.5289	24.42	0.6119
RCAN [59]		20.22	0.3693	22.20	0.3726	21.99	0.4053	22.85	0.4745
IKC [14]		24.21	0.7019	25.93	0.6564	26.42	0.7018	28.61	0.8135
DASR [43]	xə	23.93	0.6890	25.82	0.6484	26.27	0.6940	28.27	0.8047
DAN [25]		24.17	0.7013	25.93	0.6551	26.46	0.7014	28.52	0.8130
KXNet(ours)		24.42	0.7135	25.99	0.6585	26.56	0.7063	28.64	0.8178

KXNet: A Model-Driven Deep Neural Network for Blind Super-Resolution

Jiahong Fu¹, Hong Wang², Qi Xie^{* 1}, Qian Zhao¹, Deyu Meng^{1, 3}, Zongben Xu^{1, 3} ¹Xi'an Jiaotong University; ²Tencent Jarvis Lab, Shenzhen; ³Pazhou Lab, Guangzhou

Model Optimization

For blur kernel *K*:

$$\min_{K} \|Y - (X \otimes K) \downarrow_{\mathbf{s}}\|_{F}^{2} + \sum_{\mathbf{s}} \|\mathbf{x}\|_{F}^{2}$$

s.t.
$$K_j \ge 0$$
, $\sum_j K_j = 1$

Solving with proximal gradient algorithm with iteration:

$$\boldsymbol{K}^{(t)} = \operatorname{prox}_{\lambda_1 \delta_1} (\boldsymbol{K}^{(t-1)} - \delta_1 \nabla \boldsymbol{K}^{(t-1)})$$

where
$$\nabla f(\mathbf{K}^{(t-1)}) = \operatorname{vec}^{-1}(\nabla f(\mathbf{k}^{(t-1)})), t$$

$$\nabla f(\mathbf{k}^{(t-1)}) = \left(D_{\mathbf{s}}U_f(\mathbf{X}^{(t-1)})\right)^{\mathrm{T}} \operatorname{vec}(\mathbf{Y} - \mathbf{v})$$

For image X:

$$\min_{\mathbf{X}} \|\mathbf{Y} - (\mathbf{X} \otimes \mathbf{K}) \downarrow_{\mathbf{S}} \|_{F}^{2} + \lambda$$

Same as above:

$$\boldsymbol{X}^{(t)} = \operatorname{prox}_{\lambda_2 \delta_2} (\boldsymbol{X}^{(t-1)} - \delta_2 \boldsymbol{K}^{(t)} \bigotimes_{\mathbf{s}}^{\mathrm{T}} (\boldsymbol{Y})$$

Figure 1. Super-resolution results of different methods

Table 2. Effect of stage number S on the performance of KXNet on Set14.

Stage No.	S=0	S=5	S=10	S=17	S=19	S=21
PSNR	25.74	29.91	30.57	30.96	31.14	31.14
\mathbf{SSIM}	0.7085	0.8400	0.8556	0.8631	0.8672	0.8665
$\operatorname{Params}(M)$	-	1.72	3.42	5.82	6.50	7.18
Speed(seconds)	-	0.51	0.54	0.58	0.59	0.64

PSNR/SSIM 26.54/0.7391 26.36/0.7280 26.39/0.7389 26.85/0.7524

different blur kernel setting on Set14 (scale=4, noise=0).

Paper & Codes https://github.com/jiahong-fu/KXNet

TEL AVIV 2022

Figure 2. (a) The estimated SR image and the extracted blur kernel at different iterative stages of KXNet. (b) Performance comparison under

