

Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi*, Jian Pei

Beijing University of Posts and Telecommunications & Simon Fraser University NEURAL INFORMATION PROCESSING SYSTEMS

Rethinking Graph Augmentation in Graph Contrastive Learning (GCL)

The General Augmentation (GAME rule)

The General Graph Augmentation Rule

Given two random augmentations V_1 and V_2 , their graph spectrums are $\phi_{V_1}(\lambda)$ and $\phi_{V_2}(\lambda)$. Then, $\forall \lambda_m \in [1,2]$ and $\lambda_n \in [0,1]$, V_1 and V_2 are an effective pair of graph augmentations if the following condition is satisfied: $|\phi_{V_1}(\lambda_m) - \phi_{V_2}(\lambda_m)| > |\phi_{V_1}(\lambda_n) - \phi_{V_2}(\lambda_n)|.$ We define such pair of augmentations as optimal contrastive pair.

Our target is to uncover some general rule across different graph augmentation strategies, and use this rule to validate and improve the current GCL methods?

Impact of Graph Augmentation

Experimental analysis --- Contrast between **A** and 9 existing augmentations

Methods		GraphCL			GCA		MVGRL			
Туре	Subgraph	Node dropping	Edge perturbation	Degree	PageRank	Eigenvector	PPR	Heat	Distance	
Results	34.9 ± 3.5	29.8 ± 2.3	$37.7 {\pm} 4.4$	40.2 ± 4.1	38.5 ± 5.0	42.1±4.9	58.0 ±1.6	49.9 ±4.2	46.1 ±7.5	

Result & Analysis:

- \succ Maintain the lowest part of $\mathcal{F}_{\mathcal{L}}$
 - Performance achieves the best
- Difference in $\mathcal{F}_{\mathcal{L}}$ is smaller

> More high frequencies in $\mathcal{F}_{\mathcal{H}}$

D Theoretical analysis --- Why does GAME rule work?

Theorem 1. (Contrastive Invariance) Given adjacency matrix A and the generated augmentation V, the amplitudes of *i*-th frequency of A and V are λ_i and γ_i , respectively. With the optimization of InfoNCE loss $\mathcal{L}_{InfoNCE}$, the following upper bound is established:

$$\mathcal{C}_{InfoNCE} \leq \frac{1+N}{2} \sum_{i} \theta_i \left[2 - (\lambda_i - \gamma_i)^2 \right]$$

where θ_i is an adaptive weight of the *i*th term.

➢ We are the first to indicates that GCL can make encoder *capture invariance* between two contrastive views.
➢ The GAME rule requires smaller difference in low-frequency part → emphasize *low-frequency information*

Spectral Graph Contrastive Learning

 \succ Target: learn a transformation Δ_A from A to A_

Frequency

- Performance generally rises
- Difference in $\mathcal{F}_{\mathcal{H}}$ is larger

Experience

Node classification

Datasets	Metrics	GCN	GAT	DGI	DGI+SpCo	MVGRL	GRACE	GRACE+SpCo	GCA	GraphCL	CCA-SSG	CCA+SpCo
Cora	Ma-F1	79.6±0.7	81.3±0.3	80.4±0.7	81.1±0.5	81.5±0.5	79.2±1.0	80.3±0.8	79.9±1.1	80.7±0.9	82.9±0.8	83.6±0.4
	Mi-F1	80.7±0.6	82.3±0.2	82.0±0.5	82.8±0.7	82.8±0.4	80.0±1.0	81.2±0.9	81.1±1.0	82.3±0.9	83.6±0.9	84.3±0.4
Citeseer	Ma-F1	68.1±0.5	67.5±0.2	67.7±0.9	68.3±0.5	66.8±0.7	65.1±1.2	65.1±0.8	62.8±1.3	67.8±1.0	67.9±1.0	68.5±1.0
	Mi-F1	70.9±0.5	72.0±0.9	71.7±0.8	72.4±0.5	72.5±0.5	68.7±1.1	69.4±1.0	65.9±1.0	71.9±0.9	73.1±0.7	73.6±1.1
BlogCatalog	Ma-F1	71.2±1.2	67.6±2.2	68.2±1.3	71.5±0.8	80.3±3.6	67.7±1.2	68.2±0.4	71.7±0.4	63.9±2.1	72.0±0.5	72.8±0.3
	Mi-F1	72.1±1.3	68.3±2.2	68.8±1.4	72.3±0.9	80.9±3.6	68.5±1.3	69.4±1.3	72.7±0.5	64.6±2.1	73.0±0.5	73.7±0.3
Flickr	Ma-F1	48.9±1.6	35.0±0.8	31.2±1.6	33.7±0.7	31.2±2.9	35.7±1.3	36.3±1.4	41.2±0.5	32.1±1.1	37.0±1.1	38.7±0.6
	Mi-F1	50.2±1.2	37.1±0.3	33.0±1.6	35.2±0.7	33.4±3.0	37.3±1.0	38.1±1.3	42.2±0.6	34.5±0.9	39.3±0.9	40.4±0.4
PubMed	Ma-F1	78.5±0.3	77.4±0.2	76.8±0.9	77.6±0.6	79.8±0.4	80.0±0.7	80.3±0.3	80.8±0.6	77.0±0.4	80.7±0.6	81.3±0.3
	Mi-F1	78.9±0.3	77.8±0.2	76.7±0.9	77.4±0.5	79.7±0.3	79.9±0.7	80.7±0.2	81.4±0.6	76.8±0.5	81.0±0.6	81.5±0.4

Optimization Objective

$$\mathcal{J} = \underbrace{<\mathcal{C}, \ \Delta_{A+}>^2}_{\text{Matching Term}} + \underbrace{\epsilon H(\Delta_{A+})}_{\text{Entropy Reg.}} + \underbrace{<\boldsymbol{f}, \Delta_{A+} \mathbbm{1}_n - \boldsymbol{a} > + <\boldsymbol{g}, \Delta_{A+}^\top \mathbbm{1}_n - \boldsymbol{b} > }_{\text{Lagrange Constraint Conditions}}$$

Solution

$$\Delta_{\boldsymbol{A}+} = diag(\boldsymbol{u}) \exp\left(2 < \boldsymbol{\mathcal{C}}, \Delta_{\boldsymbol{A}+}' > \boldsymbol{\mathcal{C}} / \epsilon\right) diag(\boldsymbol{v}) = \boldsymbol{U}_{+}\boldsymbol{K}_{+}\boldsymbol{V}_{+}$$