

🛓 Channel Importance Matters in Few-shot Image Classification 🛨 🎦

Xu Luo, Jing Xu, Zenglin Xu

Background

Few-shot learning

Motivation

Three types of task distribution shifts:

Goal: train a visual model that can quickly *learn* new visual concept from a few examples.

- **Category shift** (*mini*ImageNet, CIFAR) **Domain shift** (BSCD-FSL, MetaDataset)
- Granularity shift (Coarse-to-fine FSL)

Observation: Different tasks focus on different image features. **Guess:** Task distribution shift leads to a biased focus of neural networks on image features.

Question: How to verify this guess?

Thinking: If such a bias is general, then there should be a feature transformation that can rectify this bias.

A Simple Channel-wise Feature Transformation

We apply this function channelwisely to image features only at test time.

Effect on 5-way 5-shot few-shot tasks:

This transformation works only when task distribution shift from training to testing exists!

Conclusion & Question: We verify that as a result of task distribution shift, some kind of Bias of image features exists. Then How to characterize the bias? To answer this question, we need to further analyze this transformation.

Initial Analysis

Properties of the transformation:

$$\begin{split} \phi_k'(\lambda) > 0, \lim_{\lambda \to 0^+} \phi_k'(\lambda) = +\infty, \quad & \text{for all of the set of the se$$

This transformation suppresses channels of large MMC and largely amplifies channels of small MMC.

MMC is important! Can we obtain the optimal or oracle MMC of any task?

Oracle MMC of Any Binary Task

Theorem: Two classes of image representations, each with mean and variances μ_1 , σ_1 and μ_2 , σ_2 , respectively. Then the *oracle* MMC of the *c*-th channel ω_c should satisfy

$$\omega_c \propto \frac{|\mu_1^c - \mu_2^c|}{\sigma_1^c + \sigma_2^c}$$

The larger the mean difference, the smaller the variance, and the more important the channel.

Empirical verification:

Algo P	rithm N	Classifier NCC	Transformation None Simple Oracle	mini 90.5 91.3 93.1	CUB 80.6 82.4 88.7	Texture 80.6 83.1 87.2	TS 85.1 85.8 92.4	PlantD 89.2 93.0 95.6	ISIC 65.7 68.6 69.1	ESAT 86.5 89.2 91.5	Sketch 71.9 75.2 81.2	QDraw 82.4 85.1 89.4	Fungi 74.6 77.2 88.4	Avg 80.7 83.1 87.7
S21	M2	LC	None Simple Oracle	94.0 94.4 96.3	87.1 88.3 94.0	85.7 87.3 90.7	88.7 91.2 96.1	95.0 96.4 98.3	68.7 72.2 72.6	93.5 93.8 95.2	78.7 81.0 87.0	85.5 89.2 93.0	82.8 84.5 93.3	86.0 87.8 91.7

Visualization:

- The two axis are two selected channels from feature representations learned by ProtoNet. We here show a binary 1-shot task on these two channels using the ProtoNet classifier head. The black line is the classification boundary.
- The rescaling of channels made by simple and oracle transformation helps highlight the most discriminative channel (y-axis).

Analysis of Channel Bias of Visual Representations

Comparisons of MMC. A point is a channel; x-axis is the original MMC, y-axis is the transformed MMC.

Conclusions:

- Neural networks are overconfident in previously learned channel emphasis.
- The channel bias problem diminishes as task distribution shift lessens.
- The simple transformation pushes channel emphasis towards the optimal ones.

The channel bias problem distracts the neural network from new objects.

Shot Analysis

- The channel bias problem requires more attention in few-shot setting, while simple fine-tuning can help address this problem in many-shot setting.
- Logistic regression can alleviate the channel bias problem to some extent in many shot setting.

Code is publicly available at https://github.com/Frankluox/Channel_Importance_FSL

ICML International Conference On Machine Learning