
Section 3 (Parametric Total Variation):

➢ In extreme slice missing cases, HLRTF suffers from vanishing 

gradient (see Fig. 2). Thus, we propose the parametric total variation 

(PTV) to constrain DNN parameters and tensor factor parameters: 

➢ where three terms         ,         , and            respectively address the 

vanishing gradient in    ,    , and     .
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➢ Based on the DNN transform, we define the hierarchical tubal-rank:

➢ where          is a DNN. Its inverse DNN is denoted by         . The t-

prod induced by          is defined by                                           . We 

can deduce the corresponding hierarchical low-rank tensor 

factorization (HLRTF): 

➢ Let                              and                              , then      can be 

factorized as                      , where                        and                       .

➢ Based on the definition of t-prod, we can directly optimize the 

parameters of the inverse DNN          and formulate the HLRTF 

model as

➢ where                  ,                   ,     is the observed data, and L is the 

fidelity loss. We use gradient descent to tackle this model.

Section 1 (Classical Low-Tubal-Rank Model):

➢ Inverse problems in multi-dimensional imaging, e.g., completion, 

denoising, and compressive sensing, are challenging owing to the 

big volume of the data and the inherent ill-posedness. 

➢ Recently, the tensor low-tubal-rank model was proposed for multi-

dimensional image recovery. Tensor tubal rank is defined via the 

discrete Fourier transform (DFT):

➢ where F denotes the DFT matrix. The tensor-tensor product (t-prod) 

is defined by:                                                   Based on the tubal-

rank and t-prod, one can deduce the low-tubal-rank tensor 

factorization:

➢ Let                              and                              , then      can be 

factorized as                   , where                        and                       .

Section 4 (Experiments):

➢ By customizing different fidelity loss L, our method can be applied to 

different inverse problems in multi-dimensional imaging:

➢ (i) Multi-dimensional image inpainting (                                   ) 

➢ (ii) Multispectral image denoising (                            )

➢ (iii) Snapshot compressive-spectral imaging (                                       ) 

Contributions of this paper:

➢ We propose the HLRTF to capture the underlying low-rank structure of 

multi-dimensional images with compact representation abilities. We 

propose the PTV regularization to address the vanishing gradient issue.

➢ Extensive experiments validate the generalization abilities and 

effectiveness of HLRTF for different inverse problems in multi-

dimensional imaging. Code will be shared after request.

Section 2 (Hierarchical Low-Rank Tensor Factorization):

➢ Considering the complex and diversified topology structures of real-world 

data, it is highly possible that the transform between the original tensor 

and the optimal low-rank representation is nonlinear and hierarchical, 

which can not be interpreted by the linear transform.

➢ Thus, we replace the linear DFT with a nonlinear deep neural network 

(DNN), which can obtain a better transformed low-rank representation: 

Fig 1: The AccEgy (AccEgy =                          , where     denotes the i-th singular value) w.r.t. the 
percentage of singular values of transformed frontal slices. DNN obtains a better low-rank 
representation than linear transforms.
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Fig 2: Illustrations of the vanishing gradient. 
(i) If the i-th horizontal slice of      is missed, 
then the gradient on the i-th horizontal slice 
of     equals to zero. (ii) If the i-th lateral 
slice of      is missed, then the gradient on 
the i-th lateral slice of     equals to zero. (iii) 
If the i-th frontal slice of     is missed, then 
the gradient on the i-th row of      equals to 
zero. 


