HLRTF: Hierarchical Low-Rank Tensor Factorization for Inverse Problems In
Multi-Dimensional Imaging (CVPR 2022)

Yisi Luot, Xile Zhaot, Deyu Meng?3, Taixiang Jiang*
lUniversity of Electronic Science and Technology of China, 2Xi’'an Jiaotong University,
3SPeng Cheng Laboratory, 4Southwestern University of Finance and Economics
(contact: yisiluol221@foxmail.com)

Section 1 (Classical Low-Tubal-Rank Model): Section 3 (Parametric Total Variation):

» Inverse problems in multi-dimensional imaging, e.g., completion, » In extreme slice missing cases, HLRTF suffers from vanishing
denoising, and compressive sensing, are challenging owing to the gradient (see Fig. 2). Thus, we propose the parametric total variation
big volume of the data and the inherent ill-posedness. (PTV) to constrain DNN parameters and tensor factor parameters:

> Recently, the tensor low-tubal-rank model was proposed for multi- PTV(O) & V. Alle, + IV, Blle, + [|[VoHy|e, -
dimensional image recovery. Tensor tubal rank is defined via the > where three terms|v..il., v, , and |V.Hy|., respectively address the
discrete Fourier transform (DFT) Vanishing gradient in.A , R , andH, .

rank,(A) £ max {rank((A x5 F)®)},
1=1,2,--- ,n3 Tensor slices

Fig 2: lllustrations of the vanishing gradient.
(i) If the i-th horizontal slice of © is missed,
then the gradient on the i-th horizontal slice
of A equals to zero. (ii) If the i-th lateral
slice of O is missed, then the gradient on
the i-th lateral slice of 3 equals to zero. (iii)

where F denotes the DFT matrix. The tensor-tensor product (t-prod)
s defined by: AxB = ((Ax3F)A(Bx3F))x3F~! Based on the tubal-
rank and t-prod, one can deduce the low-tubal-rank tensor
factorization:

O horizontal slice lateral slice frontal slice

Hierarchical low-rank tensor factorization

rank; () * Z) < min{rank;()), rank;(Z)}. o _ . uas
> Let X € R™MX*n2xn3 and rankt()() — r _then X can be o _ ( ? . XSHE If the l-th.frontalsllc.e of O is missed, then
. e k the gradient on the i-th row of H,.equals to

factorized as X = A x B, where A € R™*7*"s and B € R"*"2*x"3 . — - Jero,

Section 2 (Hierarchical Low-Rank Tensor Factorization): Section 4 (Experiments):

» Considering the complex and diversified topology structures of real-world > By customizing different fidelity loss L, our method can be applied to
data, it is highly possible that the transform between the original tensor different inverse problems in multi-dimensional imaging:
and the optimal low-rank representation is nonlinear and hierarchical, > (i) Multi-dimensional image inpainting (L(x,0) = (X — O)o|2.)

which can not be interpreted by the linear transform.
» Thus, we replace the linear DFT with a nonlinear deep neural network
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ABAH propose the PTV regularization to address the vanishing gradient issue.

> where A 2 f(A), B 2 #(B) , Oisthe observed data, and L is the

. . . » Extensive experiments vali h neralization abiliti n
fidelity loss. We use gradient descent to tackle this model. tensive experiments validate the generalization abilities and

effectiveness of HLRTF for different inverse problems in multi-
dimensional imaging. Code will be shared after request.



