

Lingyu Gu^{*1}, Yongqi Du^{*1}, Yuan Zhang², Di Xie², Shiliang Pu², Robert C. Qiu¹, and Zhenyu Liao⁺¹

¹EIC, Huazhong University of Science and Technology, Wuhan, China ²Hikvision Research Institute, Hangzhou, China

Introduction

Questions:

- modern deep neural networks (DNNs) are powerful
- however, require *massive* storage and computation
- **DNN compression:** to remove redundancy in the net
- *little* is known about DNNs, challenging to find redundancy
- understanding DNNs should be the first step! But how?

Neural tangent kernel helps!

Set up:

- \checkmark input data $x_1, \ldots, x_n \in \mathbb{R}^p$ drawn from a K-class Gaussian mixture model (GMM), $X \in \mathbb{R}^{p \times n}$, $p/n \to c \in (0, \infty)$.
- \checkmark L-layer fully-connected network (width d_i for i-th layer) with weight matrices $W_1 \in \mathbb{R}^{d_1 \times d_0}, \dots, W_L \in \mathbb{R}^{d_L \times d_{L-1}}$, output $f_{\theta}(x) \in \mathbb{R}$, and $\theta = (vec(W_1), \dots, vec(W_L), w)$
- \checkmark activations $\sigma_1, \ldots, \sigma_L$ at least four-times differentiable for the standard normal measure

Neural tangent kernel (NTK)

- NTK matrix $K_{NTK} = (\nabla_{\theta} f_{\theta}(X))^{\top} (\nabla_{\theta} f_{\theta}(X)) \in \mathbb{R}^{n \times n}$
- only depends on input data, network structure, and (the distribution of) random initialization
- characterizes the convergence and generalization of networks (via its eigenspectrum) [2]
- builds a connection between network structure, input data, weights initialization, and network performance
- NTK can help us understand the DNNs!

"Lossless" Compression of Deep Neural Networks: **A High-dimensional Neural Tangent Kernel Approach**

Results

Theoretical Result: Asymptotic spectral equivalence for NTK matrices

With random matrix theory (RMT), for fully-connected network and high dimensional GMM data where the number of data *n* and their dimension p are both large $(n, p \to \infty, p/n \to c \in (0, \infty))$, we have, for NTK matrix $K_{NTK,\ell}$ of layer ℓ , that $||K_{NTK,\ell} - \tilde{K}_{NTK,\ell}|| \to 0$, in which

$$\tilde{K}_{NTK,\ell} = \beta_{\ell,1} X^T X + V B_{\ell} V^T + \left(\kappa_{\ell}^2 - \tau_0^2 \beta_{\ell,1} - \tau_0^4 \beta_{\ell,3}\right) I_n$$

$$\in \mathbb{R}^{n \times (K+1)}, B_{\ell} = \begin{bmatrix} \beta_{\ell,2} t t^T + \beta_{\ell,3} T & \beta_{\ell,2} t \\ \beta_{\ell,2} t^T & \beta_{\ell,2} t \end{bmatrix} \epsilon \mathbb{R}^{(K+1) \times (K+1)}, \text{ and}$$

with V

some statistics of input data τ_0 , t, T. As such, the NTK matrix

- depends on activations via *only* four parameters $\beta_{\ell,1}, \beta_{\ell,2}, \beta_{\ell,3}, \kappa_{\ell}$
- *independent* of the distribution of weights if they have zero mean and unit variance

The precise form of the activation functions and the distribution of weights do not affect the spectrum of NTK!

Compression Algorithm:

• Weights distribution

$$[W]_{ij} = \begin{cases} 0 \qquad p = \varepsilon \\ (1-\varepsilon)^{-\frac{1}{2}} \qquad p = \frac{1}{2} - \frac{\varepsilon}{2} \\ -(1-\varepsilon)^{-\frac{1}{2}} \qquad p = \frac{1}{2} - \frac{\varepsilon}{2} \end{cases}$$

✓ of zero mean and unit variance

 \checkmark freely choose sparsity level ε

✓ some coefficients to be determined so as to "match" *any* given DNN!

*Equal contribution ((gulingyu, yongqi_du)@hust.edu.cn) +Corresponding author (zhenyu liao@hust.edu.cn)

Compared to original or heuristically compressed nets (with, e.g., popular *magnitude-based* approach), the proposed "lossless" compression scheme (blue and brown)

- compression methods.
- occupy (up to) a factor of 10^3 less memory
- set to zero) with minimal performance loss

Outlook & Reference

Outlook:

Reference:

[1] Jacot Arthur, Franck Gabriel, and Clément Hongler. "Neural tangent kernel: Convergence and generalization in neural networks." Advances in neural information processing systems 31 (2018). [2] Fan Zhou, and Zhichao Wang. "Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks." Advances in neural information processing systems 33 (2020): 7710-7721. [3] Lingyu Gu, Yongqi Du, Yuan Zhang, Di Xie, Shiliang Pu, Robert C. Qiu and Zhenyu Liao. ""Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach." (accepted in) Advances in neural information processing systems 35 (2022)

connected nets on MNIST (top) and CIFAR10 (bottom) datasets

• achieve comparable performance compared to some other

• produce significantly sparser networks (up to 90% of weights

• extend to more involved settings, e.g., convolutional nets • apply asymptotic characterizations for NTK to analyze learning dynamics of ultra-wide fully-connected DNNs