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 extend to more involved settings, e.g., convolutional nets
 apply asymptotic characterizations for NTK to analyze learning 

dynamics of ultra-wide fully-connected DNNs 

Figure: Classification accuracies of different compressed fully-
connected nets on MNIST (top) and CIFAR10 (bottom) datasets

Outlook:

 achieve comparable performance compared to some other 
compression methods. 

 occupy (up to) a factor of 𝟏𝟏𝟎𝟎𝟑𝟑 less memory
 produce significantly sparser networks (up to 90% of weights 

set to zero) with minimal performance loss

Theoretical Result: Asymptotic spectral equivalence for NTK matrices 

Compression Algorithm:

 Activation function Weights distribution

Introduction

With random matrix theory (RMT), for fully-connected network and
high dimensional GMM data where the number of data 𝒏𝒏 and their
dimension 𝒑𝒑 are both large (𝒏𝒏,𝒑𝒑 → ∞, 𝒑𝒑/𝒏𝒏 → 𝒄𝒄 ∈ (𝟎𝟎,∞)), we have, for
NTK matrix 𝑲𝑲𝑵𝑵𝑵𝑵𝑲𝑲,ℓ of layer ℓ, that 𝑲𝑲𝑵𝑵𝑵𝑵𝑲𝑲,𝓵𝓵 − �̃�𝑲𝑵𝑵𝑵𝑵𝑲𝑲,𝓵𝓵 → 𝟎𝟎, in which

with 𝑽𝑽 ∈ ℝ𝒏𝒏 × 𝑲𝑲+𝟏𝟏 , 𝑩𝑩ℓ =
𝛽𝛽ℓ,2𝒕𝒕𝒕𝒕𝑵𝑵 + 𝛽𝛽ℓ,3𝑵𝑵 𝛽𝛽ℓ,2𝒕𝒕

𝛽𝛽ℓ,2𝒕𝒕𝑵𝑵 𝛽𝛽ℓ,2
𝝐𝝐ℝ(𝑲𝑲+𝟏𝟏)× 𝑲𝑲+𝟏𝟏 , and

some statistics of input data 𝝉𝝉𝟎𝟎, 𝒕𝒕, 𝑵𝑵.
As such, the NTK matrix

�̃�𝑲𝑵𝑵𝑵𝑵𝑲𝑲,𝓵𝓵 = 𝛽𝛽ℓ,1𝑿𝑿𝑵𝑵𝑿𝑿 + 𝑽𝑽𝑩𝑩𝓵𝓵𝑽𝑽𝑵𝑵 + 𝜅𝜅ℓ2 − 𝜏𝜏02𝛽𝛽ℓ,1 − 𝜏𝜏04𝛽𝛽ℓ,3 𝑰𝑰𝒏𝒏

The precise form of the activation functions and the 
distribution of weights do not affect the spectrum of NTK!

 depends on activations via only four parameters 𝛽𝛽ℓ,1, 𝛽𝛽ℓ,2, 𝛽𝛽ℓ,3, 𝜅𝜅ℓ
 independent of the distribution of weights if they have zero mean

and unit variance

 Questions:

Neural tangent kernel helps!

 both sparse and ternary
 of zero mean and unit variance
 freely choose sparsity level 𝜺𝜺
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Neural tangent kernel (NTK)
 NTK matrix 𝑲𝑲𝑵𝑵𝑵𝑵𝑲𝑲 = 𝜵𝜵𝜽𝜽𝒇𝒇𝜽𝜽(𝑿𝑿) ⊤ 𝜵𝜵𝜽𝜽𝒇𝒇𝜽𝜽(𝑿𝑿) ∈ ℝ𝒏𝒏×𝒏𝒏

 only depends on input data, network structure, and
(the distribution of) random initialization

 characterizes the convergence and generalization of
networks (via its eigenspectrum) [2]

 builds a connection between network structure, input
data, weights initialization, and network performance

 NTK can help us understand the DNNs!

 modern deep neural networks (DNNs) are powerful
 however, require massive storage and computation
 DNN compression: to remove redundancy in the net
 little is known about DNNs, challenging to find redundancy
 understanding DNNs should be the first step! But how?

Compared to original or heuristically compressed nets (with, e.g.,
popular magnitude-based approach), the proposed “lossless”
compression scheme (blue and brown)

Set up:
 input data 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 ∈ ℝ𝒑𝒑 drawn from a K-class Gaussian

mixture model (GMM), X∈ ℝ𝒑𝒑×𝒏𝒏, 𝒑𝒑/𝒏𝒏 → 𝒄𝒄 ∈ (𝟎𝟎,∞).
 L-layer fully-connected network (width 𝒅𝒅𝒊𝒊 for i-th layer)

with weight matrices 𝑾𝑾𝟏𝟏 ∈ ℝ𝒅𝒅𝟏𝟏×𝒅𝒅𝟎𝟎 , … ,𝑾𝑾𝑳𝑳 ∈ ℝ𝒅𝒅𝑳𝑳×𝒅𝒅𝑳𝑳−𝟏𝟏 ,
output 𝒇𝒇𝜽𝜽 𝒙𝒙 ∈ ℝ, and 𝜽𝜽 = 𝒗𝒗𝒗𝒗𝒄𝒄 𝑾𝑾𝟏𝟏 , … ,𝒗𝒗𝒗𝒗𝒄𝒄 𝑾𝑾𝑳𝑳 ,𝒘𝒘

 activations 𝝈𝝈𝟏𝟏, … ,𝝈𝝈𝑳𝑳 at least four-times differentiable for
the standard normal measure

𝑾𝑾 𝒊𝒊𝒊𝒊 =

𝟎𝟎 𝒑𝒑 = 𝜺𝜺

𝟏𝟏 − 𝜺𝜺 −𝟏𝟏𝟐𝟐 𝒑𝒑 =
𝟏𝟏
𝟐𝟐
−
𝜺𝜺
𝟐𝟐

− 𝟏𝟏 − 𝜺𝜺 −𝟏𝟏𝟐𝟐 𝒑𝒑 =
𝟏𝟏
𝟐𝟐
−
𝜺𝜺
𝟐𝟐  𝝈𝝈𝑵𝑵 𝒕𝒕 = 𝒂𝒂 ⋅ 𝟏𝟏𝒕𝒕<𝒔𝒔𝟏𝟏 + 𝟏𝟏𝒕𝒕>𝒔𝒔𝟐𝟐

𝝈𝝈𝑸𝑸 𝒕𝒕 = 𝒃𝒃𝟏𝟏 ⋅ 𝟏𝟏𝒕𝒕<𝒓𝒓𝟏𝟏 + 𝟏𝟏𝒕𝒕>𝒓𝒓𝟒𝟒
+𝒃𝒃𝟐𝟐 ⋅ 𝟏𝟏𝒓𝒓𝟐𝟐≤𝒕𝒕≤𝒓𝒓𝟑𝟑

 some coefficients to be determined 
so as to “match” any given DNN!
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