

Introduction	
Most online e-commerce platforms allow users to explain the reasons behind their ratings in text reviews.	
Reviews help alleviate the sparse issue in the recommender systems.	
 Current review-based recommender systems can be mainly categorized into two types. User and item representation learning enhanced by historical reviews Interaction modeling enhanced by target reviews (Each target review is the review of a user to an item, which corresponds to the interaction) 	
 We argue that review-based recommendation data naturally forms a user-item bipartite graph with edge features. Edge features Numerical ratings Textual reviews 	
 Challenges How to explore this unique graph structure? The rich graph patterns are hard to learn by sparse ratings. Can we develop self-supervised signals to boost graph learning? 	
The Problem Definition	
 □User-item bipartite graph with featured edges G =< U ∪ V, E > > Nodes • a user set U (U = M) • an item set V (V = N) 	
 ➢ Edges <i>E</i> = {<i>R,E</i>} A rating matrix <i>R</i> ∈ <i>R</i>^{M×N}, each element <i>r_{ij}</i> represents the rating. A review tensor <i>E</i> ∈ <i>R^{M×N×d}</i>, each vector <i>e_{ij}</i> ∈ <i>R^d</i> represent the review feature. 	
The goal is to the predict final rating matrix $\widehat{R} \in \mathcal{R}^{M \times N}$ with the graph \mathcal{G} .	

A Review-aware Graph Contrastive Learning Framework for Recommendation

Jie Shuai¹, Kun Zhang¹, Le Wu^{1,2,*}, Peijie Sun¹, Richang Hong^{1,2}, Meng Wang^{1,2}, Yong Li³

¹Key Laboratory of Knowledge Engineering with Big Data, Hefei University of Technology ²Institute of Artificial Intelligence, Hefei Comprehensive National Science Center ³Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University

The Proposed Model: RGCL

RGCL-1: graph initialization

> Nodes

• Users and items are represented by free embeddings.

≻ Edges

- Ratings are regarded as edge labels.
- Reviews are pre-encoded to feature vectors.
- **C**RGCL-2: Review-aware Graph learning (RG) > User and item representation learning
 - Review-aware message passing

Influence from edges Influence from neighbors

$$\boldsymbol{x}_{r;j \to i}^{(l)} = \underbrace{\frac{\sigma(\boldsymbol{w}_{r,1}^{(l)\top} \boldsymbol{e}_{ij}) \boldsymbol{W}_{r,1}^{(l)} \boldsymbol{e}_{ij} + \sigma(\boldsymbol{w}_{r,2}^{(l)\top} \boldsymbol{e}_{ij}) \boldsymbol{W}_{r,2}^{(l)} \boldsymbol{v}_{j}^{(l-1)}}{\sqrt{|N_j||N_i|}},$$

To tune the impacts by edges

• Aggregation

$$\begin{aligned} \boldsymbol{u}_{i}^{(l)} &= \boldsymbol{W}^{(l)} \sum_{r \in \mathcal{R}} \sum_{k \in \mathcal{N}_{i,r}} \boldsymbol{x}_{r;k \to i}^{(l)}, \quad \boldsymbol{v}_{j}^{(l)} = \boldsymbol{W}^{(l)} \sum_{r \in \mathcal{R}} \sum_{k \in \mathcal{N}_{j,r}} \boldsymbol{x}_{r;k \to j}^{(l)} \\ \hat{\boldsymbol{u}}_{i} &= \boldsymbol{u}_{i}^{(L)}, \quad \hat{\boldsymbol{v}}_{j} = \boldsymbol{v}_{j}^{(L)}, \end{aligned}$$

>Interaction Modeling

$$\hat{r}_{ij} = \boldsymbol{w}^{\top} \boldsymbol{h}_{ij}, \quad \boldsymbol{h}_{ij} = \text{MLP}\left(\left[\hat{\boldsymbol{u}}_{i}, \hat{\boldsymbol{v}}_{j}\right]\right),$$

IRGCL-3: graph contrastive learning

Discrimination Node ≻ Node (ND)for Representation Enhancement

• Node dropping for data augmentation

$$\mathcal{L}_{nd}^{user} = -\mathbb{E}_{\mathcal{U}} \left[\log \left(F\left(\hat{u}_{i}^{1}, \hat{u}_{i}^{2} \right) \right) \right] + \mathbb{E}_{\mathcal{U} \times \mathcal{U}'} \left[\log \left(F\left(\hat{u}_{i}^{1}, \hat{u}_{i}^{2} \right) \right) \right] \\ \text{Positive pairs} \quad \text{Negative pairs} \\ \text{Edge Discrimination} \\ \mathcal{L}_{ed} = -\mathbb{E}_{\mathcal{E}} \left[\log \left(F\left(h_{ij}, e_{ij} \right) \right) \right] + \mathbb{E}_{\mathcal{E} \times \mathcal{E}'} \left[\log \left(F\left(h_{ij}, e_{i'j'} \right) \right) \right] \\ \text{Positive pairs} \quad \text{Negative pairs} \\ \mathcal{L}_{ed} = -\mathbb{E}_{\mathcal{E}} \left[\log \left(F\left(h_{ij}, e_{ij} \right) \right) \right] + \mathbb{E}_{\mathcal{E} \times \mathcal{E}'} \left[\log \left(F\left(h_{ij}, e_{i'j'} \right) \right) \right] \\ \text{Positive pairs} \quad \text{Negative pairs} \\ \text{Model optimization} \\ \mathcal{L} = \frac{1}{|S|} \sum_{(i,j) \in S} (\hat{r}_{ij} - r_{ij})^{2} + \alpha \mathcal{L}_{ed} + \beta \mathcal{L}_{nd} \\ \end{bmatrix}$$

Datasets	#Users	#Items	#Reviews	Density
Digital_Music	5,541	3,568	64,706	0.330%
Toys_and_Games	19,412	11,924	167,597	0.072%
Clothing	39,387	23,033	278,677	0.031%
CDs_and_Vinly	75,258	64,443	1,097,592	0.023%
Yelp	8,423	3,742	88,647	0.281%

	Digital_Music	Toys_and_Games	Clothing	CDs_and_Vinly	Yelp
	0.8523±4e-4	0.8086±1e-3	1.1167±1e-3	0.8662±2e-4	1.1939±1e-3
	$0.8403 \pm 5e-3$	0.8078±2e-3	1.1094±1e-3	0.8781±1e-3	$1.1896 \pm 4e - 3$
CoNN	0.8378±1e-3	0.8028±7e-4	1.1184±2e-3	0.8621±1e-3	1.1877±1e-3
Æ	$0.8172 \pm 1e - 3$	0.7962±1e-3	1.1064±1e-3	0.8495±1e-3	1.1862±1e-3
L	0.8237±2e-3	$0.7936 \pm 4e - 3$	$1.1065 \pm 2e-3$	0.8483±1e-3	1.1793±1e-3
t	0.8331±3e-3	0.8006±1e-3	1.1080±1e-3	0.8654±5e-4	1.1837±3e-3
Nets	0.8273±5e-3	0.7980±1e-2	1.1141±5e-3	0.8440±1e-3	$1.1855 \pm 2e-3$
iC	0.8090±1e-3	0.7986±5e-4	1.1088±1e-3	$0.8404 \pm 1e-3$	1.1737±1e-3
	$0.8074 \pm 1e-3$	$0.7901 \pm 1e-3$	$1.1064 \pm 2e-3$	$0.8425 \pm 8e-4$	<u>1.1705</u> ±1e-3
	$0.8218 \pm 2e-3$	0.8064±1e-3	$1.1228 \pm 1e-3$	0.8458±1e-3	1.1807±1e-3
	0.8037±2e-3 (0.5%)	0.7853±8e-4 (0.6%)	1.1024±9e-4 (0.4%)	0.8360±1e-3 (0.5%)	1.1692±2e-3 (0.1%)
ND	0.7780±2e-3 (3.6%)	0.7831±1e-3 (0.9%)	1.0925±3e-4 (1.3%)	0.8240±6e-4 (2.0%)	1.1625±1e-3 (0.7%)
ED	0.7810±3e-3 (3.3%)	0.7797±9e-4 (1.3%)	1.0891±8e-4 (1.6%)	0.8244±1e-3 (1.9%)	1.1636±1e-3 (0.6%)
L	0.7735±4e-3 (4.2%)	0.7771±1e-4 (1.6%)	1.0858±1e-3 (1.9%)	0.8180±7e-4 (2.7%)	1.1609±8e-4 (0.8%

in one model.

We developed self-supervised signals to boost the embedding learning and interaction modeling based on reviews.

Extensive experiments demonstrated the effectiveness of our proposed RGCL.