

Black-Box Tuning for Language-Model-as-a-Service

Tianxiang Sun¹, Yunfan Shao¹, Hong Qian², Xuanjing Huang¹, Xipeng Qiu^{1,3}

¹Fudan University ²East China Normal University ³Peng Cheng Laboratory

Language-Model-as-a-Service (LMaaS)

□ Pre-training, then fine-tuning

Pre-training then fine-tuning is a promising paradigm to utilize the power of small/normal size pre-trained language models, achieving state-of-the-art performance on a wide range of downstream tasks.

□ Language-Model-as-a-Service (LMaaS)

Due to commercial concerns and expensive tuning cost, large language models (LLMs) such as GPT-3 are usually released as a service instead of open-sourcing model weights. Users can only access their inference APIs.

Users

Server

The objective: $\mathbf{p}^* = \arg\min_{\mathbf{p}\in\mathcal{P}} \mathcal{L}(f(\mathbf{p};X),Y)$

Challenge of high dimensionality

The continuous prompt to be optimized contains **tens of** thousands of parameters, posing a challenge for derivativefree optimization (DFO).

D Low intrinsic dimensionality of LLMs

Fortunately, it has been demonstrated that LLMs have a very low intrinsic dimensionality, and therefore we can perform DFO in a low-dimensional subspace via random embedding.

Thus, we recast the objective as:

 $\mathbf{z}^{\star} = \arg\min \mathcal{L}(f(\mathbf{A}\mathbf{z} + \mathbf{p}_0; \tilde{X}), \tilde{Y})$ $\mathbf{z}{\in}\mathcal{Z}$

great:9.8 love:5.2 film:3.3 ...

Experiments

□ Main results under true few-shot setting

Method	SST-2 acc	Yelp P. acc	AG's News acc	DBPedia acc	MRPC F1	SNLI acc	RTE acc	Avg.
Gradient-Based Methods								
Prompt Tuning	68.23 ± 3.78	61.02 ± 6.65	84.81 ± 0.66	87.75 ± 1.48	51.61 ± 8.67	36.13 ±1.51	54.69 ±3.79	63.46
+ Pre-trained prompt	/	/	/	/	$77.48 \pm \hspace{-0.5mm} \pm \hspace{-0.5mm} 4.85$	64.55 ± 2.43	77.13 ± 0.83	74.42
P-Tuning v2	64.33 ± 3.05	92.63 ± 1.39	83.46 ± 1.01	97.05 ± 0.41	68.14 ± 3.89	36.89 ± 0.79	50.78 ± 2.28	70.47
Model Tuning	85.39 ± 2.84	91.82 ± 0.79	86.36 ± 1.85	97.98 ± 0.14	77.35 ± 5.70	54.64 ± 5.29	58.60 ± 6.21	78.88
Gradient-Free Methods								
Manual Prompt	79.82	89.65	76.96	41.33	67.40	31.11	51.62	62.56
In-Context Learning	79.79 ± 3.06	85.38 ± 3.92	62.21 ± 13.46	34.83 ± 7.59	$45.81 \pm \! 6.67$	47.11 ± 0.63	60.36 ± 1.56	59.36
Feature-MLP	64.80 ± 1.78	79.20 ± 2.26	70.77 ± 0.67	87.78 ± 0.61	68.40 ± 0.86	42.01 ± 0.33	53.43 ± 1.57	66.63
Feature-BiLSTM	65.95 ± 0.99	74.68 ± 0.10	77.28 ± 2.83	90.37 ± 3.10	71.55 ± 7.10	46.02 ± 0.38	52.17 ± 0.25	68.29
Black-Box Tuning	$89.56 \pm \! 0.25$	91.50 ± 0.16	81.51 ± 0.79	87.80 ± 1.53	61.56 ± 4.34	46.58 ± 1.33	52.59 ± 2.21	73.01
+ Pre-trained prompt	/	/	/	/	$75.51 \pm \hspace{-0.5mm} 5.54$	83.83 ± 0.21	77.62 ± 1.30	83.90

Black-box tuning is more favorable than gradient descent in the scenario of parameter-efficient few-shot learning.

Ablations

CMA-ES vs. Adam

CMA-ES outperforms Adam when subspace dim is low

