

# Hub-Pathway: Transfer Learning from A Hub of Pre-trained Models Yang Shu, Zhangjie Cao, Ziyang Zhang, Jianmin Wang, Mingsheng Long (🖂) School of Software, BNRist, Tsinghua University, China

### Summary

- Explore the problem of transfer learning from a hub of pre-trained models. Propose a general Hub-Pathway framework that can address different situations where models may be trained from different datasets and learning paradigms and with diverse architectures.
- Promote the exploration and exploitation of the framework to enhance more effective transfer learning from a model hub.
- Conduct experiments on a variety of model hub transfer learning situations and tasks, including homogeneous and heterogeneous architectures, computer vision and reinforcement learning.

### Transfer Learning from a Hub of Pre-trained Models

**Motivation:** With the development of deep learning methods and large-scale datasets in various fields, and the open-source environment of deep learning community, we now have access to a hub of diverse pre-trained models.







- **Problem Setting:** Transfer learning from a hub of pre-trained models  $\{\Theta_1, \Theta_2, \cdots, \Theta_m\}$  to the target task  $\mathcal{D} = \{(\mathbf{x}, \mathbf{y})\}$ . General situations where models may differ in the pre-training datasets, pretext tasks, learning paradigms and the network architectures.
- Challenges:
  - ▶ Different relationships: decide which pre-trained models to transfer from.
- Complementary knowledge: aggregate knowledge from different pre-trained models.



### Hub-Pathway Framework

- **General Idea:** Design data-dependent pathways throughout the model hub. **Pathway Generator:** Output data-dependent pathway weights  $G(\mathbf{x})$  based on the input data **x** of the current task. Top-k model activation to ensure efficiency and avoid negative transfer:

$$ar{G}(\mathbf{x}) = f_{ ext{topk}}(G(\mathbf{x}), k)$$
, where  $f_{ ext{topk}}(G(\mathbf{x}), k)_i = \begin{cases} G(\mathbf{x})_i & G(\mathbf{x})_i \\ 0 & \text{otherwind} \end{cases}$ 

School of Software - Tsinghua University - China

Target Dataset

n the top k se.



- **Input-Level Routing:** Assign the pathway route as  $\mathbb{I}[\bar{G}(\mathbf{x}) > 0]$ , only pass the input data through the top-k activated models.
- **Output-Level Aggregation:** Compose the knowledge from different models, output final predictions of the model hub:  $A([\bar{G}(\mathbf{x})_i \cdot \Theta_i(\mathbf{x})]_{i=1}^m)$ .
- **Training the Framework:** Learning the pathway routing and the pathway aggregation from the target-task-specific loss:  $\mathcal{L}_{\mathsf{task}} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ell \left( A \left( \left\lceil \bar{G}(\mathbf{x})_i \cdot \Theta \right) \right) \right)$

Enhance Exploration of the Model Hub

- **Hub-Collapse:** Over-fit and fall to a local optimum by trivially activating and repeatedly updating with a few specific models. Ignore other potentially useful models and waste the rich knowledge in the hub.
- **Noisy Pathway Generator:** Embody a standard generator subnetwork  $G_p$ and a randomized generator subnetwork  $G_n$ :
  - $G(\mathbf{x}) = \text{Softmax}(G_{p}(\mathbf{x}) + \epsilon \cdot \text{Softplus}(\mathbf{x}))$
- **Pathway Weight Regularization:** Encourage activation of different models and pathways from the dataset point of view. Impose a maximum-entropy regularization on the output of the pathway generator:  $\mathcal{L}_{\mathsf{explore}} = -\mathcal{H}\left(\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}\mathcal{G}(\mathbf{x})
  ight)$

# Enhance Exploitation of the Model Hub

- **Hub-Underutilization:** Each model contributes only a fraction to hub prediction and optimization. Knowledge is not fully transferred to target.
- **Adaptive Tuning:** Enhance the transfer of knowledge and ensure the performance of the activated models. Tune the pre-trained models  $\Theta_i|_{i=1}^m$  with the task-specific loss on the specific data that activate them:  $\mathcal{L}_{\text{exploit}} = \sum_{i=1}^{m} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \mathbb{I}\left(\bar{G}(\mathbf{x})_{i} > \right)$
- Overall Optimization: Empowering Hub-Pathway with exploration and exploitation, the final optimization problem becomes:  $\arg \min_{G,A} \mathcal{L}_{\mathsf{task}} + \lambda \cdot \mathcal{L}_{\mathsf{explore}}$  $\arg \min_{\Theta_i|_{i=1}^m} \mathcal{L}_{task} + \mathcal{L}_{exploit}$

$$\Theta_i(\mathbf{x}) \Big]_{i=1}^m \Big), \mathbf{y} \Big)$$
 (2)

$$G_n(\mathbf{x}))), \epsilon \sim \mathcal{N}(0, 1)$$
 (3)

(4)

$$0 ) \ell (\Theta_i(\mathbf{x}), \mathbf{y})$$
 (5)

(6)

# **Experimental Results**

Boost performance on various downstream tasks.

| Model        | General |       | Fine-Grained |       |         | Specialized |              |       |
|--------------|---------|-------|--------------|-------|---------|-------------|--------------|-------|
|              | CIFAR   | COCO  | Aircraft     | Cars  | Indoors | DMLab       | EuroSAT      | Avg.  |
| ImageNet     | 81.18   | 81.97 | 84.63        | 89.38 | 73.69   | 74.57       | 98.43        | 83.41 |
| MoČo         | 75.31   | 75.66 | 83.44        | 85.38 | 70.98   | 75.06       | 98.82        | 80.66 |
| MaskRCNN     | 79.12   | 81.64 | 84.76        | 87.12 | 73.01   | 74.73       | 98.65        | 82.72 |
| DeepLab      | 78.76   | 80.70 | 84.97        | 88.03 | 73.09   | 74.34       | 98.54        | 82.63 |
| Keypoint     | 76.38   | 76.53 | 84.43        | 86.52 | 71.35   | 74.58       | 98.34        | 81.16 |
| Ensemble     | 82.26   | 82.81 | 87.02        | 91.06 | 73.46   | 76.01       | 98.88        | 84.50 |
| Distill      | 82.32   | 82.44 | 85.00        | 89.47 | 73.97   | 74.57       | 98.95        | 83.82 |
| K-Flow       | 81.56   | 81.91 | 85.27        | 89.22 | 73.37   | 75.55       | 97.99        | 83.55 |
| ModelSoups   | 81.32   | 82.94 | 85.24        | 90.32 | 75.61   | 74.29       | 98.65        | 84.05 |
| Zoo-Tuning-L | 83.39   | 83.50 | 85.51        | 89.73 | 75.12   | 75.22       | <b>99.12</b> | 84.51 |
| Zoo-Tuning   | 83.77   | 84.91 | 86.54        | 90.76 | 75.39   | 75.64       | 99.12        | 85.16 |
| Hub-Pathway  | 83.31   | 84.36 | 87.52        | 91.72 | 76.91   | 76.47       | 99.12        | 85.63 |

General for model hubs with heterogenous models.

| Model       | General<br>CIEAP COCO |                            | Fine-Grained               |                            |                    | Specialized        |                    | Avg.  |
|-------------|-----------------------|----------------------------|----------------------------|----------------------------|--------------------|--------------------|--------------------|-------|
|             | CITAK                 | COCO                       | AllClaft                   | Cars                       | muours             | DIVILaU            | Luiosai            |       |
| MaskRCNN    | $79.12_{\pm 0.06}$    | $81.64_{\pm 0.39}$         | $84.76_{\pm 0.30}$         | $87.12_{\pm 0.09}$         | $73.01_{\pm 0.45}$ | $74.73_{\pm 0.46}$ | $98.65_{\pm 0.05}$ | 82.72 |
| MobileNetV3 | $83.14_{\pm 0.10}$    | $83.28_{\pm 0.05}$         | $80.26_{\pm 0.03}$         | $86.37_{\pm 0.61}$         | $75.09_{\pm 0.19}$ | $70.09_{\pm 0.24}$ | $98.95_{\pm 0.11}$ | 82.45 |
| EffNet-B3   | $87.28_{\pm 0.21}$    | $86.97_{\pm 0.08}$         | $83.99_{\pm 0.09}$         | $89.34_{\pm 0.13}$         | $78.16_{\pm 0.16}$ | $72.69_{\pm 0.27}$ | $99.13_{\pm 0.01}$ | 85.37 |
| Swin-T      | $84.37_{\pm 0.12}$    | $84.12_{\pm 0.01}$         | $80.82_{\pm 0.27}$         | $89.10_{\pm 0.09}$         | $73.39_{\pm 0.34}$ | $72.22_{\pm 0.24}$ | $98.69_{\pm 0.05}$ | 83.24 |
| ConvNeXt-T  | $86.96_{\pm 0.10}$    | $87.15_{\pm 0.09}$         | $84.23_{\pm 0.57}$         | $90.67_{\pm 0.04}$         | $81.66_{\pm 0.07}$ | $73.80_{\pm0.11}$  | $98.65_{\pm 0.04}$ | 86.16 |
| Ensemble    | $87.72_{\pm 0.19}$    | $88.04_{\pm 0.07}$         | $87.11_{\pm 0.28}$         | $92.68_{\pm 0.33}$         | $82.79_{\pm 0.26}$ | <b>74.86</b> +0.14 | $99.23_{\pm 0.01}$ | 87.49 |
| Distill     | $87.33_{\pm 0.16}$    | $88.09_{\pm 0.25}$         | $85.26_{\pm 0.32}$         | $91.39_{\pm 0.19}$         | $81.51_{\pm 0.29}$ | $74.75_{\pm 0.20}$ | $99.24_{\pm 0.02}$ | 86.80 |
| Hub-Pathway | $89.01_{\pm 0.06}$    | <b>89.14</b> $_{\pm 0.12}$ | <b>88.12</b> $_{\pm 0.14}$ | <b>92.93</b> $_{\pm 0.20}$ | $84.40_{\pm 0.22}$ | $74.80_{\pm 0.23}$ | <b>99.26</b> ±0.06 | 88.24 |

Visualization on learned pathways.



# Complexity analysis, more efficient than ensemble methods.

| Model       | Acc $(\%)$ $\uparrow$ | Params (M) $\downarrow$ | FLOPs (G) $\downarrow$ | Memory (M) $\downarrow$ | Speed (samples/s) ↑ |
|-------------|-----------------------|-------------------------|------------------------|-------------------------|---------------------|
| ImageNet    | 83.41                 | 23.71                   | 4.11                   | 1905                    | 484.92              |
| Ensemble-J  | 83.87                 | 118.55                  | 20.55                  | 6397                    | 98.64               |
| Ensemble-I  | 84.50                 | 118.55                  | 20.55                  | 6397                    | 98.64               |
| Hub-Pathway | 85.63                 | 128.43                  | 9.11                   | 3537                    | 240.48              |

Overall: Consistently outperform the best single model in the model hub. Effectively use knowledge from diverse pre-trained models, achieve a good balance between performance and efficiency.

