
Hub-Pathway: Transfer Learning from A Hub of Pre-trained Models
Yang Shu, Zhangjie Cao, Ziyang Zhang, Jianmin Wang, Mingsheng Long (B)

School of Software, BNRist, Tsinghua University, China

Summary

I Explore the problem of transfer learning from a hub of pre-trained models.

I Propose a general Hub-Pathway framework that can address different
situations where models may be trained from different datasets and learning
paradigms and with diverse architectures.

I Promote the exploration and exploitation of the framework to enhance
more effective transfer learning from a model hub.

I Conduct experiments on a variety of model hub transfer learning situations and
tasks, including homogeneous and heterogeneous architectures, computer
vision and reinforcement learning.

Transfer Learning from a Hub of Pre-trained Models

I Motivation: With the development of deep learning methods and large-scale
datasets in various fields, and the open-source environment of deep learning
community, we now have access to a hub of diverse pre-trained models.

I Problem Setting: Transfer learning from a hub of pre-trained models
{Θ1,Θ2, · · · ,Θm} to the target task D = {(x, y)}. General situations where
models may differ in the pre-training datasets, pretext tasks, learning
paradigms and the network architectures.

I Challenges:
I Different relationships: decide which pre-trained models to transfer from.
I Complementary knowledge: aggregate knowledge from different pre-trained models.

Source Datasets Target DatasetPretrained Models

Pretrain

TransferPretrain

Pretrain

Hub-Pathway Framework

I General Idea: Design data-dependent pathways throughout the model hub.

I Pathway Generator: Output data-dependent pathway weights G (x) based
on the input data x of the current task. Top-k model activation to ensure
efficiency and avoid negative transfer:

Ḡ (x) = ftopk (G (x), k) ,where ftopk (G (x), k)i =

{
G (x)i G (x)i in the top k

0 otherwise.
(1)

		𝐱!

𝐺

Θ! Θ" Θ# Θ$

𝐴

		𝐲$!

Input

Output

Pathway Route

Topk

Pathway Aggregate

		𝐱"

𝐺

Θ$Θ#Θ"Θ!

𝐴

		𝐲$"

Topk

Model Hub

I Input-Level Routing: Assign the pathway route as I
[
Ḡ (x) > 0

]
, only pass

the input data through the top-k activated models.

I Output-Level Aggregation: Compose the knowledge from different models,
output final predictions of the model hub: A

([
Ḡ (x)i · Θi(x)

]m
i=1

)
.

I Training the Framework: Learning the pathway routing and the pathway
aggregation from the target-task-specific loss:

Ltask = E(x,y)∼D`
(
A
([
Ḡ (x)i · Θi(x)

]m
i=1

)
, y
)

(2)

Enhance Exploration of the Model Hub

I Hub-Collapse: Over-fit and fall to a local optimum by trivially activating and
repeatedly updating with a few specific models. Ignore other potentially useful
models and waste the rich knowledge in the hub.

I Noisy Pathway Generator: Embody a standard generator subnetwork Gp

and a randomized generator subnetwork Gn:

G (x) = Softmax
(
Gp(x) + ε · Softplus(Gn(x))

)
, ε ∼ N (0, 1) (3)

I Pathway Weight Regularization: Encourage activation of different models
and pathways from the dataset point of view. Impose a maximum-entropy
regularization on the output of the pathway generator:

Lexplore = −H
(
E(x,y)∼DG (x)

)
(4)

Enhance Exploitation of the Model Hub

I Hub-Underutilization: Each model contributes only a fraction to hub
prediction and optimization. Knowledge is not fully transferred to target.

I Adaptive Tuning: Enhance the transfer of knowledge and ensure the
performance of the activated models. Tune the pre-trained models Θi|mi=1 with
the task-specific loss on the specific data that activate them:

Lexploit =
∑m

i=1E(x,y)∼DI
(
Ḡ (x)i > 0

)
` (Θi(x), y) (5)

I Overall Optimization: Empowering Hub-Pathway with exploration and
exploitation, the final optimization problem becomes:

arg minG ,ALtask + λ · Lexplore

arg minΘi |mi=1
Ltask + Lexploit

(6)

Experimental Results

I Boost performance on various downstream tasks.Table 1: Results on the classification benchmarks with the homogeneous model hub.

Model General Fine-Grained Specialized Avg.CIFAR COCO Aircraft Cars Indoors DMLab EuroSAT

ImageNet 81.18 81.97 84.63 89.38 73.69 74.57 98.43 83.41
MoCo 75.31 75.66 83.44 85.38 70.98 75.06 98.82 80.66
MaskRCNN 79.12 81.64 84.76 87.12 73.01 74.73 98.65 82.72
DeepLab 78.76 80.70 84.97 88.03 73.09 74.34 98.54 82.63
Keypoint 76.38 76.53 84.43 86.52 71.35 74.58 98.34 81.16

Ensemble 82.26 82.81 87.02 91.06 73.46 76.01 98.88 84.50
Distill 82.32 82.44 85.00 89.47 73.97 74.57 98.95 83.82
K-Flow 81.56 81.91 85.27 89.22 73.37 75.55 97.99 83.55
ModelSoups 81.32 82.94 85.24 90.32 75.61 74.29 98.65 84.05
Zoo-Tuning-L 83.39 83.50 85.51 89.73 75.12 75.22 99.12 84.51
Zoo-Tuning 83.77 84.91 86.54 90.76 75.39 75.64 99.12 85.16

Hub-Pathway 83.31 84.36 87.52 91.72 76.91 76.47 99.12 85.63

scene (MIT-Indoors [51]) classification; (3) Specialized benchmarks collected from the DeepMind
Lab environment (DMLab [4]) and Sentinel-2 satellite (EuroSAT [30]). We follow the common
fine-tuning principle and replace the last layer with a randomly initialized fully connected layer [69].
We conduct each experiment 3 times with different seeds and report the average top-1 accuracy.

Implementation Details. We follow the standard fine-tuning principle in [69]. The source task-
specific heads in the pre-trained models are replaced with newly initialized fully connected layers as
the target task-specific heads. We adopt the SGD optimizer with an initial learning rate of 0.01 and
momentum of 0.9. The models are trained for 15k iterations with a batch size of 48. The learning rate
is decayed by a rate of 0.1 at the 6k-th and 12k-th iterations. We fine-tune the pre-trained models and
train the pathway generator and aggregator simultaneously on the target data. The pathway generator
is implemented as a 9-layer ResNet [29]. We run the experiments 3 times and report the mean results
of top-1 accuracy. For all the datasets, we follow the same dataset split as in [59].

Results on Homogeneous Model Hub. We show the results on all the benchmarks in Table 1.
We compare with fine-tuning from each single pre-trained model, the ensemble by voting of the
predictions of different pre-trained models after fine-tuning (Ensemble), knowledge distillation from
the Ensemble model (Distill) and model zoo transfer learning methods including: Knowledge
Flow [41] (K-Flow), ModelSoups [64], Zoo-Tuning-L and Zoo-Tuning [59]. For our method,
we activate top-2 models for each datum in all our experiments. Hub-Pathway outperforms all
the compared methods. In particular, different pre-trained models also show different transfer
performances on different benchmarks, which demonstrates that different pre-trained models have
different transferability to different target tasks. We can also get the results of a ‘Domain Expert’
baseline which chooses the best single model for each task. We observe that methods using all the
pre-trained models outperform Domain Expert, which demonstrates that the model hub contains
much more abundant knowledge than a single model and proves the practical use of the model hub
transfer learning setting. Hub-Pathway and Zoo-Tuning both outperform Ensemble and Distill, which
demonstrates that a simple ensemble of pre-trained models may not fully utilize the knowledge in
the model hub and also may cause different pre-trained models to influence each other. K-Flow
and Zoo-Tuning-L perform similarly to Ensemble, which shows that a task-level model aggregation
strategy does not maximally utilize the knowledge in the model hub. Finally, our Hub-Pathway
outperforms Zoo-Tuning and Zoo-Tuning-L even though Zoo-Tuning is specially designed to address
the situation that all the pre-trained models have the same architecture. The observation demonstrates
that Hub-Pathway finds more transferable models and better transfer knowledge from them.

Results on Heterogeneous Model Hub. Previous work of Knowledge Flow requires manually
designing the connections of different layers across different models and applying feature transforma-
tion between them. It cannot work in such a model hub with heterogeneous architectures since the
correspondence between layers of different pre-trained models is unknown, and their features have
different shapes and structures. Zoo-Tuning has an even stricter constraint of the same architecture of
the models in the hub, which limits its application in such a more general situation. Therefore, we
only compare our method with single-model transfer learning, Ensemble and Distill. From Table 2,

6

I General for model hubs with heterogenous models.Table 2: Results on the classification benchmarks with the heterogeneous model hub.

Model General Fine-Grained Specialized Avg.CIFAR COCO Aircraft Cars Indoors DMLab EuroSAT

MaskRCNN 79.12±0.06 81.64±0.39 84.76±0.30 87.12±0.09 73.01±0.45 74.73±0.46 98.65±0.05 82.72
MobileNetV3 83.14±0.10 83.28±0.05 80.26±0.03 86.37±0.61 75.09±0.19 70.09±0.24 98.95±0.11 82.45
EffNet-B3 87.28±0.21 86.97±0.08 83.99±0.09 89.34±0.13 78.16±0.16 72.69±0.27 99.13±0.01 85.37
Swin-T 84.37±0.12 84.12±0.01 80.82±0.27 89.10±0.09 73.39±0.34 72.22±0.24 98.69±0.05 83.24
ConvNeXt-T 86.96±0.10 87.15±0.09 84.23±0.57 90.67±0.04 81.66±0.07 73.80±0.11 98.65±0.04 86.16

Ensemble 87.72±0.19 88.04±0.07 87.11±0.28 92.68±0.33 82.79±0.26 74.86±0.14 99.23±0.01 87.49
Distill 87.33±0.16 88.09±0.25 85.26±0.32 91.39±0.19 81.51±0.29 74.75±0.20 99.24±0.02 86.80

Hub-Pathway 89.01±0.06 89.14±0.12 88.12±0.14 92.93±0.20 84.40±0.22 74.80±0.23 99.26±0.06 88.24

we observe that Hub-Pathway outperforms all these methods in most of the tasks. Note that, with
the activation of 2 models for each input, the training and inference cost of Hub-Pathway is much
less than the strong Ensemble method. The observation demonstrates that compared with existing
methods, Hub-Pathway is an effective and efficient solution to more general situations.

4.2 Transfer Learning in Facial Landmark Detection

We conduct experiments on the Facial Landmark Detection datasets to further demonstrate that Hub-
Pathway can be applied to a wide range of applications. We use the same model hub as the image
classification setting in Section 4.1 and transfer to three facial landmark detection tasks: 300W [57],
WFLW [66], and COFW [7], which creates a large domain gap between pre-trained models and
the target task. We generally follow the protocol in [60] and the standard training scheme in [66].
In testing, each keypoint location is predicted by transforming the highest heat value location to the
original image space and adjusting it with a quarter offset in the direction from the highest response
to the second highest response [12].

Implementation Details. For the facial landmark detection experiments, we generally follow the
training and testing protocols in [60] and the standard training scheme in [66]. The models are trained
for 60 epochs with a batch size of 16 using the Adam optimizer. The learning rate is set as 0.0001
initially and is decayed by a rate of 0.1 at the 30-th and 50-th epochs. In testing, each keypoint
location is predicted by transforming the highest heat value location to the original image space and
adjusting it with a quarter offset in the direction from the highest response to the second highest
response [12]. We follow the same data split and pre-processing as in [60]. All the faces are cropped
by the provided boxes according to the center location and resized to 256 ⇥ 256. We augment the
data by ±30 degrees in-plane rotation, 0.75 ⇠ 1.25 scaling, and random flipping.

Table 3: NME results on facial landmark detection
tasks. Smaller values mean better performance.

Model 300W WFLW COFW

From Scratch 3.66 5.33 4.20
ImageNet 3.52 4.90 3.66
MoCo 3.45 4.75 3.63
MaskRCNN 3.53 4.87 3.67
DeepLab 3.53 4.89 3.73
Keypoint 3.50 4.90 3.66

Ensemble 3.33 4.64 3.46
Distill 3.45 4.74 3.53
K-Flow 3.71 5.28 4.58
Zoo-Tuning 3.41 4.58 3.51

Hub-Pathway 3.33 4.54 3.51

Results. We use the inter-ocular distance as
normalization and report the normalized mean
error (NME) for evaluation in Table 3, where
smaller values mean better performance. We ob-
serve that fine-tuning from a single pre-trained
model outperforms training from scratch, which
demonstrates that knowledge transfer generally
improves the target performance even though
the pre-trained models are trained from differ-
ent tasks. K-Flow and Zoo-Tuning perform
worse than Ensemble with a non-trivial margin
in most of the tasks, which demonstrates that
they fail to extract and transfer generalizable
knowledge and thus do not perform well under a
large domain gap between the pre-trained mod-
els and the target task. Hub-Pathway instead
outperforms Ensemble on the WFLW task and
achieves a comparable performance to Ensem-
ble on the 300W and COFW. It is worth noting
that Hub-Pathway is much more efficient in com-
putation and memory than Ensemble. The results demonstrate that Hub-Pathway could generalize
across tasks even with large domain gaps.

7

I Visualization on learned pathways.

I Complexity analysis, more efficient than ensemble methods.

A Experiment Results

A.1 Complexity Analysis

Model hub transfer learning usually includes many pre-trained models and thus the computational
and the memory cost should be controlled to an acceptable extent. We compare the time complexity
and the parameter size of our framework, a single model and the ensemble of all models in Table 6.
The experiments are conducted on the CIFAR task with the batch-size of 12. Here we consider
two variants of Ensemble: (1) fine-tuning the ensemble of 5 pre-trained models jointly and testing
with their ensemble (Ensemble-J), (2) fine-tuning 5 pre-trained models independently and testing
with their ensemble (Ensemble-I). Hub-Pathway outperforms the two variants of Ensemble, which
shows the effectiveness of the proposed method. It only has a little more parameters than Ensemble
methods, but can be used much more efficiently than them. The costs of Ensemble-J all grow with the
number of the models, making it inefficient for the problem. Ensemble-I saves the training memory
by fine-tuning one model each time, but the computational costs during training and the costs during
inference cannot be saved. Hub-Pathway also introduces additional costs than the single model
baseline, but the additional costs can be controlled by pathway activation and thus do not scale up
with the size of the hub. Even compared with ImageNet, which is a single model, Hub-Pathway only
has about twice of the cost. The high efficiency attributes to our design of keeping top k pathways,
which only activates a few models for forward-propagation and back-propagation. It also outperforms
the two variants of Ensemble on most of the complexity metrics reported above. In all, Hub-Pathway
achieves a better balance between performance and efficiency for model hub transfer learning.

Table 6: Performance and complexity of Hub-Pathway, Ensemble and the ImageNet models.

Model Acc (%) " Params (M) # FLOPs (G) # Memory (M) # Speed (samples/s) "
ImageNet 83.41 23.71 4.11 1905 484.92
Ensemble-J 83.87 118.55 20.55 6397 98.64
Ensemble-I 84.50 118.55 20.55 6397 98.64
Hub-Pathway 85.63 128.43 9.11 3537 240.48

Table 7: Inference time per image (s)

Method Generator Pre-trained Models

Single - 0.012
Ensemble - 0.056

Hub-Pathway 0.003 0.023

We further report the time cost in the CIFAR task of the image classification dataset in Table 7. We
report the time of forwarding one piece of data through the model and separately report the time
for the pathway generator and the pre-trained models. We observe that the time for the pathway
generator is much smaller than the time for the pre-trained models, showing the efficiency of the
pathway generator. Since we only activate top-k models, the time cost scales linearly with k and does
not increase with the increasing size of the model hub.

We then test the detailed memory cost in three steps: (1) load the pre-trained models in the memory,
(2) forward the data through the pathway generator, (3) forward the data through pre-trained models.
We conduct the experiment on the classification task in CIFAR with a batch-size of 12 and report the
results in Table 8. Comparing results in Column 1, the additional memory cost of loading multiple

Table 8: Memory cost in Megabytes

Method Load Models Forward Generator Forward Models

Single 897 - +1008
Ensemble 1179 - +5218

Hub-Pathway 1203 +274 +2060

16

I Overall: Consistently outperform the best single model in the model hub.
Effectively use knowledge from diverse pre-trained models, achieve a good
balance between performance and efficiency.

School of Software - Tsinghua University - China Mail: shu-y18@mails.tsinghua.edu.cn


