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Introduction

In this paper, we investigate the efficiency of ker-
nel k-means combined with randomized sketches
in terms of both statistical analysis and com-
putational requirements. More precisely, we
propose a unified randomized sketches frame-
work to kernel k-means and investigate its ex-
cess risk bounds, obtaining the state-of-the-art
risk bound with only a fraction of computa-
tions. Indeed, we prove that it suflices to
choose the sketch dimension €2(y/n) to obtain
the same accuracy of exact kernel k-means with
oreatly reducing the computational costs, for
sub-Gaussian sketches, the randomized orthogo-
nal system (ROS) sketches, and Nystrom kernel
k-means, where n is the number of samples. To
the best of our knowledge, this is the first re-
sult of this kind for unsupervised learning. F'i-
nally, the numerical experiments on simulated
data and real-world datasets validate our theo-
retical analysis.

Motivation

Kernel k-means is one of the fundamental ap-
proaches in unsupervised learning. The Voronoi
cell associated with a centroid c; is defined as

Cj = {i:j = arg min |®; - cs|*}. (1)

The expected squared norm criterion is defined
as

W(C, 1) == Eg~p[min [ —c;|7].  (2)

j=Ik]

The excess clustering risk £(C,,) of the empirical
risk minimizer is defined as:

4:SN,u[W(Cna :u)]

where W*(u) := infaeyr W(C, ) is the opti-
mal clustering risk.

The statistical properties of kernel k-means have
been studied for decades, but they may not ap-
pear to be sufficient. And due to the high time
and space requirements, it has no capability to
large scale scenarios.

- W),  (3)

Example 1

Sub-Gaussian Sketches Kernel k-Means:

The matrix S € R"™*™ in Eq.(4) is described by
a hash function.
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e Time complexity:

e Space complexity: O(nm).

Example 2

ROS Sketches Kernel k-Means:
S € R™*™ in Eq.(4) can be defined as below:

S — DA. (7)

D € R™*™ is a random diagonal matrix whose
entries are 1.i.d. Rademacher variables. A €&
R™*™ is an orthogonal matrix with uniformly
bounded entries, for example the Hadamard ma-
trix and the discrete Fourier transform matrix.
We use the Hadamard matrix in this paper.

The Hadamard matrix:

Am/2 Am/2
CAp2 —Amye

with Ao = and A = —A,,

Jm

e Time complexity: O(nmlogm + nmkt).

e Space complexity: O(nm).

Theoretical Analysis

Theorem 1. If ||[®«|| < 1 for any x € X, € € (0,1), 6 € (0,1
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Example 3

Nystrom Kernel k-Means:
S € R™*™ in Eq.(4) can be defined as below:

S—1

where I is an identify matrix.
Therefore, the proposed Nystrom kernel k-
means can be converted into:
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where &, = &~ - Pi, € = <I>77,;Lcj, b, =
[(I)W(l), o (I)w(m)] 7'('(2) [1 TL] and the dictio-
nary (i.e. subset) 1®r@) fitq is m points @ ; sam-
pled from {®;}7_; through Q.

e Time complexity: O(nmkt).

e Space complexity: O(nm).

Simulation Experims
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Figure 1: Test accuracy and training time (in sec-
onds) with different dimensions m.

), and, in either one of the three cases of

sub-Gaussian, ROS, and Nystrom, the sketch dimension 1s m = (41°g”_210g5) , then, with probability at

least 1 — &, we have E[W(én,m,ﬂ)] — W*(u) = O (\/%) + O ( 8)

e—log(l+e)

We adopt the improved kernel k-means-+-+ sampling for the proposed randomized sketches kernel k-means.

Theorem 2. Let C’,,f[, . be obtained by the improved k-means++ algorithm with a local search strategy. If
|Px|| < 1 for any x € X, € € (0,1), § € (0,1), and, in either one of the three cases of sub-Gaussian,

ROS, and Nystrom, the sketch dimension is m = € (ﬂ‘igln_zlogé), then, with probability at least 1 — 0, we
og(1l+e)

<\/7+W* >+0(1

The Proposed Fram

We propose a framework of randomized sketches

have

s [Ej [W(C;ﬁm, ,u fe) , where J 1s the randomness derived from the

kernel k-means by reducing the original column
k; € R" to an m-dimensional subspace of R",
where m << n is the sketch dimension.

The proposed randomized sketches method:

K = RK = SQK ¢ R™*". (4)
Instance | Class Kernel k-Means Gaussian Nystrom (Liu

The unified randomized sketches kernel k- Dataset Time Accuracy Time  Accuracy Timﬁ AC(Cura)Cy
means: dna | 2000 3 0.16  0.50£0.01 | 0.12 0.49E£ 0.02 | 0.09  0.50%0.02
segment 2310 7 0.13 0.5040.02 0.09 0.4540.03 0.05 0.43+0.01
n mushrooms 8124 2 0.56 0.64+0.01 0.32 0.63+0.02 0.11 0.61+0.01
1 pendigits 10992 10 0.61 0.11 £0.01 0.34 0.1140.01 0.21 0.10+£ 0.02
— arg mmceRka Dilm protein 17766 3 5.07 0.46+0.01 3.16  0.44-+0.03 1.09  0.45+0.02
i—= 1 T ada 32561 2 6.47 0.75+0.01 3.21 0.734£0.03 1.12 0.73+£0.02
wT7a 49749 2 29.7 0.9740.02 15.3 0.9540.02 1.36 0.96+ 0.01
k connect-4 67557 3 0.28 0.6110.01 0.22 0.6040.03 0.11 0.59+£0.02

_ i min>ﬂ >‘ Rz Z k covtype 581012 7 / / / / / /

n v 4 ‘i |C ‘ Dataset Instance | Class | Sub-Gaussian (Ours) ROS (Ours) Nystrom (Ours)

J=11€C; scC; abase Time Accuracy Time Accuracy Time Accuracy
dna 2000 3 0.06 0.494 0.01 0.07 0.5040.01 0.04 0.50+0.01
segment 2310 7 0.03 0.4740.03 0.03 0.4940.01 0.02 0.42+0.01
mushrooms 3124 2 0.04 0.63+0.01 0.04 0.62+0.02 0.03 0.60+£0.01
Define the clustering centers by pendigits | 10992 10 0.14  0.1140.01 0.16  0.11+ 0.01 | 0.03  0.1140.02
protein 17766 3 0.16 0.4540.01 0.21 0.4610.01 0.03 0.44+0.02
Zn k.Tr- - ada 32561 2 0.11 0.7440.01 0.12 0.7440.02 0.03 0.73£0.02
i=1 %k, eC; ) w7a | 49749 2 0.30  0.94+0.02 | 0.36  0.954+ 0.01 | 0.03  0.9740.01
- 7 , connect-4 67557 3 0.05 0.5940.01 0.06 0.6040.02 0.03 0.5840.02
> iy H{Rieé}} covtype | 581012 7 .02 0.3240.02 | 1.36  0.334£0.04 | 0.66  0.32+0.03

k-means- -+ im’tzalzzatwn.

Experiments on Real-World Scenarios

Table 1: The datasets used in this paper. Test accuracy and training time (in seconds) on real datasets.




