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CONTRIBUTION

1. We introduce the Stationary Diffusion
State Neural Estimation (SDSNE).

2. We show the multiview clustering util-
ity of this estimator is derived from the
shared parameter between views.

3. We design a co-supervised loss to guide
SDSNE in achieving the stationary state.

DIFFUSION

We define the transition probability matrix P =

il Vij,pij = pji 2 O;Zip@'j = 1, and the
oraph diflusion process is given by
(1)

h < Ph
The following statements are equivalent for the
Markov chain determined by P

1. The Markov chain is stationary at the
state of .

"(7Tz‘—7Tj)2 = 0.

ESTIMATOR

The £k eigenvectors corresponding to eigen-
value 1 of P constructs the matrix II = |m;],

and H = [h;] is constrained by H'H = T .
Then, the inequality 0 = Zle w, (I — P)mw; =
mingry_; Te(H' (I — P)H) < 37 h) (I —
P)h; holds. Then, we have

Tr(Il' (I — P)YII) < Tr(H' (I — P)H)

WE use

Tr(H'(I — P)H)

(2)

as its loss function and define Eq. (1) to be its
neural layer.

HYPER TRANSITION MATRIX

Given different transition matrices, P\ and
P2 in two views, we construct a hyper-
transition matrix with them,

P=rprY g p? (3)

According to Eq. (2), the loss function guides
SDSNE in obtaining a stationary state by min-
1mizing,

L= (Te(H"(I-PYYH)+p|[HY ) (7)

v=1

RESULTS

Update H by Eq. (6);
Update £ by Eq. (7);
Update W by the gradient descent

algorithm.
until converged

Clustering on multiview datasets. We show the clustering accuracy between SDSNE and
two representative method: CGD and O2MAC on six benchmark datasets.

We perform the k-means clustering and spectral clustering to obtain the clustering results
(denoted by SDSNEy,, and SDSNE., respectively).

In most cases, SDSNE outperforms other state-of-the-art methods.

More algorithms and measure metrics can refer to our paper.
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