

Stationary Diffusion State Neural Estimation for Multiview Clustering

CONTRIBUTION

- 1. We introduce the Stationary Diffusion State Neural Estimation (SDSNE).
- 2. We show the multiview clustering utility of this estimator is derived from the shared parameter between views.
- 3. We design a co-supervised loss to guide SDSNE in achieving the stationary state.

DIFFUSION

We define the transition probability matrix P = $[p_{ij}], \forall ij, p_{ij} = p_{ji} \ge 0, \sum_{i} p_{ij} = 1, \text{ and the}$ graph diffusion process is given by

$$\boldsymbol{h} \leftarrow P\boldsymbol{h}$$
 (1)

The following statements are equivalent for the Markov chain determined by P

- 1. The Markov chain is stationary at the state of π .
- 2. $\pi = P\pi$.
- 3. $\sum_{i,j=1}^{n} p_{ij} (\pi_i \pi_j)^2 = 0$.

Chenghua Liu, Zhuolin Liao, Yixuan Ma and Kun Zhan^{*}

{liuchh20,liaozh120,mayx2021,kzhan}@lzu.edu.cn

ESTIMATOR

The k eigenvectors corresponding to eigenvalue 1 of P constructs the matrix $\Pi = [\pi_i]$, and $H = [\mathbf{h}_i]$ is constrained by $H^{\top}H = I$. Then, the inequality $0 = \sum_{i=1}^{k} \pi_i^{\top} (I - P) \pi_i =$ $\min_{H^{\top}H=I} \operatorname{Tr}(H^{\top}(I-P)H) \leqslant \sum_{i=1}^{k} \boldsymbol{h}_{i}^{\top}(I-\boldsymbol{h}_{i}^{\top}) \leq \sum_{i=1}^{k} \boldsymbol{h}_{i}^{\top}(I-\boldsymbol{h}_{i}^{\top})$ $P)\mathbf{h}_i$ holds. Then, we have

$$\operatorname{Tr}(\Pi^{\top}(I-P)\Pi) \leqslant \operatorname{Tr}(H^{\top}(I-P)H)$$

we use

$$\operatorname{Tr}(H^{\top}(I-P)H)$$
 (2)

as its loss function and define Eq. (1) to be its neural layer.

HYPER TRANSITION MATRIX

Given different transition matrices, $P^{(1)}$ and $P^{(2)}$, in two views, we construct a hypertransition matrix with them,

$$\boldsymbol{P} = P^{(1)} \otimes P^{(2)}$$

(3)

METHOD

The diffusion with \boldsymbol{P} is given by

$$\boldsymbol{g} \leftarrow \boldsymbol{P}\boldsymbol{g} = \operatorname{vec}\left(P^{(2)}S(P^{(1)})^{\top}\right) \quad (4)$$

where $vec(\cdot)$ denotes the vectorization by stacking columns one by one and vec(S) = g. We model the diffusion as a layer of the neural network and we share model parameter W in different views, for $\forall v \in \{1, 2, \dots, n_v\}$

$$H^{(v)} \leftarrow P^{(v)} W(P^{(v)})^{\top}.$$
 (5)

Fuse the learned features $H^{(v)}$ to obtain a unified global feature by,

$$H = \alpha \sum_{v=1}^{n_v} H^{(v)} + (1 - \alpha)I$$
 (6)

According to Eq. (2), the loss function guides SDSNE in obtaining a stationary state by minimizing,

$$\mathcal{L} = \sum_{v=1}^{n_v} \left(\text{Tr}(H^\top (I - \hat{P}^{(v)}) H) + \mu \| H^{(v)} \|_{\text{F}} \right)$$
(7)

RESULTS

Clustering on multiview datasets. We show the clustering accuracy between SDSNE and two representative method: CGD and O2MAC on six benchmark datasets.

- We perform the k-means clustering and spectral clustering to obtain the clustering results (denoted by $SDSNE_{km}$ and $SDSNE_{sc}$, respectively).
- In most cases, SDSNE outperforms other state-of-the-art methods.
- More algorithms and measure metrics can refer to our paper.

DATASET	BBC Sport	MSRC-v1	100 Leaves	Three Sources	Scene-15	Reuters
CGD	$0.974{\pm}0.004$	$0.910 {\pm} 0.006$	$0.859 {\pm} 0.005$	$0.781 {\pm} 0.006$	$0.428 {\pm} 0.004$	$0.492{\pm}0.004$
O2MAC	$0.964{\pm}0.008$	$0.709 {\pm} 0.030$	$0.557 {\pm} 0.009$	$0.755 {\pm} 0.026$	$0.309 {\pm} 0.013$	$0.459 {\pm} 0.039$
SDSNE _{km}	$0.969 {\pm} 0.000$	$0.943 {\pm} 0.000$	$0.962 {\pm} 0.000$	$0.828 {\pm} 0.000$	$0.443 {\pm} 0.000$	$0.516 {\pm} 0.000$
$SDSNE_{sc}$	$0.985 {\pm} 0.000$	$0.933 {\pm} 0.000$	$0.957 {\pm} 0.000$	$0.935 {\pm} 0.000$	$0.436 {\pm} 0.000$	$0.522 {\pm} 0.000$

	LGUI
2	Inpu Outp Initia
3	for v
5	
7	ke Ca A
9	
10	repea
11	fo
13	
15	
17	
18	U
19	U]
20	U ₁
21	until

ALGORITHM

 $\mathbf{ut}: \ \mathcal{X} = \{X^{(1)}, X^{(2)}, \dots, X^{(n_v)}\};\$ put: H; alize α , μ , W, and $epoch_{\max}$; $\in \{1, 2, \ldots, n_v\}$ do Construct $A^{(v)}$ by the Gaussian ernel with $X^{(v)}$; 'alculate the degree matrix $D^{(v)}$ of (v). formalize $A^{(v)}$ by $\mathcal{P}^{(v)} = (D^{(v)})^{-\frac{1}{2}} A^{(v)} (D^{(v)})^{-\frac{1}{2}};$ or $v \in \{1, 2, ..., n_v\}$ do $H^{(v)} \leftarrow P^{(v)} W(P^{(v)})^{\top};$ Calculate the degree matrix $\hat{D}^{(v)}$ of $H^{(v)}$; $\hat{P}^{(v)} = (\hat{D}^{(v)})^{-\frac{1}{2}} H^{(v)} (\hat{D}^{(v)})^{-\frac{1}{2}};$ pdate H by Eq. (6); pdate \mathcal{L} by Eq. (7); pdate W by the gradient descent lgorithm. converged