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Problem

Contribution
1. We introduce the Stationary Diffusion

State Neural Estimation (SDSNE).

2. We show the multiview clustering util-
ity of this estimator is derived from the
shared parameter between views.

3. We design a co-supervised loss to guide
SDSNE in achieving the stationary state.

Diffusion
We define the transition probability matrix P =
[pij ],∀ ij, pij = pji > 0,

∑
i pij = 1 , and the

graph diffusion process is given by

h← Ph (1)

The following statements are equivalent for the
Markov chain determined by P

1. The Markov chain is stationary at the
state of π.

2. π = Pπ .

3.
∑n

i,j=1 pij(πi − πj)2 = 0 .

Estimator
The k eigenvectors corresponding to eigen-
value 1 of P constructs the matrix Π = [πi],
and H = [hi] is constrained by H>H = I .

Then, the inequality 0 =
∑k

i=1 π
>
i (I − P )πi =

minH>H=I Tr(H>(I − P )H) 6
∑k

i=1 h
>
i (I −

P )hi holds. Then, we have

Tr(Π>(I − P )Π) 6 Tr(H>(I − P )H)

we use
Tr(H>(I − P )H) (2)

as its loss function and define Eq. (1) to be its
neural layer.

Hyper transition matrix

Given different transition matrices, P (1) and
P (2), in two views, we construct a hyper-
transition matrix with them,

P = P (1) ⊗ P (2) (3)

Method
The diffusion with P is given by

g ← Pg = vec
(
P (2)S(P (1))>

)
(4)

where vec(·) denotes the vectorization by stack-
ing columns one by one and vec(S) = g . We
model the diffusion as a layer of the neural
network and we share model parameter W in
different views, for ∀ v ∈ {1, 2, . . . , nv}

H(v) ← P (v)W (P (v))> . (5)

Fuse the learned features H(v) to obtain a uni-
fied global feature by,

H = α

nv∑
v=1

H(v) + (1− α)I (6)

According to Eq. (2), the loss function guides
SDSNE in obtaining a stationary state by min-
imizing,

L =

nv∑
v=1

(
Tr(H>(I−P̂ (v))H)+µ‖H(v)‖F

)
(7)

Algorithm

Input: X = {X(1), X(2), . . . , X(nv)} ;
Output: H ;
Initialize α, µ, W , and epochmax ;22

for v ∈ {1, 2, . . . , nv} do3

Construct A(v) by the Gaussian55

kernel with X(v) ;
Calculate the degree matrix D(v) of77

A(v);
Normalize A(v) by99

P (v) = (D(v))−
1
2A(v)(D(v))−

1
2 ;

repeat10

for v ∈ {1, 2, . . . , nv} do11

H(v) ← P (v)W (P (v))>;1313

Calculate the degree matrix D̂(v)
1515

of H(v);
P̂ (v) = (D̂(v))−

1
2H(v)(D̂(v))−

1
2 ;1717

Update H by Eq. (6) ;18

Update L by Eq. (7) ;19

Update W by the gradient descent20

algorithm.
until converged21

Results
Clustering on multiview datasets. We show the clustering accuracy between SDSNE and
two representative method: CGD and O2MAC on six benchmark datasets.

We perform the k-means clustering and spectral clustering to obtain the clustering results
(denoted by SDSNEkm and SDSNEsc, respectively).

In most cases, SDSNE outperforms other state-of-the-art methods.

More algorithms and measure metrics can refer to our paper.

dataset BBC Sport MSRC-v1 100 Leaves Three Sources Scene-15 Reuters
CGD 0.974±0.004 0.910±0.006 0.859±0.005 0.781±0.006 0.428±0.004 0.492±0.004
O2MAC 0.964±0.008 0.709±0.030 0.557±0.009 0.755±0.026 0.309±0.013 0.459±0.039
SDSNEkm 0.969±0.000 0.943±0.000 0.962±0.000 0.828±0.000 0.443±0.000 0.516±0.000
SDSNEsc 0.985±0.000 0.933±0.000 0.957±0.000 0.935±0.000 0.436±0.000 0.522±0.000


