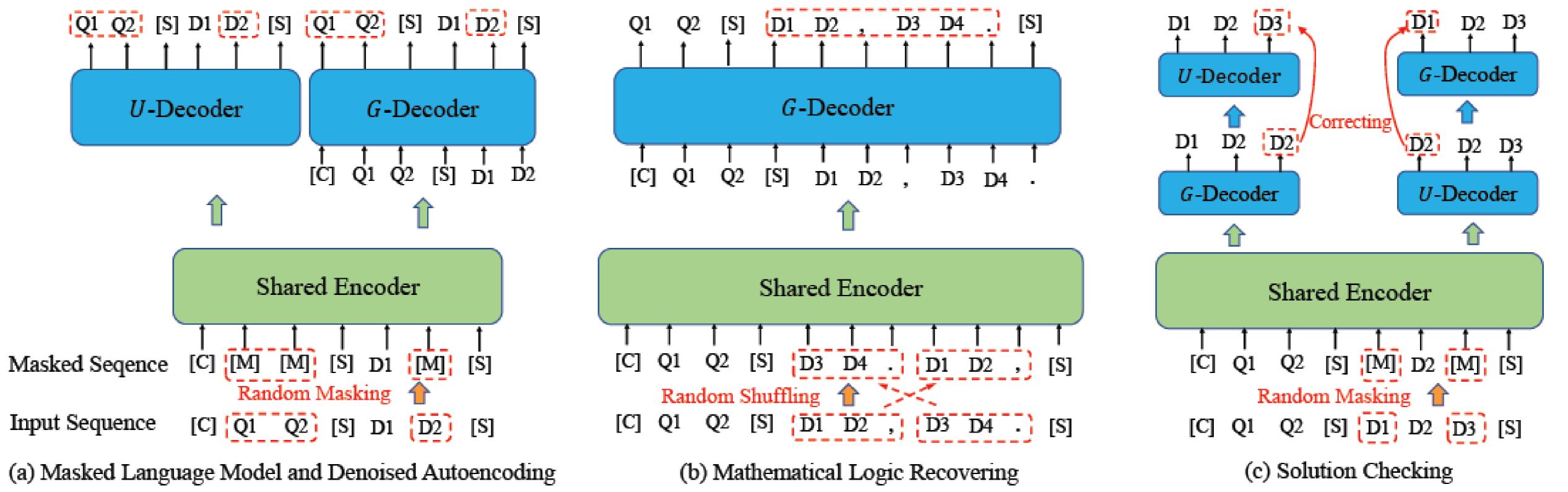
JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem Understanding

Wayne Xin Zhao, Kun Zhou, Zheng Gong, Beichen Zhang, Yuanhang Zhou, Jing Sha, Zhigang Chen, Shijin Wang, Cong Liu, Ji-Rong Wen


Renmin University of China, iFLYTEK Research

Contributions:

- > (1) We pre-train the first Chinese pre-trained language model specially for mathematical problem understanding;
- > (2) We design a curriculum pre-training method to learn mathematical knowledge and logic, from basic to advanced courses.
- > (3) Experimental results on offline evaluation (9 math-related tasks) and online A/B test show the effectiveness of JiuZhang.

Approach:

- > 1.Backbone: Unbalanced Encoder-Decoder Transformer
 - A Shared Deep Transformer Encoder + Two Shallow Generation- and Understanding-Specific Decoders
- > 2.Curriculum Pre-training:
 - Basic Course: Masked Token Prediction
 - Masked Language Model for U-Decoder & Denoised Auto-Encoding for G-Decoder
 - Position-biased Masking: assigns larger masking weights to words at larger positions
 - Advanced Course: Mathematical Logic Recovering
 - Shuffled Sentences Recovering & Shuffled Formulas Recovering
 - Advanced Course: Solution Checking
 - Dual-Decoder Solution Checking: employ the two decoders to detect and correct the generated texts from each other

Experiment

(1) Classification: KPC, QRC, QAM; (2) Retrieval: SQR, QAR; (3) QA Task: MCQ. BFQ; (4) Generation: CAG, BAG

Tasks	KPC		QAM		QRC		SQR		QAR	
Metrics	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro	HR@3	NDCG@3	HR@3	NDCG@3
MathBert	68.9	47.1	98.9	98.9	85.3	69.8	0.652	0.656	0.705	0.545
COMUS	71.0	63.3	99.0	99.0	88.0	73.3	0.661	0.664	0.724	0.561
DAPT-CPT	72.0	58.0	99.1	99.1	88.8	76.7	0.664	0.668	0.723	0.556
Ours	73.3	<u>59.4</u>	99.4	99.4	89.4	79.2	0.667	0.672	0.724	<u>0.556</u>
Tacke	MCO	BFO			RAG					

Tasks	MCQ	BFQ	CAG				BAG			
Metrics	Accuracy	Accuracy	BLEU-4	ROUGE-2	ROUGE-L	Accuracy	BLEU-4	ROUGE-2	ROUGE-L	Accuracy
CPT	37.90	46.31	39.56	50.07	68.20	43.34	37.20	47.99	67.25	34.26
DAPT-CPT	46.26	53.41	40.46	50.84	68.87	46.52	38.39	49.28	68.04	41.82
Ours	47.73	54.60	40.81	51.09	69.45	48.51	39.28	49.62	68.37	44.03

Math Problem	已知 $sin(\alpha + \frac{\pi}{6}) = \frac{2\sqrt{5}}{5}$,则 $cos(\frac{\pi}{3} - \alpha) = ()$ It is known that $sin(\alpha + \frac{\pi}{6}) = \frac{2\sqrt{5}}{5}$, then $cos(\frac{\pi}{3} - \alpha) = ()$
	A. $\frac{\sqrt{5}}{5}$ B. $-\frac{\sqrt{5}}{5}$ C. $\frac{2\sqrt{5}}{5}$ D. $-\frac{2\sqrt{5}}{5}$
Ground-Truth Analysis	$\because \cos(\frac{\pi}{3} - \alpha) = \cos\left[\frac{\pi}{2}(\alpha + \frac{\pi}{6})\right] = \sin(\alpha + \frac{\pi}{6}) = \frac{2\sqrt{5}}{5} . $ 故选C
	$\because \cos(\frac{\pi}{3} - \alpha) = \cos\left[\frac{\pi}{2}(\alpha + \frac{\pi}{6})\right] = \sin(\alpha + \frac{\pi}{6}) = \frac{2\sqrt{5}}{5}.$ Therefore, choose C
Ours	$\cos(\frac{\pi}{3} - \alpha) = \{\cos[\pi + \frac{\pi}{3} - \alpha] = \sin(\alpha + \frac{n}{6}) = \frac{2\sqrt{5}}{5} $ 故选C
	$\cos(\frac{\pi}{3} - \alpha) = \{\cos[\pi + \frac{\pi}{3} - \alpha] = \sin(\alpha + \frac{n}{6}) = \frac{2\sqrt{5}}{5}$. Therefore, choose C
	若复数 $z=\frac{2i}{1-i}$ ({i} 是虚数单位),则z的共轭复数 $\overline{z}=()$
Math Problem	If the complex number $z = \frac{2i}{1-i}$ ({ i} is the imaginary unit), then the complex conjugate $\overline{z} = ()$
	A. $1 + i$ B. $1 - i$ C. $-1 + i$ D. $-1 - i$
Ground-Truth Analysis	复数 $z = \frac{2i}{1-i} = \frac{2i(1+i)}{(1-i)\cdot(1+i)} = -1 + i$, 则z的共轭复数 $\overline{z} = -1 - i$. 故选D
Oround Truth 7thary 515	Complex number $z = \frac{2i}{1-i} = \frac{2i(1+i)}{(1-i)\cdot(1+i)} = -1+i$, then the complex conjugate $\overline{z} = -1-i$. Therefore, choose D
Ours	复数 $z = \frac{2i}{1-i} = \frac{(2i)(1+i)}{(1-i)(1+i)} = 1+i$,则复数的共轭复数 $\overline{z} = -1-i$. 故选D
Ours	Complex number $z = \frac{2i}{1-i} = \frac{(2i)(1+i)}{(1-i)(1+i)} = 1+i$ then the complex conjugate $\overline{z} = -1-i$. Therefore, choose D