Functional data analysis with covariate-dependent mean and covariance structures

Huazhen Lin

Center of Statistical Research Southwestern University of Finance and Economics

This is joint work with Chenlin Zhang, Li Liu, Jin Liu and Yi Li

(ロ) (同) (三) (三) (三) (三) (○) (○)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

= 900

Motivation

- 2 Model and Estimation Procedure
- 3 Theoretical properties
- 4 Simulation Study
- 5 Analysis of the ALSPAC study

ALSPAC data

- The Avon Longitudinal Study of Parents and Children (ALSPAC), known as Children of the 90s, is a birth cohort study based in England.
- Between 1991 and 1992, 14,000 pregnant women were recruited; they, along with their children and their partners, were followed up intensively over two decades.
- The goal of investigating the environmental and genetic factors that affect a persons health and development.

ALSPAC data

- we take the body mass index (BMI) curves of children measured from 0 to 7-24 years as the growth trajectories of children
- the nine covariates include the birth weight, birth length, presence of maternal gestational diabetes, amniocentesis noted during pregnancy, number of children previously delivered by a mother, and method of delivery.
- After conducting quality control and removing the subjects with missing values, we obtain 7,313 individuals for the data analysis.

Model

We Consider the regression of

- functional $Y_i(\cdot) \sim$ vector of covariates **X**_{*i*}.
- Since mean and covariance are the central profiles of the distribution for modelling functional data.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Thus we consider
 - $E\{Y_i(t)|\mathbf{X}_i\}$ and $\operatorname{cov}\{Y_i(t), Y_i(s)|\mathbf{X}_i\}.$

Existing methods for functional regression model

• Random Effect Model (Morris and Carroll, 2006):

$$\mathbf{Y}(t) = \mathbf{X}\mathbf{B}(t) + \mathbf{Z}\mathbf{U}(t) + \mathbf{E}(t),$$

where $\mathbf{B}(t)$, $\mathbf{U}(t)$ are the vectors of fixed effect function and random effect functions.

• Single-Index Model (Jiang and Wang, 2010):

$$\mathbf{Y}(t) = \mu\{t, \mathbf{X}(t)^T \boldsymbol{\beta}\} + \boldsymbol{\varepsilon}\{t, Z(t)\}.$$

• Functional Varying-Coefficient Single-Index Model (Li et al., 2017):

$$Y_{ij}(t) = \mathbf{X}_i^T \boldsymbol{\alpha}_j(t) + g_j(Z_i^T \boldsymbol{\beta}_j) + \varepsilon_{ij}(t).$$

These works do not treat functional outcomes as a whole and treated the covariance of functional outcomes as nuisance.

Construct covariance structure under FPCA

E

Modeling the covariance structure of functional data under the framework of functional principal component analysis (FPCA):

$$Y_{i}(t) = \mu(t) + \sum_{k=1}^{K} \xi_{ik} \phi_{k}(t),$$

$$\{Y_{i}(t)\} = \mu(t), E\{\xi_{ik}\} = 0, \ \operatorname{cov}\{Y_{i}(t), Y_{i}(s)\} = \sum_{k=1}^{K} \operatorname{var}(\xi_{ik}) \phi_{k}(t) \phi_{k}(s).$$

Few eigenfunctions $\phi_k(t), k = 1, \dots, K$ are used to explore the functional responses. However, traditional FPCA did not consider how the functional responses varies with the covariates.

Existing methods under FPCA

Recent works established the dependence of ξ_{ik} on covariates:

• Li et al. (2016); Chen et al. (2019):

$$\xi_{ik} = X_i^T \beta_k + \varepsilon_{ik},$$

• Chiou et al. (2003a,b):

$$E(\xi_{ik}|X_i) = \alpha_k(X_i^T \boldsymbol{\beta}_k),$$

Backenroth et al. (2018):

$$\operatorname{var}(\xi_{ik}|X_i) = \exp(X_i^T \alpha_k).$$

In these works, the eigenfunctions are the same for each individuals. It may be not enough to understand the dependence of $Y_i(t)$ on X_i .

An interesting problem is

• Whether and how the covariance structure, including eigenfunctions and its scores, varies with covariates?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Based on the proposed method, we find

For the BMI data, the individuals X'_iα₂ ≥ −0.3 will be expressed only by eigenfunctions φ₁(t), while the others by both φ₁(t) and φ₂(t).

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Based on the proposed method

 Due to the parsimonious representation, prediction and interpretability can be improved.

Figure 1: PE of FRIS, SSV and FSREM for Avon Longitudinal Study of Parents and Children.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1) Motivation

2 Model and Estimation Procedure

3 Theoretical properties

4 Simulation Study

5 Analysis of the ALSPAC study

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Model

Denote by $\{\mathbf{X}_i, Z_i(\cdot)\}_{(i=1,\cdot,n)} n$ independent and identically distributed (i.i.d.) realizations of random function $\{\mathbf{X}, Z(\cdot)\}$. We propose:

$$Z_{i}(t) = \mu(t, \mathbf{X}_{i}'\boldsymbol{\beta}) + \sum_{k=1}^{K_{n}} \xi_{ik}\phi_{k}(t), \qquad (1)$$
$$E(\xi_{ik}|\mathbf{X}_{i}) = 0, \operatorname{var}(\xi_{ik}|\mathbf{X}_{i}) = \rho_{k}(\mathbf{X}_{i}'\boldsymbol{\alpha}_{k}), \ i = 1, \dots, n,$$

where μ , ϕ_k and ρ_k are unknown functions. Model (1) is termed <u>functional regression model with individual-specific mean and</u> covariance structures (FRIS).

FRIS

- The unknown ρ_k(·) provides an opportunity to identify important eigenfunction for each individual.
- if |ρ_k(**X**'_iα_k)| is large, the corresponding component φ_k(·) is important for individual *i* to explain the proportion of variation attributable to that direction.
- if ρ_k(X'_iα_k) = 0, the component φ_k(·) is not to be selected for individual *i*, indicating one fewer principal component for Z_i(·).

FRIS

We observe the random functions $Z_i(\cdot)$ with measurement errors, that is,

$$Y_i(t_{ij}) = Z_i(t_{ij}) + \epsilon_i(t_{ij}), \ j = 1, \dots, n_i; \ i = 1, \dots, n,$$

where $\epsilon_{ij} = \epsilon_i(t_{ij})$ are independent and identically distributed (iid) measurement errors with $E(\epsilon_{ij}) = 0$ and $var(\epsilon_{ij}) = \sigma^2$.

Identification

(IC) $\|\beta\| = 1$, $\|\alpha_k\| = 1$, and the first non-zero elements of β and α_k are positive for $k = 1, \dots, K_n$. Denote by $\phi(t) = (\phi_1(t), \dots, \phi_{K_n}(t))'; \phi_k(0) > 0, k = 1, \dots, K_n$. We further assume $\int \phi(t)\phi(t)'dt = \mathbf{I}_{K_n}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Estimation

Denotes all of the unknown parameters and functions by π . Maximizing the penalized log quasi-likelihood function,

$$Q_n(\boldsymbol{\pi}) = L_n(\boldsymbol{\pi}) - \sum_{k=1}^{K_n} \sum_{i=1}^n p_\lambda(|\rho_k(\mathbf{X}'_i \boldsymbol{\alpha}_k)|),$$
(2)

(日) (日) (日) (日) (日) (日) (日)

where

$$L_n(\pi) = -\frac{1}{2n} \sum_{i=1}^n \log |\Sigma_i| - \frac{1}{2n} \sum_{i=1}^n \{\mathbf{Y}_i - \mu_i\}' \, \Sigma_i^{-1} \{\mathbf{Y}_i - \mu_i\},$$

and $\boldsymbol{\mu}_i = \mu(\mathbf{t}_i, \mathbf{X}'_i \boldsymbol{\beta}), \ \boldsymbol{\Sigma}_i = \sum_{k=1}^{K_n} \phi_k(\mathbf{t}_i) \rho_k(\mathbf{X}'_i \boldsymbol{\alpha}_k) \phi_k(\mathbf{t}_i)' + \sigma^2 \mathbf{I}_{n_i}.$

Estimation

The unknown functions $\mu(t, u)$, $\phi_k(t)$ and $\rho_k(u)$ can be respectively approximated by

$$\mu(t, u) \approx \gamma' \mathbf{B}_n(t, u), \ \phi_k(t) \approx \eta'_k \mathbf{B}_{n1}(t) \ \text{and} \ \rho_k(u) \approx \left\{ \boldsymbol{\theta}'_k \mathbf{B}_{n2}(u) \right\}^2,$$

where $\mathbf{B}_n(t, u) = \mathbf{B}_{n1}(t) \otimes \mathbf{B}_{n2}(u)$, \otimes is the Kronecker product, $\mathbf{B}_{n1}(\cdot)$ and $\mathbf{B}_{n2}(\cdot)$ are two sets of spline basis functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Estimation

Remarks on the penalty $p_{\lambda}(|\rho_k(\mathbf{X}'_i \boldsymbol{\alpha}_k)|)$

- Local sparsity for a function g(t) (James et al., 2009; Zhou et al., 2013; Lin et al., 2017);
- The argument of ρ_k(·) is X'_iα_k, which is individualized and depends on unknown α_k. We cannot adapt local sparsity methods to our case.

(日) (日) (日) (日) (日) (日) (日)

Let $\zeta_{ik} = \theta'_k \mathbf{B}_{n2}(\mathbf{X}'_i \alpha_k)$. It follows that maximizing (2) is equivalent to minimizing an augmented Lagrangian objective function:

$$\mathcal{L}_{n}(\boldsymbol{\pi},\boldsymbol{\zeta}) = -L_{n}(\boldsymbol{\pi},\boldsymbol{\zeta}) + \sum_{k=1}^{K_{n}} \sum_{i=1}^{n} p_{\lambda}(|\zeta_{ik}|)$$

$$+ \frac{\nu}{2} \sum_{k=1}^{K_{n}} \sum_{i=1}^{n} \left[\left\{ \zeta_{ik} - \boldsymbol{\theta}_{k}^{\prime} \mathbf{B}_{n2}(\mathbf{X}_{i}^{\prime} \boldsymbol{\alpha}_{k}) + \frac{C_{ik}}{\nu} \right\}^{2} - c_{0} \right],$$
(3)

(日) (日) (日) (日) (日) (日) (日)

To lead to closed-form expressions at each ADMM step, we apply the following Taylor expansions

$$\begin{split} \mathbf{B}_{n}(\mathbf{t}_{i},\mathbf{X}_{i}^{\prime}\boldsymbol{\beta}) &\approx \mathbf{B}_{n}(\mathbf{t}_{i},\mathbf{X}_{i}^{\prime}\tilde{\boldsymbol{\beta}}) + \dot{\mathbf{B}}_{n}(\mathbf{t}_{i},\mathbf{X}_{i}^{\prime}\tilde{\boldsymbol{\beta}})\mathbf{X}_{i}^{\prime}(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}}), \\ \mathbf{B}_{n2}(\mathbf{X}_{i}^{\prime}\boldsymbol{\alpha}_{k}) &\approx \mathbf{B}_{n2}(\mathbf{X}_{i}^{\prime}\tilde{\boldsymbol{\alpha}}_{k}) + \dot{\mathbf{B}}_{n2}(\mathbf{X}_{i}^{\prime}\tilde{\boldsymbol{\alpha}}_{k})\mathbf{X}_{i}^{\prime}(\boldsymbol{\alpha}_{k}-\tilde{\boldsymbol{\alpha}}_{k}), \end{split}$$

where $\tilde{\alpha}_k$, and $\tilde{\beta}$ are the estimators of α_k and β , respectively, from the previous step.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\beta = \left\{ \sum_{i=1}^{n} \mathbf{X}_{i} \boldsymbol{\gamma}' \dot{\mathbf{B}}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \tilde{\boldsymbol{\beta}}) \boldsymbol{\Sigma}_{i}^{-1} \dot{\mathbf{B}}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \tilde{\boldsymbol{\beta}})' \boldsymbol{\gamma} \mathbf{X}_{i}' \right\}^{-1} \\ \times \left[\sum_{i=1}^{n} \mathbf{X}_{i} \boldsymbol{\gamma}' \dot{\mathbf{B}}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \tilde{\boldsymbol{\beta}}) \boldsymbol{\Sigma}_{i}^{-1} \left\{ \mathbf{Y}_{i} - \mathbf{B}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \tilde{\boldsymbol{\beta}})' \boldsymbol{\gamma} + \dot{\mathbf{B}}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \tilde{\boldsymbol{\beta}})' \boldsymbol{\gamma} \mathbf{X}_{i}' \tilde{\boldsymbol{\beta}} \right\} \right], \quad (4)$$
$$\boldsymbol{\gamma} = \left\{ \sum_{i=1}^{n} \mathbf{B}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \boldsymbol{\beta}) \boldsymbol{\Sigma}_{i}^{-1} \mathbf{B}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \boldsymbol{\beta})' \right\}^{-1} \sum_{i=1}^{n} \left\{ \mathbf{B}_{n}(\mathbf{t}_{i}, \mathbf{X}_{i}' \boldsymbol{\beta}) \boldsymbol{\Sigma}_{i}^{-1} Y_{i} \right\}, \quad (5)$$

$$\boldsymbol{\theta}_{k} = \left\{ \sum_{i=1}^{n} \mathbf{B}_{n2}(\mathbf{X}_{i}'\boldsymbol{\alpha}_{k}) \mathbf{B}_{n2}(\mathbf{X}_{i}'\boldsymbol{\alpha}_{k})' \right\}^{-1} \sum_{i=1}^{n} \left\{ (\tilde{\zeta}_{ik} + \frac{C_{ik}}{\nu}) \mathbf{B}_{n2}(\mathbf{X}_{i}'\boldsymbol{\alpha}_{k}) \right\},$$
(6)

$$\boldsymbol{\alpha}_{k} = \left[\sum_{i=1}^{n} \mathbf{X}_{i} \left\{ \boldsymbol{\theta}_{k}^{\prime} \dot{\mathbf{B}}_{n2}(\mathbf{X}_{i}^{\prime} \tilde{\boldsymbol{\alpha}}_{k}) \right\}^{2} \mathbf{X}_{i}^{\prime} \right]^{-1} \times \left[\sum_{i=1}^{n} \mathbf{X}_{i} \boldsymbol{\theta}_{k}^{\prime} \dot{\mathbf{B}}_{n2}(\mathbf{X}_{i}^{\prime} \tilde{\boldsymbol{\alpha}}_{k}) \left\{ \tilde{\zeta}_{ik} + \frac{C_{ik}}{\nu} - \boldsymbol{\theta}_{k}^{\prime} \mathbf{B}_{n2}(\mathbf{X}_{i}^{\prime} \tilde{\boldsymbol{\alpha}}_{k}) + \boldsymbol{\theta}_{k}^{\prime} \dot{\mathbf{B}}_{n2}(\mathbf{X}_{i}^{\prime} \tilde{\boldsymbol{\alpha}}_{k}) \mathbf{X}_{i}^{\prime} \tilde{\boldsymbol{\alpha}}_{k} \right\} \right].$$
(7)

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

With (3), denote $H(\zeta; \pi) = -L_n(\pi, \zeta) + \frac{\nu}{2} \|\zeta - \mathbf{W} + \mathbf{C}/\nu\|_F^2$ with $\mathbf{W} = (\theta'_k \mathbf{B}_{n2}(\mathbf{X}'_i \alpha_k))$, and $p_\lambda(|\zeta|) = \sum_{k=1}^{K_n} \sum_{i=1}^n p_\lambda(|\zeta_{ik}|)$. We have

$$H(\boldsymbol{\zeta}; \boldsymbol{\pi}) \leq H(ilde{\boldsymbol{\zeta}}; \boldsymbol{\pi}) + \dot{H}(ilde{\boldsymbol{\zeta}}; \boldsymbol{\pi})'(\boldsymbol{\zeta} - ilde{\boldsymbol{\zeta}}) + rac{1}{2h}(\boldsymbol{\zeta} - ilde{\boldsymbol{\zeta}})'(\boldsymbol{\zeta} - ilde{\boldsymbol{\zeta}}),$$

where *h* is sufficiently small so that the quadratic term dominates the Hessian of $H(\zeta; \pi)$. Then, we update ζ by

$$\boldsymbol{\zeta} = \arg\min_{\boldsymbol{\zeta}} \frac{1}{2h} \|\boldsymbol{\zeta} - (\tilde{\boldsymbol{\zeta}} - h\dot{\boldsymbol{H}}(\tilde{\boldsymbol{\zeta}}; \boldsymbol{\pi}))\|_{F}^{2} + p_{\lambda}(|\boldsymbol{\zeta}|).$$
(8)

Finally, we use the gradient descent method to update σ^2 and η_k .

Algorithm

Algorithm

- 1: Give initial values $\beta^{(0)'}, \gamma^{(0)'}, \eta^{(0)'}_k, \alpha^{(0)'}_k, \theta^{(0)'}_k, \sigma^{2(0)}_k$, and $\zeta^{(0)}_{ik} = \theta^{(0)'}_k \mathbf{B}_{n2}(\mathbf{X}'_i \alpha^{(0)}_k), i = 1, \dots, n; k = 1, \dots, K_n, \mathbf{C}^{(0)} = 0.$
- 2: Set step-length κ , h, ν , tuning parameters λ and K_n .
- 3: while not converged do
- 4: At (t+1)-th iteration, we update β, α, γ, θ_k, ζ by (4)-(8), where β, α, γ, θ_k, ζ and
 C in the right of (4)-(8) are replaced by the estimators from t-th iteration.

5:
$$\boldsymbol{\eta}_k^{(t+1)} = \boldsymbol{\eta}_k^{(t)} - \kappa \partial \mathcal{L}_n(\boldsymbol{\pi}^{(t)}, \boldsymbol{\zeta}^{(t)}) / \partial \boldsymbol{\eta}_k$$
, for $k = 1, \dots, K_n$,

6:
$$\sigma^{2(t+1)} = \sigma^{2(t)} - \kappa \partial \mathcal{L}_n(\boldsymbol{\pi}^{(t)}, \boldsymbol{\zeta}^{(t)}) / \partial \sigma^2,$$

7:
$$\mathbf{C}^{(t+1)} = \mathbf{C}^{(t)} + \nu(\boldsymbol{\zeta}^{(t+1)} - \mathbf{W}^{(t+1)}).$$

8: end while

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

= 900

Motivation

2 Model and Estimation Procedure

3 Theoretical properties

- 4 Simulation Study
- 5 Analysis of the ALSPAC study

Theoretical properties: Conditions

(C1) Covariate X are bounded.

(C2) $(\beta'_0, \alpha'_0, \sigma^2_0)' \in \mathcal{A}$, which is a bounded closed set, and the true functions $(\mu_0, \phi'_0, \rho'_0)' \in \mathcal{H}_{r,2} \times \prod_{k=1}^{K_n} \mathcal{H}_{r,1} \times \prod_{k=1}^{K_n} \mathcal{H}_{r,1}$ with r > 1, where

$$\mathcal{H}_{r,d} = \left\{ f(\cdot) : \left| \frac{\partial^l f}{\partial x_1^{a_1} \dots \partial x_d^{a_d}}(x) - \frac{\partial^l f}{\partial y_1^{a_1} \dots \partial y_d^{a_d}}(y) \right| \le c ||x - y||^s, \text{ for any } x, y \in \mathbb{R}^d \right\},$$

for $l \in \mathbb{N}_+$, $s \in (0, 1]$ with r = l+s, for any $a = (a_1, \ldots, a_d) \in \mathbb{N}^d_+$ with $\sum_{j=1}^d a_j = l$, and for a c > 0.

- (C3) Denote by $\triangle_1 = \max_{l+1 \le j \le k_n+l+1} |t_j t_{j-1}|$ and $\triangle_2 = \min_{l+1 \le j \le k_n+l+1} |t_j t_{j-1}|$, the maximum and the mimum spacing of knots, respectively. We assume that $\triangle_1 = O(n^{-\nu})$ with $\nu \in (0, 0.5)$, and $\triangle_1 / \triangle_2$ is bounded.
- (C4) The penalty function $p_{\lambda}(t)$ is non-decreasing and concave on $[0, \infty)$. There exists a constant *b* such that $p_{\lambda}(t)$ is a constant for all $t \ge b\lambda$. In addition, $\dot{p}_{\lambda}(0+) = O(\lambda)$.

(C5)
$$K_n = n^{\tau}$$
 with $\tau \leq \min(1 - v, 2vr)$.

Denote $\rho_{ik} = \rho_k(\mathbf{X}'_i \boldsymbol{\alpha}_k)$ and $\mathcal{O} = \{(i,k) : \rho_{ik0} \neq 0\}$. Define $\rho_{ik}^{or} = \rho_{ik}$ if $(i,k) \in \mathcal{O}$ and 0 otherwise; The oracle estimator $\hat{\pi}_n^{or}$, the estimator $\hat{\pi}_n$ and the true value π_0 .

Theorem 1 (Consistency and convergence rate of oracle estimators)

Under Conditions (C1)-(C5), we have

$$\|\hat{\boldsymbol{\pi}}_n^{or} - \boldsymbol{\pi}_0\| = O_p(\delta_n),$$

where $\delta_n = n^{-(1-2\nu)/2} + \sqrt{K_n} n^{-(1-\nu)/2} + \sqrt{K_n} n^{-\nu r}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- The first and second terms in δ_n , corresponding respectively to the estimation error for $\mu(t, u)$ and for $2K_n$ univariate functions $(\phi_k, \rho_k), k = 1, \dots, K_n$, are related to the spline order n^{ν} and the structural parameter $K_n = n^{\tau}$.
- The last term in δ_n is the approximation error.
- When K_n does not vary with n, i.e., $\tau = 0$, Theorem 1 implies that $\|\widehat{\pi}_n^{or} \pi_0\| = O_p(n^{-r/(2r+2)})$ with v = 1/(2r+2), which is the optimal rate for approximating a nonparametric function (Stone, 1980).

Theorem 2 (Asymptotic normality of oracle estimators)

Denote by $I(\vartheta_0) = \mathbb{P}\{l^*(\pi_0)\}^{\otimes 2}$ and $\Lambda = \lambda_{\min}(I(\vartheta_0))$, where $l^*(\pi_0)$ is defined as in the Appendix. Under Conditions (C1)-(C5), if $0 < v < 1/4, \tau < \min\{1/2 - v, 2v(r-1), v(2r-1)/2\}$ and $n^{\tau-1/2}/\Lambda = o_p(1)$ for r > 1, and for any vector **u** with $||\mathbf{u}|| = 1$, we have

$$\sqrt{n}\mathbf{u}'I(\boldsymbol{\vartheta}_0)^{1/2}(\hat{\boldsymbol{\vartheta}}_n^{or}-\boldsymbol{\vartheta}_0)\xrightarrow{d}N(0,1),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

as $n \to \infty$.

Theorem 3 (Oracle properties)

Under Conditions (C1)-(C5), if $\lambda_{max} \left\{ \mathbb{P}\partial^2 L_n(\pi_0)/\partial\rho\partial\rho' \right\}$ is finite, $\inf_{(i,k)\in\mathcal{O}} |\rho_{ik0}| \ge b\lambda$ and $\lambda \gg \delta_n$ for some constant b > 0, we have

(1)
$$P(\hat{\pi}_n = \hat{\pi}_n^{or}) \to 1;$$

(2) $\|\hat{\pi}_n - \pi_0\| = O_p(\delta_n)$, where δ_n is defined as in Theorem 2;

(3) Under the conditions in Theorem 2, we have

$$\sqrt{n}\mathbf{u}'I(\boldsymbol{\vartheta}_0)^{1/2}(\hat{\boldsymbol{\vartheta}}_n-\boldsymbol{\vartheta}_0) \xrightarrow{d} N(0,1)$$

for any vector \mathbf{u} with $\|\mathbf{u}\| = 1$.

Theorem 4 (Distribution consistency of bootstrap estimators)

Under Conditions (C1)-(C5) and if $\tau < 1/2 - v$, we have for any k,

$$\sup_{x \in \mathbb{R}^p} |P(\sqrt{n}(\hat{\beta}_n^* - \hat{\beta}_n) \le x) - P(\sqrt{n}(\hat{\beta}_n - \beta_0) \le x)| = o_p(1),$$

 $\sup_{x\in R^p} |P(\sqrt{n}(\hat{\alpha}^*_{nk} - \hat{\alpha}_{nk}) \le x) - P(\sqrt{n}(\hat{\alpha}_{nk} - \alpha_{k0}) \le x)| = o_p(1),$

where the inequalities are taken componentwise.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Motivation

- 2 Model and Estimation Procedure
- 3 Theoretical properties
- 4 Simulation Study
- 5 Analysis of the ALSPAC study

- We assess the finite sample performance of the proposed FRIS, by comparing it with
- the functional smooth random effects model (FSREM) (Chiou et al., 2003b)
- the method with a covariate-dependent mean structure and a covariate-independent covariance structure, that is, the same score variance (SSV) across individuals.

(日) (日) (日) (日) (日) (日) (日)

Example 1. We generate $\mathbf{Y}_i = (Y_i(t_{i1}), \cdots, Y_i(t_{i,n_i}))'$ from a model, satisfying the assumptions of FRIS:

$$\mathrm{E}(\mathbf{Y}_i|\mathbf{X}_i) = \mu(\mathbf{t}_i, \mathbf{X}_i'\boldsymbol{\beta}), \ \mathrm{cov}(\mathbf{Y}_i|\mathbf{X}_i) = \boldsymbol{\Sigma}_i,$$

where

We

$$\begin{split} \mu(t,u) &= 10 \times (u \cdot \cos(t) + (1-u) \cdot \sin(t)), \\ \mathbf{\Sigma}_i &= \sum_{k=1}^3 \phi_k(\mathbf{t}_i) \rho_k(\mathbf{X}'_i \boldsymbol{\alpha}_k) \phi_k(\mathbf{t}_i)' + \sigma^2 \mathbf{I}_{n_i}, \sigma^2 = 1. \\ \phi_1(t) &= \sqrt{2} \cos(\pi t), \phi_2(t) = \sqrt{2} \sin(\pi t), \phi_3(t) = \sqrt{2} \cos(3\pi t), \\ \rho_k(u) &= 10^{2-k} u^2 I(u < 0), k = 1, 2, 3. \end{split}$$

We set $\boldsymbol{\beta} = (0.2, 0.8, 0.6)', \ \boldsymbol{\alpha}_1 = (0.9, 0.1, 0.4)', \ \boldsymbol{\alpha}_2 = (0.2, 0.6, 0.8)', \\ \boldsymbol{\alpha}_3 &= (0.5, 0.8, 0.3)'. \end{split}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We consider two kinds of distributions for \mathbf{Y}_i :

- (1) Normal: $\mathbf{Y}_i \sim N(\mu(\mathbf{t}_i, \mathbf{X}'_i \boldsymbol{\beta}), \boldsymbol{\Sigma}_i);$
- (2) Mixture Normal: $\Sigma_i^{-1/2} \{ \mathbf{Y}_i \mu(\mathbf{t}_i, \mathbf{X}'_i \beta) \} \sim \frac{1}{2} N(-1/2, \mathbf{I}) + \frac{1}{2} N(1/2, \mathbf{I}).$

Table 1: Comparisons of FRIS and SSV under Example 1; presented are bias (sd).

			Nor	mal	Mixture	Normal
			FRIS	SSV	FRIS	SSV
		β_1	0.0010(0.0117)	0.0023(0.0163)	0.0003(0.0147)	0.0036(0.0244)
		β_2	0.0004(0.0069)	0.0008(0.0102)	0.0005(0.0084)	0.0022(0.0152)
		β_3	0.0007(0.0076)	0.0007(0.0118)	0.0009(0.0093)	0.0009(0.0167)
	n = 100	$\mu(\cdot, \cdot)$	0.0152(0.2844)	0.0247(0.4859)	0.0164(0.4131)	0.0369(0.5704)
		$\rho_1(\cdot)$	0.1435(0.4244)	4.3897(2.2415)	0.1673(0.4384)	4.4381(2.5859)
		$\rho_2(\cdot)$	0.0281(0.1374)	0.4939(0.2575)	0.0346(0.1369)	0.5228(0.2598)
		$\rho_3(\cdot)$	0.0054(0.0212)	0.0442(0.0444)	0.0071(0.0248)	0.0483(0.0481)
$n_i = 10$		β_1	0.0010(0.0058)	0.0016(0.0113)	0.0009(0.0066)	0.0011(0.0129)
		β_2	0.0004(0.0031)	0.0005(0.0080)	0.0003(0.0039)	0.0007(0.0086)
		β_3	0.0002(0.0032)	0.0007(0.0085)	0.0002(0.0043)	0.0003(0.0094)
	n = 500	$\mu(\cdot, \cdot)$	0.0056(0.1204)	0.0163(0.2458)	0.0065(0.1337)	0.0395(0.4699)
		$\rho_1(\cdot)$	0.1409(0.4134)	4.3890(2.2071)	0.1518(0.4239)	3.9318(2.3274)
		$\rho_2(\cdot)$	0.0230(0.1245)	0.4714(0.2311)	0.0231(0.1349)	0.5212(0.2451)
		$\rho_3(\cdot)$	0.0051(0.0207)	0.0436(0.0440)	0.0064(0.0215)	0.0521(0.0495)

			Nor	mal	Mixture	Normal
			FRIS	SSV	FRIS	SSV
		β_1	0.0008(0.0109)	0.0016(0.0128)	0.0002(0.0149)	0.0017(0.0248)
		β_2	0.0001(0.0054)	0.0004(0.0083)	0.0005(0.0082)	0.0016(0.0142)
		β_3	0.0002(0.0056)	0.0006(0.0099)	0.0010(0.0084)	0.0006(0.0156)
	n = 100	$\mu(\cdot, \cdot)$	0.0136(0.3247)	0.0215(0.4428)	0.0157(0.3521)	0.0299(0.4783)
		$\rho_1(\cdot)$	0.1429(0.4241)	4.4168(2.2785)	0.1753(0.4607)	4.4328(2.5274)
		$\rho_2(\cdot)$	0.0306(0.1405)	0.4759(0.2023)	0.0257(0.1357)	0.5312(0.2351)
n. — 20		$\rho_3(\cdot)$	0.0056(0.0215)	0.0466(0.0433)	0.0069(0.0229)	0.0520(0.0495)
$n_i = 20$	-	β_1	0.0006(0.0050)	0.0005(0.0061)	0.0009(0.0070)	0.0009(0.0100)
		β_2	0.0002(0.0029)	0.0003(0.0054)	0.0006(0.0039)	0.0007(0.0068)
		β_3	0.0001(0.0030)	0.0002(0.0069)	0.0005(0.0042)	0.0009(0.0077)
	n = 500	$\mu(\cdot, \cdot)$	0.0059(0.0958)	0.0133(0.2534)	0.0062(0.1125)	0.0152(0.2814)
		$\rho_1(\cdot)$	0.1408(0.4126)	4.1304(1.9150)	0.1511(0.4431)	4.3713(2.2832)
		$\rho_2(\cdot)$	0.0264(0.1319)	0.4604(0.1676)	0.0232(0.1355)	0.5265(0.2219)
		$\rho_3(\cdot)$	0.0048(0.0205)	0.0438(0.0428)	0.0058(0.0219)	0.0533(0.0481)

Table 2: Performance of FRIS for estimating α under Example 1; presented are bias (sd).

		Nor	mal		Mixture Normal					
	n _i =	= 10	$n_i = 20$		n _i =	= 10	$n_i =$	$u_i = 20$		
	n = 100	n = 500	n = 100	n = 500	n = 100	n = 500	n = 100	n = 500		
α_{11}	0.0014(0.0346)	0.0013(0.0169)	0.0014(0.0314)	0.0012(0.0165)	0.0025(0.0367)	0.0021(0.0172)	0.0027(0.0428)	0.0018(0.0187)		
α_{12}	0.0053(0.0937)	0.0042(0.0635)	0.0051(0.0798)	0.0039(0.0682)	0.0082(0.1063)	0.0063(0.0815)	0.0094(0.1024)	0.0058(0.0908)		
α_{13}	0.0031(0.0778)	0.0011(0.0353)	0.0032(0.0806)	0.0013(0.0352)	0.0048(0.0867)	0.0021(0.0334)	0.0062(0.1210)	0.0022(0.0356)		
α_{21}	0.0034(0.0936)	0.0030(0.0902)	0.0033(0.1147)	0.0025(0.0868)	0.0089(0.1212)	0.0057(0.0928)	0.0072(0.1283)	0.0070(0.0934)		
α_{22}	0.0035(0.0700)	0.0017(0.0458)	0.0038(0.1011)	0.0021(0.0462)	0.0057(0.0981)	0.0039(0.0545)	0.0056(0.1062)	0.0038(0.0493)		
α_{23}	0.0025(0.0522)	0.0013(0.0378)	0.0019(0.0511)	0.0010(0.0374)	0.0030(0.0600)	0.0016(0.0436)	0.0022(0.0592)	0.0015(0.0440)		
α_{31}	0.0120(0.1059)	0.0046(0.0842)	0.0062(0.0316)	0.0042(0.0280)	0.0152(0.1388)	0.0072(0.0825)	0.0171(0.1466)	0.0073(0.0889)		
α_{32}	0.0077(0.0881)	0.0042(0.0549)	0.0080(0.0921)	0.0053(0.0499)	0.0103(0.1310)	0.0065(0.0608)	0.0084(0.1061)	0.0063(0.0534)		
α_{33}	0.0122(0.0942)	0.0061(0.0833)	0.0087(0.1027)	0.0065(0.0829)	0.0103(0.1237)	0.0075(0.0876)	0.0108(0.1216)	0.0081(0.0834)		

Table 3: The selection results of the eigenfunctions under Example 1; presented are mean (sd).

			Nor	mal	Mixture Normal						
		$n_i = 10$		$n_i =$	= 20	$n_i =$	= 10	$n_i = 20$			
		n = 100	n = 500								
ϕ_1	FPR	0.0398(0.0837)	0.0502(0.1010)	0.0549(0.0929)	0.0523(0.0963)	0.0475(0.0950)	0.0773(0.1628)	0.0626(0.1030)	0.0630(0.1074)		
	FNR	0.0291(0.0291)	0.0398(0.0426)	0.0277(0.0302)	0.0369(0.0408)	0.0282(0.0290)	0.0421(0.0434)	0.0281(0.0297)	0.0413(0.0443)		
4	FPR	0.1067(0.1635)	0.0959(0.1583)	0.1024(0.1664)	0.1021(0.1643)	0.0920(0.1573)	0.1018(0.1576)	0.0958(0.1591)	0.0987(0.1542)		
φ_2	FNR	0.0572(0.0635)	0.0641(0.0724)	0.0520(0.0604)	0.0559(0.0647)	0.0634(0.0657)	0.0578(0.0664)	0.0517(0.0598)	0.0572(0.0677)		
φ3	FPR	0.0663(0.1425)	0.0708(0.1460)	0.0805(0.1538)	0.0746(0.1471)	0.0834(0.1551)	0.0649(0.1389)	0.0829(0.1574)	0.0656(0.1375)		
	FNR	0.0832(0.0881)	0.0885(0.0928)	0.0804(0.0894)	0.0783(0.0907)	0.0797(0.0923)	0.0807(0.0927)	0.0874(0.0991)	0.0806(0.0943)		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Figure 2: NMSE for FRIS, SSV and FSREM under Example 1.

<ロ> (四) (四) (三) (三) (三) (三)

Example 2. To assessed Type 1 error rates and power for β and α from the FRIS, we generate data the same as in Example 1(1) except taking $\beta = (0.6, 0, 0.8)$ and $\alpha_k = (0, 0.8, 0.6), k = 1, 2, 3$.

Table 4: Type 1 error rate and power for β and α by FRIS for Example 2.

		Type 1 e	error rate			Power					
	$n_i =$	= 10	$n_i =$	= 20	•	n _i =	= 10	$n_i = 20$			
	n = 100	n = 500	n = 100	<i>n</i> = 500	-	n = 100	n = 500	n = 100	n = 500		
β_2	0.0477	0.0518	0.0505	0.0506	β_1	1	1	1	1		
α_{11}	0.0451	0.0482	0.0501	0.0489	β_3	1	1	1	1		
α_{21}	0.0516	0.0544	0.0463	0.0486	α_{12}	1	1	1	1		
α_{31}	0.0468	0.0523	0.0548	0.0511	α_{13}	1	1	1	1		
	*	*	*	*	α_{22}	1	1	1	1		
	*	*	*	*	α_{23}	1	1	1	1		
	*	*	*	*	α_{32}	1	1	1	1		
	*	*	*	*	α_{33}	1	1	1	1		

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example 3. We generate data with a common score variance, satisfying the assumption of SSV. Specifically, we generate data the same way as in Example 1(1), except that $\rho_k(u) = \rho_k$ for k = 1, 2, 3 and $\rho_1 = 5, \rho_2 = 1, \rho_3 = 0.5$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Table 5: Comparisons of FRIS and SSV Under Example 3 for the SSV data; presented are bias (sd).

		$n_i =$	= 10			$n_i = 20$							
	n =	100	n = 500			<i>n</i> =	100	<i>n</i> =	500				
	FRIS SSV		FRIS	SSV SSV		FRIS	SSV	FRIS	SSV				
β_1	0.0019(0.0245)	0.0015(0.0191)	0.0012(0.0098)	0.0004(0.0072)		0.0015(0.0248)	0.0007(0.0128)	0.0007(0.0086)	0.0007(0.0069)				
β_2	0.0006(0.0201)	0.0003(0.0149)	0.0003(0.0072)	0.0003(0.0058)		0.0004(0.0156)	0.0008(0.0091)	0.0006(0.0058)	0.0003(0.0039)				
β_3	0.0014(0.0240)	0.0006(0.0178)	0.0004(0.0085)	0.0003(0.0077)		0.0005(0.0172)	0.0006(0.0100)	0.0005(0.0071)	0.0002(0.0049)				
$\mu(\cdot, \cdot)$	0.0359(0.6306)	0.0344(0.6050)	0.0186(0.2738)	0.0187(0.2645)		0.0371(0.5952)	0.0366(0.5834)	0.0267(0.2599)	0.0238(0.2579)				
$\rho_1(\cdot)$	0.0273(0.3972)	0.0257(0.3540)	0.0128(0.2791)	0.0101(0.2766)		0.0226(0.3542)	0.0178(0.3246)	0.0088(0.2690)	0.0022(0.2451)				
$\rho_2(\cdot)$	0.0168(0.1632)	0.0085(0.1525)	0.0049(0.0993)	0.0043(0.0992)		0.0182(0.1622)	0.0088(0.1558)	0.0060(0.0905)	0.0027(0.0878)				
$\rho_3(\cdot)$	0.0058(0.0575)	0.0018(0.0548)	0.0042(0.0144)	0.0018(0.0142)		0.0034(0.0535)	0.0021(0.0502)	0.0032(0.0138)	0.0006(0.0131)				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Figure 3: NMSE of three methods: FRIS, SSV and FSREM in Example 3.

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Ξ.

Example 4. We generate data following Chiou et al. (2003b). That is, given covariates \mathbf{X}_i , $Y_i(t)$ follows a normal distribution, $Y_i(t) = \mu(t) + \sum_{k=1}^{3} A_{ik}\phi_k(t)$ and assume for the observed random curves, conditional on the covariates,

$$E\{Y_{i}(t)|\mathbf{X}_{i}\} = \mu(t) + \sum_{k=1}^{3} E(A_{ik}|\mathbf{X}_{i})\phi_{k}(t),$$

$$\operatorname{cov}\{Y_i(s), Y_i(t) | \mathbf{X}_i\} = \sum_{k=1}^{3} \operatorname{var}(A_{ik} | \mathbf{X}_i) \phi_k(s) \phi_k(t),$$

where $E(A_{ik}|\mathbf{X}_i) = \mu_k(\mathbf{X}'_i\beta_k)$, $var(A_{ik}|\mathbf{X}_i) = \rho_k(\mathbf{X}'_i\alpha_k)$, and $\mu(t) = t^2 + 1$, $\mu_1(u) = 1 - \cos(u \cdot \pi)$, $\mu_2(u) = \{1 - \cos(u \cdot \pi)\}/5$, $\mu_3(u) = \{1 - \cos(u \cdot \pi)\}/10$, $\rho_k(u) = \sqrt{\alpha_k(u)}$, $k = 1, 2, 3, \phi_k(t)$ is the same as in Example 1 and $\beta_k = (0.8, 0, 0.6)'$, $\alpha_k = (0, 1, 0)'$ for each k.

Figure 4: NMSE of three methods: FRIS, SSV and FSREM in Example 4.

(日)

÷.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

= 900

1 Motivation

- 2 Model and Estimation Procedure
- 3 Theoretical properties
- 4 Simulation Study
- 5 Analysis of the ALSPAC study

Avon longitudinal Study of Parents and Children (ALSPAC):

- Functional response: body mass index (BMI) curve of children measured from 0 to 24 years;
- Nine covariates: birth weight, birth length, maternal gestational diabetes, amniocentesis noted during pregnancy, the number of children delivered by a mother before, and the method of delivery;

(日) (日) (日) (日) (日) (日) (日)

• 7313 individuals.

Table 6: Comparisons of the estimates for β , accounting for covariate-mean relationships and obtained by FRIS, SSV and FSREM; presented are point estimates (Est.) and p-values for the ALSPAC study.

		FF	NS	SS	SV	FSRE	$M(\beta_1)$	FSRE	M (β ₂)
		Est.	p-value	Est.	p-value	Est.	p-value	Est.	p-value
spontaneous	β_0	0.0827	0.7170	-0.0638	0.8208	0.0950	0.8181	0.1241	0.4301
birth weight	β_1	0.3752	0.0000	0.3281	0.0283	0.5348	0.0000	0.7300	0.0000
birth length	β_2	-0.1507	0.0000	-0.1389	0.0608	-0.4040	0.0002	-0.4297	0.0001
diabetes	β_3	0.5470	0.0000	0.7021	0.0007	0.1534	0.1250	0.2731	0.0063
amniocentesis	β_4	-0.3512	0.0002	-0.2938	0.0597	0.0187	0.8517	0.0558	0.5768
# of children	β_5	0.3859	0.0145	0.2068	0.3880	-0.0867	0.3859	-0.1153	0.2489
assisted breech	β_6	-0.1928	0.0346	-0.2540	0.0742	0.1135	0.2564	0.1403	0.1606
Caesarean section	β_7	0.4306	0.0000	0.3955	0.0221	0.3550	0.0004	0.1154	0.2485
forceps delivery	β_8	0.0276	0.4520	0.0519	0.1585	0.2785	0.4151	-0.1227	0.7417
vacuum extraction	β_9	0.1864	0.0019	0.1523	0.0844	0.3665	0.0002	-0.0158	0.8745

Table 7: Comparisons of the estimates of α , accounting for covariate-covariance relationships; presented are point estimates (Est.) and *p*-values for ALSPAC data.

	FRIS					FSREM				
	6	\mathbf{x}_1	Ċ	x ₂		c	\boldsymbol{lpha}_1		$oldsymbol{lpha}_2$	
	Est.	p-value	Est.	p-value		Est.	p-value	Est.	p-value	
spontaneous	0.6297	0.0000	-0.1166	0.2823		0.3173	0.4020	-0.0982	0.8092	
birth weight	0.0588	0.3444	0.2781	0.0000		0.1918	0.0220	0.4033	0.0000	
birth length	-0.0014	0.9693	0.2771	0.0000		-0.0807	0.2799	-0.2047	0.0425	
diabetes	0.4916	0.0000	0.3391	0.0012		-0.1311	0.7338	-0.4010	0.2268	
amniocentesis	-0.3442	0.0006	0.4673	0.0001		0.4095	0.2559	-0.6868	0.0492	
# of children	0.3822	0.0000	0.1369	0.1185		-0.5482	0.0400	0.0588	0.7893	
assisted breech	0.2492	0.0001	0.2662	0.0813		-0.0472	0.8417	0.0555	0.8450	
Caesarean section	-0.1053	0.0248	0.3240	0.0001		0.3765	0.2805	-0.3448	0.3587	
forceps delivery	-0.0972	0.1556	0.4059	0.0003		0.4238	0.2242	0.1194	0.7331	
vacuum extraction	0.1051	0.0268	0.3737	0.0011		0.2167	0.5644	-0.1167	0.7834	

Figure 5: Estimates of the eigenfunctions for $\phi_1(t)$ and $\phi_2(t)$ (solid-average of the estimated function; dashed-95% pointwise confident band).

Figure 5(a) for the first eigenfunctions φ₁(·) shows that the periodicity of variation of the BMI which achieving peaks and troughs roughly at infancy, 5 years old, 12 years old and 18 years old.
 Figure 5(b) for the second eigenfunctions φ₂(·) implies that the BMI has large fluctuation at 5 years old and 18 years old.

(ロ) (同) (三) (三) (三) (○) (○)

Figure 6: Estimates of the score variance functions for $\rho_1(u)$ and $\rho_2(u)$ (solid-average of the estimated function; dashed-95% pointwise confident band).

・ロン ・聞 と ・ ヨ と ・ ヨ と

э.

- Figure 6(a) shows that ρ₁(u) is nonzero for all individuals, while Figure 6(b) shows that some individuals may have a zero value for ρ₂(u), suggesting φ₂(t) is not necessary for all individuals.
- Particularly, those satisfying $\mathbf{X}'_{i}\alpha_{2} \ge -0.3$ will be expressed only by eigenfunctions $\phi_{1}(t)$, while the others by both $\phi_{1}(t)$ and $\phi_{2}(t)$.

(日) (日) (日) (日) (日) (日) (日)

Figure 7: (a) GCV results of tuning parameters λ ; (b) NMSEs of FRIS, SSV and FSREM for Avon Longitudinal Study of Parents and Children.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Thanks For Your Attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Reference I

- Backenroth, D., Goldsmith, J., Harran, M. D., Cortes, J. C., Krakauer, J. W., and Kitago, T. (2018). Modeling motor learning using heteroskedastic functional principal components analysis. *Journal of the American Statistical Association*, 113:1003–1015.
- Chen, X., Li, H., Liang, H., and Lin, H. (2019). Functional response regression analysis. *Journal of Multivariate Analysis*, 169:218–233.
- Chiou, J., Müller, H., and Wang, J. (2003a). Functional response models. *Statistica Sinica*, 14:675–693.

Reference II

- Chiou, J. M., Müller, H. G., and Wang, J. L. (2003b). Functional quasi-likelihood regression models with smooth random effects. *Journal of the Royal Statistical Society, Series B*, 65:405–423.
- Jiang, C. R. and Wang, J. L. (2010). Covariate-adjusted functional principal components analysis for longitudinal data. *The Annals of Statistics*, 38:1194–1226.
- Li, G., Shen, H., and Huang, J. (2016). Supervised sparse and functional principal component analysis. *Journal of Computational and Graphical Statistics*, 26:859–878.

Reference III

- Li, J., Huang, C., and Zhu, H. (2017). A functional varying-coefficient single-index model for functional response data a functional varying-coefficient single-index model for functional response data. *Journal of the American Statistical Association*, 112(519):1169–1181.
- Morris, J. and Carroll, R. J. (2006). Wavelet-based functional mixed models. *Journal of the Royal Statistical Society, Series B*, 68:179–19.
- Stone, C. (1980). Optimal rate of convergence for nonparametric estimators. *The Annals of Statistics*, 8:1348–1360.