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Motivation

ALSPAC data

@ The Avon Longitudinal Study of Parents and Children (ALSPAC),
known as Children of the 90s, is a birth cohort study based
in England.

@ Between 1991 and 1992, 14,000 pregnant women were re-
cruited; they, along with their children and their partners,
were followed up intensively over two decades.

@ The goal of investigating the environmental and genetic fac-
tors that affect a persons health and development.



Motivation

ALSPAC data

@ we take the body mass index (BMI) curves of children mea-
sured from 0 to 7-24 years as the growth trajectories of chil-
dren

@ the nine covariates include the birth weight, birth length,
presence of maternal gestational diabetes, amniocentesis
noted during pregnancy, number of children previously de-
livered by a mother, and method of delivery.

@ After conducting quality control and removing the subjects

with missing values, we obtain 7,313 individuals for the data
analysis.



Motivation

Model

We Consider the regression of
@ functional Y;(-) ~ vector of covariates X;.
@ Since mean and covariance are the central profiles of the
distribution for modelling functional data.

@ Thus we consider
-] E{Y,(t)\X,} and COV{Y[(I),Y[(S)|X[}.



Motivation

Existing methods for functional regression model

@ Random Effect Model (Morris and Carroll, 2006):
Y(r) = XB(r) + ZU(r) + E(z),
where B(r), U(r) are the vectors of fixed effect function and
random effect functions.
@ Single-Index Model (Jiang and Wang, 2010):
Y(1) = u{t,X(0)" B} + e{1,Z(1)}.
@ Functional Varying-Coefficient Single-Index Model (Li et al.,
2017):
Yi(1) = X[ o) + &(Z] B) + £;(2).
These works do not treat functional outcomes as a whole and
treated the covariance of functional outcomes as nuisance.



Motivation

Construct covariance structure under FPCA

Modeling the covariance structure of functional data under the
framework of functional principal component analysis (FPCA):

K
Yi(r) = p(r) + ) Eau(0),
k=1

K
E{Yi(0)} = p(r), E{&} =0, cov{¥i(t),Y;(s)} = > _ var(&u) () de(s)-
k=1
Few eigenfunctions ¢(¢),k = 1,--- ,K are used to explore the
functional responses. However, traditional FPCA did not con-
sider how the functional responses varies with the covariates.



Motivation

Existing methods under FPCA

Recent works established the dependence of &, on covariates:

@ Lietal (2016); Chen et al. (2019):

i = X! B + e,
@ Chiou et al. (2003a,b):
E(&alXi) = (X Br),
@ Backenroth et al. (2018):
var(£;|X;) = exp(XTay).

In these works, the eigenfunctions are the same for each indi-

viduals. It may be not enough to understand the dependence of
Yi(r) on X;.



Motivation

An interesting problem is

@ Whether and how the covariance structure, including eigen-
functions and its scores, varies with covariates?



Motivation

Based on the proposed method, we find

@ For the BMI data, the individuals Xa, > —0.3 will be ex-
pressed only by eigenfunctions ¢,(z), while the others by
both ¢, (r) and ¢ (z).

(@) ¢1(1) (b) ¢a(1)



Motivation

Based on the proposed method

@ Due to the parsimonious representation, prediction and in-
terpretability can be improved.

Figure 1: PE of FRIS, SSV and FSREM for Avon Longitudinal Study of
Parents and Children.
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Model and Estimation Procedure

Model

Denote by {X;,Z()} (1., n independent and identically dis-
tributed (i.i.d.) realizations of random function {X,Z(-)}. We pro-
pose:

Ky

Zi(t) = ,U,([, X;B) + Z{ik¢k(t)a (1)
k=1

E(§,~k|Xi) = 0, var(f,-k]Xi) = pk(Xgak), i= 1, coe,n,

where 1, ¢, and p; are unknown functions. Model (1) is termed
functional regression model with individual-specific mean and
covariance structures (FRIS).



Model and Estimation Procedure

FRIS

@ The unknown pi(-) provides an opportunity to identify im-
portant eigenfunction for each individual.

o if (X)) is large, the corresponding component ¢ (+) is
important for individual i to explain the proportion of varia-
tion attributable to that direction.

o if p(Xlax) = 0, the component ¢(-) is not to be selected
for individual i, indicating one fewer principal component for

Zi().



Model and Estimation Procedure

FRIS

We observe the random functions Z;(-) with measurement er-
rors, that is,

Y,‘([ij) :Zi(lij) —i—e,‘(lij), j=1,....n;i=1,...,n,

where €; = ¢(t;) are independent and identically distributed (iid)
measurement errors with E(e;) = 0 and var(e;;) = 0.



Model and Estimation Procedure

Identification

(IC) ||BIl = 1, |lax|l = 1, and the first non-zero elements of 3
and oy are positive for k = 1,--- ,K,. Denote by ¢(r) =
(P1(2), ..., 0k, (1) ox(0) > 0, k = 1,...K,. We further as-

sume [ ¢(1)p(r) dt = I, .



Model and Estimation Procedure

Estimation

Denotes all of the unknown parameters and functions by .
Maximizing the penalized log quasi-likelihood function,

K, n
On(m) = Lu(m) = > > palloe(Xiew))), (2)

k=1 i=1

where

z—leoglﬁl—*Z{Y i} Y- )

and p; = p(t, X\8), Bi = S0, o () pe(Xiew) i () + 2.



Model and Estimation Procedure

Estimation

The unknown functions pu(t,u), ¢x(t) and px(u) can be respec-
tively approximated by

u(t,u) = 'Ba(t,u), du(r) ~ By (1) and pi(u) = {6;Bya(u)}’

where B, (t,u) = B,(t) ® B,x(u), ® is the Kronecker product,
B, (-) and B,,(-) are two sets of spline basis functions.



Model and Estimation Procedure

Estimation

Remarks on the penalty px(|pr(Xicu)|)

@ Local sparsity for a function g(¢) (James et al., 2009; Zhou
et al., 2013; Lin et al., 2017);
@ The argument of p;(-) is Xiay, which is individualized and

depends on unknown «y. We cannot adapt local sparsity
methods to our case.



Model and Estimation Procedure

Optimization via ADMM

Let ¢ = 6,B,.2(Xjcx). It follows that maximizing (2) is equivalent
to minimizing an augmented Lagrangian objective function:

K, n
Ly(m, ) = —La(m,¢)+ Y Y pallCul) (3)

k=1 i=1
v K, n
+§ZZ

Ci )2
{Cik - 02an(X§ak) + Vl} — 00] ,
k=1 i=1




Model and Estimation Procedure

Optimization via ADMM

To lead to closed-form expressions at each ADMM step, we ap-
ply the following Taylor expansions

B, (1, X8) ~ B, (1, X/8) + B,(t;, X;3)X/(8 — B3),
Bn2 (X;ak) ~ Bn2 (X;dk) + Bn2 (X;dk)xi(ak - dk)a

where ay, and 3 are the estimators of a; and 3, respectively,
from the previous step.



Model and Estimation Procedure

Optimization via ADMM

0

X

X;0;B,»(X &)

Z Bn2 (le‘ak)BnZ (Xz/ak)l }

-1 4,

-1 5,

i=1

x {08, e} x,’.] B

= & N
{Qk + Tk —6;B,x(X/c

—1
> Xiy/Ba(t, X[ 3)% ' Ba(t, x:ﬁ)’vxz}

Bna;,x;ﬁ)z,.IB,1<ti,x;ﬁ>’} > {But.xi@= v},
i=1

> { G+ Batian |,

)+ 6;Bra(X{Gu) X Gy

!

Xv/Bu(t, XA { Y — Bu(t, XB) v + B, X,‘,@)"YX,‘B}] ;)
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(6)
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Model and Estimation Procedure

Optimization via ADMM

With (3), denote H(¢; ) = —Lu(m,¢) + 4[|¢ — W+ C/v|} with W =
(6;Bua(Xjew)), and pa(€]) = 3¢y S, pal|Cul) - We have

H(Gm) < H(Em) + A (€= &) + (¢~ &'(¢ - O,

where #h is sufficiently small so that the quadratic term dominates the
Hessian of H(¢; ). Then, we update ¢ by

¢ = argmin 5 {1¢ — (&~ HH(E )} + pa(c)) ®
¢

Finally, we use the gradient descent method to update o2 and #;.



Model and Estimation Procedure

Algorithm

Algorithm

1: Give initial values B, ~(© @ a0 90 5200 and ¢V
01§0>/B112(X;a1({0))7i =1,...,mk=1,..., Ky, c® =o.
2: Set step-length «, h, v, tuning parameters A and K,,.

3: while not converged do

R

At (1+ 1)-th iteration, we update 3, ., v, 6y, ¢ by (4)-(8), where 3, &, v, 6, ¢ and
C in the right of (4)-(8) are replaced by the estimators from r—th iteration.

it =l — kAL, (x 0, ¢O)fomy, for k=1,...,K,,

o2+ = 5200 — koL, (w, ¢) /52,

ct+h —c 4 p(¢U+HD) — W+,

@ N o 9

. end while
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Theoretical properties

Theoretical properties: Conditions

(C1) Covariate X are bounded.

(C2) (B}, ), 0(2))' € A, whichis a bounded closed set, and the true functions (uo, ¢, p})’ €
Hyp x [T, He x [I8, H,1 with 7 > 1, where

olf
ox{t ... ox}!

a'f
oyt ... oy

Hra = {f(') | () —

(y)l S CHX _sti for anyx,y € Rd} )

forl € Ny, s € (0, 1] with r = I+s,forany a = (ai, ... ,as) € N4 with 30 a; = 1,
and forac > 0.

(C3) Denote by A = |t —ti—1] and Ay =

max min |t — ti—1], the
I+1<j<kp+I+1 I+1<j<kp+i+1
maximum and the mimum spacing of knots, respectively. We assume that A =
O(n~") with v € (0,0.5), and A /A, is bounded.

(C4) The penalty function p (¢) is non-decreasing and concave on [0, co). There exists
a constant b such that p,(7) is a constant for all + > bA. In addition, p)(0+) =
o).

(C5) K, =n" with 7 < min(1 — v, 2vr).



Theoretical properties

Theoretical properties

Denote pi = pr(Xjew) and O = {(i,k) : pio # 0}. Define p§ =
pir if (i,k) € O and 0 otherwise; The oracle estimator 7", the
estimator 7, and the true value .

Theorem 1 (Consistency and convergence rate of oracle estima-

tors)

Under Conditions (C1)-(C5), we have

175" = 7oll = Op(6n),

where 6, = n=1=2)/2 4+ \/Kn= (=072 4 (/K="




Theoretical properties

Theoretical properties

@ The first and second terms in 6, corresponding respectively
to the estimation error for (¢, u) and for 2K,, univariate func-
tions (ék, px),k = 1,--- ,K,, are related to the spline order
n’ and the structural parameter K,=n".

@ The last termin ¢, is the approximation error.

@ When K, does not vary with n, i.e., 7 = 0, Theorem 1 im-
plies that || 7" — mo|| = O, (n~"/ 2y with v = 1/(2r +2),
which is the optimal rate for approximating a nonparametric
function (Stone, 1980).



Theoretical properties

Theoretical properties

Theorem 2 (Asymptotic normality of oracle estimators)

Denote by 1(9¢) = P{I*(m)}®? and A = Anin(I(90)), where
I*(mo) is defined as in the Appendix. Under Conditions (C1)-
(C5),if0 <v<1/4,7 <min{l/2 —v,2v(r — 1),v(2r — 1)/2} and
n""12/A\ = 0,(1) for r > 1, and for any vector u with ||u|| = 1,
we have

VAU 1(99)2(99 — 99) & N(0, 1),

asn — o0.
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Theoretical properties

Theorem 3 (Oracle properties)

Under Conditions (C1)-(C5), if Amm{Paan(wo) /apapf} is finite,

( }(I)lf o |piro| = DA and X > ¢, for some constantb > 0, we have
i,k)e

(1) P(7n =77") = 1
(2) |70 — mol| = O,(6,), where 6, is defined as in Theorem 2;

(3) Under the conditions in Theorem 2, we have

VU I(99)' 729, — 99) & N(0,1)

for any vector u with |Ju|| = 1.
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Theoretical properties

Theorem 4 (Distribution consistency of bootstrap estimators)

Under Conditions (C1)-(C5) and if T < 1/2 — v, we have for any

feulg |P(Vn(Ggy — é) < x) — P(v/n(bui — cug) < x)| = 0,(1),

where the inequalities are taken componentwise.
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Simulation Study

Simulation

@ We assess the finite sample performance of the proposed
FRIS, by comparing it with

@ the functional smooth random effects model (FSREM) (Chiou
et al., 2003b)

@ the method with a covariate-dependent mean structure and
a covariate-independent covariance structure, that is, the
same score variance (SSV) across individuals.



Simulation Study

Simulation

Example 1. We generate Y; = (Y;(t3),- -+, Yi(t;n,))’ from a model,
satisfying the assumptions of FRIS:

E(Y,|Xl) = u(t,,X,/ ), COV(YI'|X,') = Ei,

where
w(t,u) =10 x (u-cos(t) + (1 — u) - sin(t)),
3

% = Z o () pr (X)) () + 0L, 0% = 1.

pe(u) = 10072 1(u < 0),k = 1,2,3.

We set 8 = (0.2,0.8,0.6), a; = (0.9,0.1,0.4), e, = (0.2,0.6,0.8)/,
a; = (0.5,0.8,0.3)".



Simulation Study

Simulation

We consider two kinds of distributions for Y;:
(1) Normal: Y; ~ N(u(t;, X!3), 2));

(2) Mixture Normal: 3, 2{Y; — u(t,X;8)} ~ IN(=1/2,1) +
IN(1/2,1).



Simulation Study

Example 1

Table 1: Comparisons of FRIS and SSV under Example 1; presented
are bias (sd).

Normal Mixture Normal

FRIS Ssv FRIS SSsv
By 0.0010(0.0117) 0.0023(0.0163) 0.0003(0.0147) 0.0036(0.0244)
B> 0.0004(0.0069)  0.0008(0.0102) 0.0005(0.0084)  0.0022(0.0152)
B3 0.0007(0.0076) 0.0007(0.0118) 0.0009(0.0093) 0.0009(0.0167)
n=100 pu(-,-)  0.0152(0.2844)  0.0247(0.4859) 0.0164(0.4131)  0.0369(0.5704)
p1() 0.1435(0.4244) 4.3897(2.2415) 0.1673(0.4384)  4.4381(2.5859)
(4 0.0281(0.1374)  0.4939(0.2575) 0.0346(0.1369)  0.5228(0.2598)
w— 10 p3(+) 0.0054(0.0212) 0.0442(0.0444) 0.0071(0.0248) 0.0483(0.0481)
! B 0.0010(0.0058) 0.0016(0.0113) 0.0009(0.0066) 0.0011(0.0129)
B2 0.0004(0.0031) 0.0005(0.0080) 0.0003(0.0039) 0.0007(0.0086)
B3 0.0002(0.0032) 0.0007(0.0085) 0.0002(0.0043) 0.0003(0.0094)
n=500  p(-,-) 0.0056(0.1204) 0.0163(0.2458) 0.0065(0.1337) 0.0395(0.4699)
p1() 0.1409(0.4134)  4.3890(2.2071) 0.1518(0.4239)  3.9318(2.3274)
() 0.0230(0.1245)  0.4714(0.2311) 0.0231(0.1349)  0.5212(0.2451)
p3() 0.0051(0.0207)  0.0436(0.0440) 0.0064(0.0215)  0.0521(0.0495)
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Simulation Study

Normal

Mixture Normal

FRIS

Ssv

FRIS

Ssv

B

B2

B3
n = 100 w( )
p1(+)
p2(")

= 20 p3()

0.0008(0.0109
0.0001(0.0054
0.0002(0.0056
0.0136(0.3247
0.1429(0.4241
0.0306(0.1405

0.0016(0.0128
0.0004(0.0083
0.0006(0.0099
0.0215(0.4428
4.4168(2.2785
0.4759(0.2023

0.0002(0.0149
0.0005(0.0082
0.0010(0.0084
0.0157(0.3521
0.1753(0.4607
0.0257(0.1357

0.0017(0.0248
0.0016(0.0142
0.0006(0.0156
0.0299(0.4783
4.4328(2.5274,
0.5312(0.2351

Bi

B3
n=500 p(,-)
p1(+)
p2(*)
Z10)

0.0006(0.0050
0.0002(0.0029
0.0001(0.0030
0.0059(0.0958
0.1408(0.4126
0.0264(0.1319

)
)
)
)
)
)
0.0056(0.0215)
)
)
)
)
)
)
0.0048(0.0205)

0.0005(0.0061
0.0003(0.0054
0.0002(0.0069
0.0133(0.2534
4.1304(1.9150
0.4604(0.1676

)
)
)
)
)
)
0.0466(0.0433)
)
)
)
)
)
)
0.0438(0.0428)

0.0006(0.0039
0.0005(0.0042
0.0062(0.1125
0.1511(0.4431
0.0232(0.1355

)
)
)
)
)
)
0.0069(0.0229)
)
)
)
)
)
)
0.0058(0.0219)

(
(
(
(
(
(
0.0009(0.0070
(
(
(
(
(
(

0.0009(0.0100
0.0007(0.0068
0.0009(0.0077
0.0152(0.2814
4.3713(2.2832
0.5265(0.2219

( )
( )
( )
( )
( )
( )
0.0520(0.0495)
( )
( )
( )
( )
( )
( )
0.0533(0.0481)
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Example 1

Table 2: Performance of FRIS for estimating « under Example 1; pre-
sented are bias (sd).

Normal Mixture Normal
=10 =20 =10 ni =20
n =100 n =500 n=100 n =500 n =100 n =500 n =100 n =500
o 0.0014(0.0346) 0.0013(0.0169) 0.0014(0.0314)  0.0012(0.0165) 0.0025(0.0367)  0.0021(0.0172)  0.0027(0.0428)  0.0018(0.0187)
@i 0.0053(0.0937) 0.0042(0.0635) 0.0051(0.0798)  0.0039(0.0682) 0.0082(0.1063)  0.0063(0.0815) ~ 0.0094(0.1024) ~ 0.0058(0.0908)
a3 0.0031(0.0778)  0.0011(0.0353)  0.0032(0.0806)  0.0013(0.0352) 0.0048(0.0867)  0.0021(0.0334)  0.0062(0.1210)  0.0022(0.0356)
@y 0.0034(0.0936) 0.0030(0.0902) 0.0033(0.1147)  0.0025(0.0868) 0.0089(0.1212)  0.0057(0.0928) ~ 0.0072(0.1283) ~ 0.0070(0.0934)
an  0.0035(0.0700) 0.0017(0.0458) 0.0038(0.1011)  0.0021(0.0462) 0.0057(0.0981)  0.0039(0.0545)  0.0056(0.1062) ~ 0.0038(0.0493)
ax  0.0025(0.0522) 0.0013(0.0378)  0.0019(0.0511)  0.0010(0.0374) 0.0030(0.0600)  0.0016(0.0436)  0.0022(0.0592) ~ 0.0015(0.0440)
@y 0.0120(0.1059) 0.0046(0.0842) 0.0062(0.0316)  0.0042(0.0280) 0.0152(0.1388)  0.0072(0.0825) 0.0171(0.1466) ~ 0.0073(0.0889)
ap  0.0077(0.0881)  0.0042(0.0549) 0.0080(0.0921)  0.0053(0.0499) 0.0103(0.1310) ~ 0.0065(0.0608)  0.0084(0.1061)  0.0063(0.0534)
ai  0.0122(0.0942) 0.0061(0.0833) 0.0087(0.1027)  0.0065(0.0829) 0.0103(0.1237)  0.0075(0.0876) ~ 0.0108(0.1216) ~ 0.0081(0.0834)




Simulation Study

Example 1

Table 3: The selection results of the eigenfunctions under Example 1;
presented are mean (sd).

Normal Mixture Normal
ni =10 n =20 ni =10 ni =20
n =100 n =500 n =100 n =500 n =100 n =500 n =100 n =500
,, FPR 0098(0.0837) 0.050200.1010) 0.0549(0.0929) (0.0523(0.0963) 0.0475(0.0950)  0.0773(0.1628)  0.0626(0.1030)  0.0630(0.1074)
FNR  0.0201(0.0291) 0.0398(0.0426) 0.0277(0.0302)  0.0369(0.0408) 0.0282(0.0200)  0.0421(0.0434)  0.0281(0.0297)  0.0413(0.0443)
_FPR 0.1067(0.1635) 0.0959(0.1583) 0.1024(0.1664) 0.1021(0.1643) 0.0920(0.1573)  0.1018(0.1576) 0.0958(0.1591)  0.0987(0.1542)
” ENR  0.0572(0.0635) 0.0641(0.0724) 0.0520(0.0604) 0.0559(0.0647) 0.0634(0.0657)  0.0578(0.0664)  0.0517(0.0598)  0.0572(0.0677)
FPR  0.0663(0.1425) 0.0708(0.1460) 0.0805(0.1538)  0.0746(0.1471) 0.0834(0.1551)  0.0649(0.1389)  0.0829(0.1574)  0.0656(0.1375)

@:
*ORNR 0.0832(0.0881)  0.0885(0.0928)  0.0804(0.0894)  0.0783(0.0907) 0.0797(0.0923)  0.0807(0.0927)  0.0874(0.0991)  0.0806(0.0943)
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(b) Example 1(2): Mixed Normal FRIS data

Figure 2: NMSE for FRIS, SSV and FSREM under Example 1.



Simulation Study

Simulation

Example 2. To assessed Type 1 error rates and power for 8 and
«a from the FRIS, we generate data the same as in Example 1(1)
except taking 8 = (0.6,0,0.8) and o = (0,0.8,0.6),k = 1,2, 3.



Simulation Study

Example 2

Table 4: Type 1 error rate and power for 3 and « by FRIS for Example

2.
Type 1 error rate Power
n; = 10 ni =20 n; = 10 n; =20
n=100 n=500 n=100 n =500 n=100 n=500 n=100 n =500
52 0.0477 0.0518  0.0505 0.0506 B 1 1 1 1
ap; 0.0451 0.0482 0.0501 0.0489 B3 1 1 1 1
ay  0.0516 0.0544  0.0463 0.0486 o 1 1 1 1
a3 0.0468 0.0523 0.0548 0.0511 a3 1 1 1 1
* * * * an 1 1 1 1
* * * * a3 1 1 1 1
* * * * a3 1 1 1 1
* * * * a3 1 1 1 1




Simulation Study

Simulation

Example 3. We generate data with a common score variance,
satisfying the assumption of SSV. Specifically, we generate data
the same way as in Example 1(1), except that pi(u) = pi for
k=1,2,3and py =5,p =1,p3 =0.5.



Simulation Study

Example 3

Table 5: Comparisons of FRIS and SSV Under Example 3 for the SSV
data; presented are bias (sd).

n = 10 n =20
n =100 "= 500 n =100 = 500
FRIS Ssv FRIS Ssv FRIS SsV. FRIS Ssv
B 0.0019(0.0245)  0.0015(0.0191)  0.0012(0.0098)  0.0004(0.0072) 0.0015(0.0248)  0.0007(0.0128)  0.0007(0.0086)  0.0007(0.0069)
B2 0.0006(0.0201) ~ 0.0003(0.0149)  0.0003 0.0006(0.0058)  0.0003(0.0039)

)

0.0072) 0.0003(0.0058) 0.0004(0.0156) 0.0008(0.0091
)
)

( )

( ( )
0.0014(0.0240)  0.0006(0.0178)  0.0004(0.0085)  0.0003(0.0077) 0.0005(0.0172) ~ 0.0006(0.0100)  0.0005(0.0074)  0.0002(0.0049)
0.0359(0.6306)  0.0344(0.6050)  0.0186(0.2738)  0.0187(0.2645) 0.0371(0.5952)  0.0366(0.5834)  0.0267(0.2599)  0.0238(0.2579)
00273(0.3972)  0.0257(0.3540)  0.0128(0.2791)  0.0101(0.2766) 0.0226(0.3542)  0.0178(0.3246)  0.0088(0.2690)  0.0022(0.2451)
0.0168(0.1632)  0.0085(0.1525)  0.0049(0.0993)  0.0043(0.0992) 0.0182(0.1622)  0.0088(0.1558)  0.0060(0.0905)  0.0027(0.0878)
0.0058(0.0575)  0.0018(0.0548)  0.0042(0.0144)  0.0018(0.0142) 0.0034(0.0535)  0.0021(0.0502)  0.0032(0.0138)  0.0006(0.0131)
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Figure 3: NMSE of three methods: FRIS, SSV and FSREM in Example 3.
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Example 4. We generate data following Chiou et al. (2003b). That is, given covariates
Xi, Y;i(r) follows a normal distribution, Y;(¢) = u(z) + 22:1 Aix¢r (1) and assume for the
observed random curves, conditional on the covariates,

3

E{Y(nIXi} = p() + Y E(Ai|Xi) (1),

k=1

3
cov{¥;(s), Yi(1)[Xi} = > var(Aw|X:)de(s)x (1),

k=1
where E(A,'k|xl‘) = ,uk(Xf,Bk), var(Aik\X;) = pk(X,{ak), and y,(t) =7 + 1, (u) =
1—cos(u-m), pz(u) = {1—cos(u-m)}/5, us(u) = {1—cos(u-m)}/10, pp(u) = /o (u),k =
1,2,3, ¢x(t) is the same as in Example 1 and 3, = (0.8,0,0.6)’, ox = (0, 1,0)’ for each
k.
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Figure 4: NMSE of three methods: FRIS, SSV and FSREM in Example 4.
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Avon longitudinal Study of Parents and Children (ALSPAC):

@ Functional response: body mass index (BMI) curve of chil-
dren measured from 0 to 24 years;

@ Nine covariates: birth weight, birth length, maternal gesta-
tional diabetes, amniocentesis noted during pregnancy, the
number of children delivered by a mother before, and the
method of delivery;

@ 7313 individuals.
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Table 6: Comparisons of the estimates for 3, accounting for covariate-mean relation-
ships and obtained by FRIS, SSV and FSREM; presented are point estimates (Est.) and
p—values for the ALSPAC study.

FRIS Ssv FSREM (8,) FSREM (3,)
Est. p-value Est. p-value Est. p-value Est. p-value
spontaneous Bo 0.0827 0.7170 -0.0638  0.8208 0.0950 0.8181 0.1241 0.4301
birth weight Bi 0.3752  0.0000 0.3281 0.0283 0.5348  0.0000 0.7300  0.0000
birth length B, -0.1507  0.0000 -0.1389  0.0608 -0.4040  0.0002 -0.4297  0.0001
diabetes B3 0.5470  0.0000 0.7021 0.0007 0.1534  0.1250 0.2731 0.0063
amniocentesis Bs -0.3512  0.0002 -0.2938  0.0597 0.0187  0.8517 0.0558  0.5768
# of children Bs 0.3859  0.0145 0.2068  0.3880 -0.0867  0.3859 -0.1153  0.2489
assisted breech Bs -0.1928  0.0346 -0.2540  0.0742 0.1135  0.2564 0.1403  0.1606
Caesarean section 3;  0.4306  0.0000 0.3955  0.0221 0.3550  0.0004 0.1154  0.2485
forceps delivery Bg  0.0276  0.4520 0.0519  0.1585 0.2785  0.4151 -0.1227  0.7417

vacuum extraction 8y 0.1864  0.0019 0.1523  0.0844 0.3665  0.0002 -0.0158  0.8745
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Table 7: Comparisons of the estimates of «, accounting for covariate-covariance re-
lationships; presented are point estimates (Est.) and p—values for ALSPAC data.

FRIS FSREM
(o7 (%) o o

Est. p—value Est. p—value Est. p—value Est. p—value

spontaneous 0.6297  0.0000 -0.1166  0.2823 0.3173  0.4020 -0.0982  0.8092
birth weight 0.0588  0.3444  0.2781 0.0000 0.1918  0.0220  0.4033  0.0000
birth length -0.0014 09693  0.2771 0.0000 -0.0807  0.2799  -0.2047  0.0425
diabetes 0.4916  0.0000  0.3391 0.0012 -0.1311  0.7338  -0.4010  0.2268
amniocentesis -0.3442  0.0006  0.4673  0.0001 0.4095  0.2559 -0.6868  0.0492
# of children 0.3822  0.0000 0.1369  0.1185 -0.5482  0.0400  0.0588  0.7893
assisted breech 0.2492  0.0001 0.2662  0.0813 -0.0472  0.8417  0.0555  0.8450
Caesarean section  -0.1053  0.0248  0.3240  0.0001 0.3765  0.2805 -0.3448  0.3587
forceps delivery -0.0972  0.1556  0.4059  0.0003 0.4238  0.2242  0.1194  0.7331

vacuum extraction ~ 0.1051 0.0268 0.3737 0.0011 0.2167 0.5644  -0.1167  0.7834
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(@) ¢1(r) (b) ¢2(2)

Figure 5: Estimates of the eigenfunctions for ¢,(r) and ¢,(¢) (solid-
average of the estimated function; dashed-95% pointwise confident
band).



Analysis of the ALSPAC study

Analysis of the ALSPAC study

@ Figure 5(a) for the first eigenfunctions ¢, (-) shows that the peri-
odicity of variation of the BMI which achieving peaks and troughs
roughly at infancy, 5 years old, 12 years old and 18 years old.
Figure 5(b) for the second eigenfunctions ¢,(-) implies that the
BMI has large fluctuation at 5 years old and 18 years old.
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(@) pi(u) (0) p2(u)

Figure 6: Estimates of the score variance functions for p; («) and p(u)
(solid-average of the estimated function; dashed-95% pointwise confi-
dent band).
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@ Figure 6(a) shows that p;(«) is nonzero for all individuals, while
Figure 6(b) shows that some individuals may have a zero value
for p,(u), suggesting ¢,(¢) is not necessary for all individuals.

@ Particularly, those satisfying X'a; > —0.3 will be expressed only
by eigenfunctions ¢ (z), while the others by both ¢;(z) and ¢, (z).
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Figure 7: (a) GCV results of tuning parameters \; (b) NMSEs of FRIS,
SSV and FSREM for Avon Longitudinal Study of Parents and Children.



Analysis of the ALSPAC study

Thanks For Your Attention!



Reference |

Backenroth, D., Goldsmith, J., Harran, M. D., Cortes, J. C.,
Krakauer, J. W., and Kitago, T. (2018). Modeling motor
learning using heteroskedastic functional principal
components analysis. Journal of the American Statistical
Association, 113:1003-1015.

Chen, X., Li, H., Liang, H., and Lin, H. (2019). Functional
response regression analysis. Journal of Multivariate
Analysis, 169:218-233.

Chiou, J., Miller, H., and Wang, J. (2003a). Functional
response models. Statistica Sinica, 14:675—693.



Reference Il

Chiou, J. M., Mdller, H. G., and Wang, J. L. (2003b). Functional
quasi-likelihood regression models with smooth random
effects. Journal of the Royal Statistical Society, Series B,
65:405—-423.

Jiang, C. R. and Wang, J. L. (2010). Covariate-adjusted
functional principal components analysis for longitudinal
data. The Annals of Statistics, 38:1194—1226.

Li, G., Shen, H., and Huang, J. (2016). Supervised sparse and
functional principal component analysis. Journal of
Computational and Graphical Statistics, 26:859-878.



Reference llI

Li, J., Huang, C., and Zhu, H. (2017). A functional
varying-coefficient single-index model for functional response
data a functional varying-coefficient single-index model for
functional response data. Journal of the American Statistical
Association, 112(519):1169-1181.

Morris, J. and Carroll, R. J. (2006). Wavelet-based functional
mixed models. Journal of the Royal Statistical Society, Series
B, 68:179-19.

Stone, C. (1980). Optimal rate of convergence for
nonparametric estimators. The Annals of Statistics,
8:1348-1360.



	Motivation
	Model and Estimation Procedure
	Theoretical properties
	Simulation Study
	Analysis of the ALSPAC study

