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GPT: Large-scale Corpus Pre-training

Pre-training

BiT: General Visual Representation Learning

CLIP: Contrastive Language-Image Pre-TrainingMAE: Masked AutoEncoder as Self-supervised Learner
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Heavier pre-training,
better performance!
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Adaptation
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Pre-training and Adaptation

Pre-training → Adaptation

A Paradigm for Deep Learning Application
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Pre-training and Adaptation
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Transferability in the Lifecycle
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Pre-training
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Supervised Pre-training
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• Big Transfer (BiT) (Kolesnikov et al., 2020) emphasizes that training on larger 
datasets is vital for better transferability.
• Domain Adaptive Transfer (DAT) (Ngiam et al., 2018) uses importance weighting 

to carefully choose the pre-training data that are most relevant to the target task. 



Meta-Learning
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(b) Architecture

Figure 2.4: Learning setup and architecture for meta-learning. (a) Meta-learning
consists of two phases, meta-training and meta-testing. Meta-training gains meta
knowledge „ from training tasks to help the model ◊ adapt quickly to a new task
in meta-testing, where each task consists of a training set and a test set. (b) In the
inner level optimization, the model ◊ is updated with the training set Dtr

i using meta
knowledge „. In the outer level optimization, the updated model is evaluated on the
test set Dts

i to find better meta knowledge „.

should be matched. As shown in Figure 2.4(a), to simulate the fast
adaptation condition during meta-testing, the meta-training data is
constructed into a collection of n learning tasks, and each task i œ [n]
contains a training set D

tr
i for adaptation to this task and a test set

D
ts
i for evaluation1. As shown in Figure 2.4(b), the learning objective

of meta-training is a bi-level optimization problem,

„ú = arg max
„

nÿ

i=1
log P (◊i(„)|Dts

i ),

where ◊i(„) = arg max
◊

log P (◊|D
tr
i , „).

(2.1)

Here the inner level optimization updates the model ◊ with the train-
ing set D

tr
i using meta knowledge „, and the outer level optimization

evaluates the updated model with the test set D
ts
i to find better meta

knowledge of stronger transferability. The key to enhancing the trans-
ferability of meta-learning methods is to design a proper form of meta
knowledge.

1Dts is a surrogate test set used during meta-training to simulate di�erent tasks
and improve the model. It is di�erent from the true test set in the general setting in
machine learning.

Task 𝑖 ∈ 1,… , 𝑛

16 Pre-Training

Memory-Based Meta-Learning considers memory mechanisms

as the meta knowledge. A controller writes knowledge extracted from
training data D

tr
i into the memory, and reads from the memory to adapt

the base learner ◊ to make predictions on test data D
ts
i . The parameter

of the controller is updated to find transferable knowledge. Memory-
Augmented Neural Network (MANN) (Santoro et al., 2016) stores bound
sample representation-class label information in the external memory,
which can then be retrieved as features for making predictions when a
sample from the same class is presented. Meta Network (Munkhdalai
and Yu, 2017) designs another memory mechanism where a base learner
provides information about the status of the current task while the meta
learner interacts with the external memory to generate parameters for
the base learner to quickly learn the new task. Memory-based meta-
learning methods improve transferability in various downstream tasks,
such as few-shot classification and reinforcement learning. However, they
require a careful design of the black-box architecture to incorporate the
memory mechanism, and it is unclearer what is stored and retrieved in
the memory and why it helps adapt the model.

Optimization-Based Meta-Learning considers a good initial-

ization of the model as the meta knowledge. The motivation of Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017) is to explicitly seek
for an initialization that is most transferable for fine-tuning, i.e., only a
small amount of gradient steps and a few labeled data are needed for
the model to generalize to a new task. To learn such an initialization, for
each sampled task i œ [n], the model „ is first updated on its training
data D

tr
i using one gradient step of size –,

◊i = „ ≠ –Ò„L(„, D
tr
i ). (2.2)

which mimics the situation of fine-tuning the model from the starting
point of „. As meta knowledge, „ should have good transferablity, such
that for all tasks i œ [n], the fine-tuned parameters ◊i could perform
well on the test set D

ts
i ,

min
„

nÿ

i=1
L(◊i(„), D

ts
i ) =

nÿ

i=1
L(„ ≠ –Ò„L(„, D

tr
i ), D

ts
i ). (2.3)

The meta knowledge of MAML is high-dimensional, hindering MAML

Model-Agnostic Meta-Learning (MAML)

for fast adaptation



Causal Learning
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• Causal learning seeks a model with causal mechanisms, and if the environment 

or distribution changes, only part of the causal mechanisms will be affected.

2.2. Supervised Pre-Training 19

Modular Model. Recurrent Independent Mechanism (RIM) (Goyal
et al., 2021) takes a modular model composed of several modules of
di�erent functions, where each module is a recurrent cell such as LSTM
or GRU (Cho et al., 2014) and represents a causal mechanism. To obtain
independence in distinct modules, RIM introduces attention between the
hidden states of each module and the current inputs. For specific inputs,
only the most relevant modules with larger attention are activated
and updated, which forms competition between di�erent modules and
encourages their independence. RIM is shown to capture independent
causal mechanisms and generalize well over di�erent temporal patterns.

Invariant Learning. The invariance assumption indicates that
the conditional probability of the target output given its direct cause
should be invariant across all environments or distributions. Invariant
Causal Prediction (ICP) (Peters et al., 2016) uncovers independent
causal mechanisms by performing a statistical test to find the subset
of the variables satisfying the invariance assumption. Invariant Risk
Minimization (IRM) (Arjovsky et al., 2019) extends this idea to rep-
resentation learning and learns a good representation such that the
conditional probability of the target output given the representation
should be invariant across training environments. Formally, given a
data representation Â : X æ Z and training environments E

tr, the
conditional probability between the representation and the output is
invariant if there is a classifier h : Z æ Y simultaneously optimal for all
the environments. This can be formalized as the following constrained
optimization problem,

min
Â:X æZ,h:ZæY

ÿ

eœEtr
‘e(h ¶ Â),

subject to h œ arg min
h̄:ZæY

‘e(h̄ ¶ Â), for all e œ E
tr,

(2.4)

where ‘e(h ¶ Â) refers to the expected error of the predictor h ¶ Â on
environment e. The transferability across environments relies on how
the invariance across training environments implies the invariance across
all environments. Thus, the diversity of training environments is crucial.
IRM can be extended to complex situations where the causal relations
are defined on latent variables that need to be extracted from data.

Invariant Risk Minimization (IRM)

for OOD generalization

Essentially, this implies invariance to 
data augmentation! 



Generative Pre-training
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2.3 Unsupervised Pre-Training

Being a canonical successful approach, supervised pre-training still
requires a large amount of labeled data which are expensive to annotate
and only available in certain fields. This hinders pre-training on huge-
scale data and limits its transferability to particular tasks. To break
this shackle, unsupervised learning (Bengio, 2012), typically in the
form of self-supervised learning, is used for pre-training on very large
unlabeled data to acquire generally transferable knowledge. To improve
the transferability on downstream tasks, it is crucial to design a proper
self-supervised task for pre-training. According to the type of task, we
can divide common unsupervised pre-training methods into generative
learning and contrastive learning, which will be discussed in Sections
2.3.1 and 2.3.2 respectively.

2.3.1 Generative Learning

Generative learning is underpinned by the idea of learning to generate
data distribution P (X) for unsupervised pre-training. It aims to learn
the intrinsic representation in data and has been commonly used for
pre-training deep neural networks (Bengio et al., 2007). As shown in
Figure 2.6, we employ an encoder f◊ that maps the perturbed input
x̃ into a latent representation z = f◊(x̃) and a decoder g◊ that maps
the representation back to derive a reconstructed version of the input
‚x = g◊(z). The model is then optimized by minimizing the reconstruction
error Lgen(‚x, x). Most generative pre-training methods are based on
two models: Autoregressive Model, which generates future inputs given
only past inputs, and Autoencoding Model, which generates full inputs
given partial inputs.

Autoregressive Model approximates the distribution of a sequence
by predicting each entry conditioned on its previous context, which is
called Language Modeling (LM) task in NLP. As shown in Figure 2.7,
given a text sequence x1:T = [x1, x2, ..., xT ], the learning objective of
LM is to maximize the conditional probability of each entry xt,

max
◊

Tÿ

t=1
log P◊(xt|xt≠k, · · · , xt≠1), (2.5)

Autoencoding
BERT, MAE

22 Pre-Training

Autoencoding Model approximates the data distribution by gen-
erating original data from encoded representations. Vincent et al., 2008
hypothesize that a good representation should also be robust to partial
corruption of the input. Thus Denoising Autoencoder (Vincent et al.,
2008) is trained to reconstruct the original input x with the corrupted
input x̃. Inspired from Denoising Autoencoder, BERT (Devlin et al.,
2019) adopts the Masked Language Modeling (MLM) task as a pre-
training task to overcome the drawback of the unidirectional LM. As
shown in Figure 2.7, MLM first randomly masks out some tokens m(x)
from the input sentences x with a special [MASK] token and then trains
the models to predict the masked tokens by the rest of the tokens x\m(x),

max
◊

ÿ

xœm(x)
log P◊(x|x\m(x)). (2.6)

Masked pre-training has also been used in many other areas. For in-
stance, Masked Autoencoders (MAE) (He et al., 2021) pre-trains vision
transformers on large-scale unlabeled image datasets using the image
generation task. The di�culty is that the signals are highly redundant
in images, thus it is hard for generative tasks, such as filling a few
missing pixels, to capture high-level knowledge from data. To tackle this
issue, MAE randomly masks a very large portion of patches, forcing the
model to go beyond low-level understanding and reconstruct the whole
image based on a small subset of visible patches, which improves its
transferability to semantic-level tasks. For another instance, to pre-train
Graph Neural Network (GNN) (Garcia and Bruna, 2018) for transfer-
able representations, Attribute Masking (Hu et al., 2020) conceals node
or edge attributes and asks GNNs to predict those attributes based on
neighboring structures, which can capture the regularities of attributes
distribution over di�erent graph structures, such as the chemistry rules
in molecular graphs, and improve transferability on the downstream
node or edge classification tasks.

Combining Autoregressive and Autoencoding Models. In
MLM, some special tokens, such as [MASK], are only used in pre-training
while absent in the downstream tasks, leading to the mismatch between
the pre-training phase and the fine-tuning phase. To mitigate this
discrepancy, Permuted Language Modeling (PLM) (Yang et al., 2019)

Trm

Trm

Trm

Trm

Trm

Trm

(b) MLM(a) LM

Trm

Trm

Trm

Trm

Trm

Trm

(c) PLM

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

(d) Seq2Seq MLM

*,

$*-

*-

$*0

*0

$*1

*,

$*,

[MASK]

$*-

*0

$*0

*-

$*1

*1

$*0

*0

$*,

*,

$*-

[MASK]

$*0

*0

$+,

+,

$+-



Contrastive Pre-training
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a node’s local representations and the k-hop neighborhoods’ context
representations. On multimodal data, Contrastive Language-Image
Pre-training (CLIP) (Radford et al., 2021) maximizes the mutual infor-
mation between the image and the corresponding text in a multimodal
embedding space. After training with a large-scale dataset of image-text
pairs from the Internet, it enables the zero-shot transfer of the model to
downstream tasks, competitive with the prior task-specific supervised
models.

Relative Position Prediction. Next Sentence Prediction (NSP) (Devlin
et al., 2019), which is first introduced in BERT, acquires transferable
representations from the relation between local parts. Specifically, NSP
uses a binary classifier to predict whether two sentences are coherent
from the training corpus, aiming to enhance the transferability to
tasks with multiple sentences, such as question answering and natural
language inference. However, subsequent work questions the necessity
of NSP tasks (Yang et al., 2019; Liu et al., 2019b) and Lan et al., 2020
conjecture that NSP only forces the model to learn topic prediction,
rather than more di�cult coherence prediction. Since inter-sentence
coherence is important to many downstream tasks, ALBERT (Lan et al.,
2020) introduces a sentence-order prediction task, where two consecutive
segments from the same document are taken as positive examples, and
the same segments with order swapped are taken as negative examples.
Similar ideas are also explored in vision, where the pre-training task
is to predict relative positions of two patches from an image (Doersch
et al., 2015).

Instance Discrimination. InstDisc (Wu et al., 2018) aims to learn
transferable representations from the relation between instances. Given
n instances, an encoder Â is trained to distinguish each instance from
others, i.e., minimize the distance between the query q and key k+
from the same instance (also called positive samples) and maximize
the distance between that of di�erent instances (also called negative
samples),

min
Â

≠ log exp(q · k+/·)
qK

j=0 exp(q · kj/·)
, (2.8)
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Supervised pre-training gains high-level semantic 
knowledge, while contrastive and generative pre-
training gains mid-level & low-level representations



Remarks on Pre-training

14

2.3. Unsupervised Pre-Training 29

Abnar et al., 2022 explore the limits of large-scale supervised pre-
training and find that as the pre-training accuracy increases by scaling
up data, model size and training time, the performance of downstream
tasks gradually saturates and there are even some extreme scenarios
where performance on pre-training and downstream tasks are at odds
with each other. These controversial results encourage us to rethink the
common practice of supervised pre-training and design new supervised
pre-training strategies for specific fields, especially when large gaps exist
between the pre-training and target tasks.

Table 2.1: Comparison between di�erent pre-training methods.

Method Modality Task Data Label
Scalability1 Scalability2 E�ciency3 E�ciency4

Standard Pre-Training FFF FF FFF F
Meta-Learning FFF F F F
Causal Learning FF F F F
Generative Learning FF FFF FFF FFF
Contrastive Learning F FFF FFF FFF
1 Whether models can be pre-trained on various modalities, such as text, graph.
2 Whether pre-trained models can be easily transferred to many downstream tasks.
3 Whether stronger transferability can be yielded from large-scale pre-training.
4 Whether pre-training relies on manual data labeling.

Table 2.1 compares pre-training methods from four perspectives:
modality scalability, task scalability, data e�ciency, and labeling cost.
Though meta-learning enables fast adaptation to new tasks, it mainly
considers related tasks such as reinforcement learning under environ-
ments with small changing factors, while standard pre-training can
transfer to broader task gaps such as from image classification to object
detection. Besides, the existing meta-learning and causal learning meth-
ods are empirically verified only on small datasets, and it remains unclear
whether they can acquire stronger transferability via pre-training on
large-scale data. Despite the promising performance without manual
labeling, unsupervised pre-trained models require a large number of
gradient steps for fine-tuning to downstream tasks. Also, strong data
augmentations are required by contrastive learning to gain transferabil-
ity, but they are not easy to design in other modalities, such as text and
graphs. Finally, the design of unsupervised pre-training tasks remains
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Pair-wise Relation Modeling:

. . .

𝒪(𝑛!𝑑)

Can we remove Softmax function?

𝑸𝑲𝑻 𝑽 = 𝑸(𝑲𝑻𝑽) 𝒪(𝑛!𝑑) → 𝒪(𝑛𝑑!)

Quadratic Complexity in Self-Attention



Competition
Mechanism

The key to avoid
trivial attention

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual 
information estimation of parameters. NeurIPS 1989. 

Softmax function is proposed as a differentiable generalization of the 
“winner-take-all” picking maximum operation. 

Recap: Softmax function



Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual 
information estimation of parameters. NeurIPS 1989. 

Softmax function is proposed as a differentiable generalization of the 
“winner-take-all” picking maximum operation. 

𝐒𝐨𝐟𝐭𝐦𝐚𝐱
𝑸𝑲𝑻

𝒅
𝑽

𝝓 𝑸 (𝝓 𝑲 𝑻𝑽)
+

Competition Mechanism

“fixed resource will cause competition”

Recap: Softmax function



[Conservation Property]: The incoming flow capacity of 
each node is equal to the outgoing flow.

Flow Network Theory



Attention map

Results

(a) Inner View

𝑽 𝑹
Information flow

Attention: A Flow Network View

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long✉. Flowformer: Linearizing Transformers with Conservation Flows. ICML, 2022.



(b) Outer View

𝑽 𝑹
Information flowInformation flow Information flow

Attention: A Flow Network View

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long✉. Flowformer: Linearizing Transformers with Conservation Flows. ICML, 2022.



Flow-Attention

• [Incoming Flow Conservation]: 

• Competition among Source tokens
• [Outgoing Flow Conservation]: 
• Competition among Sink tokens



Incoming flow: 𝐼! = 𝜙 𝑄! ∑"𝜙 𝐾"
#

Incoming flow conservation: #(𝑸)
𝑰

Incoming flow: $ %!
&!

∑"𝜙 𝐾"
#
= &!

&!
= 1

Flow-Attention



Incoming flow: 𝐼! = 𝜙 𝑄! ∑"𝜙 𝐾"
#

Incoming flow conservation: #(𝑸)
𝑰

Conserved outgoing flow: (𝑶 = 𝜙 𝑲 ∑!
" #! "

$!

Flow-Attention



Outgoing flow: 𝑂! = 𝜙 𝐾! ∑"𝜙 𝑄"
#

Outgoing flow conservation: #(𝑲)
𝑶

Outgoing flow: $ '!
(!

∑"𝜙 𝑄"
#
= (!

(!
= 1

Flow-Attention



Outgoing flow: 𝑂! = 𝜙 𝐾! ∑"𝜙 𝑄"
#

Outgoing flow conservation: #(𝑲)
𝑶

Conserved incoming flow: )𝑰 = 𝜙 𝑸 ∑!
" #!

"

$!

Flow-Attention



Successfully bring the Competition Mechanism

Into Attention design to avoid trivial attention

Flow-Attention



[Efficiency]: All the calculations are in linear complexity.

[Universality]: The whole design is based on flow network without specific inductive biases.

Flowformer: Efficiency and Universality



• Extensive tasks (covering 5 mainstream tasks) 

• Normal and causal versions
• Various sequence lengths (29-4000)
• Extensive baselines (20+)

Image

Language

Time
Series

Agent
Trajectory

Flowformer Experiments



Strong performance on all five mainstream tasks within the linear complexity.

Flowformer Experiments



General Relation
Modeling

Quadratic
Complexity 

Long Sequence
Model Efficiency

Big Model L Task & Data 
Universal

Flowformer
Linear complexity w.r.t. sequence length

Based on flow network & without specific inductive biases
Strong performance in Long Sequence, CV, NLP, Time Series, RL

Flowformer

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long✉. Flowformer: Linearizing Transformers with Conservation Flows. ICML, 2022.



Task Adaptation

20
17

20
16

20
18

20
19

20
20

20
21

LogMELEEP

Diff Pruning

Taskonomy

BSS

Side-Tuning

Adapter TuningResidual Adapter

Catastrophic
Forgetting

Negative
Transfer

Parameter
Efficiency

Data
Efficiency

LWF

ULMFiT

DELTA Co-Tuning

DAPT

Zoo-Tuning

GPT3

Prefix Tuning

Instruction-Tuning

EWC

PiggyBack

Matching Net ProtoNet T5



Foundation Problems

Task
Adaptation

Catastrophic
Forgetting

Negative 
Transfer

Spoon ForkDog Cat

Lack of

Transferable 
knowledge

Upstream Task Downstream Task

Training Strategies

• smaller lr of task-specific head. [Yosinski et al, 2014]
• lr decay helps transfer. [You et al, 2019]

Dataset A Dataset ADataset B

Lifecycle of Deep Model

Ac
cu

ra
cy

Optimization

LWF

2016

EWC

2017

ULMFiT
Taskonomy

2018

DELTA
BSS

2019

DAPT
LEEP

2020
Zoo-Tuning, B-Tuning

2021

Catastrophic Forgetting
Negative Transfer Hub-Pathway

2022
35



Catastrophic Forgetting
Loss Function: min

!
∑"#$% 𝐿 ℎ! 𝑥" , 𝑦" + 𝜆 ⋅ Ω 𝜃

Regularization term
Regularization Tuning

LWF

2016

EWC

2017

ULMFiT
Taskonomy

2018

DELTA
BSS

2019

DAPT
LEEP

2020
Zoo-Tuning, B-Tuning

2021

Catastrophic Forgetting
Negative Transfer Hub-Pathway

2022

backbone
target
head

pre-trained
head

noise

pre-trained
backbone

initialize
L2 L2

…

…

pre-trained models

fine-tuned models

… L2

…

…
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…L2

(c) LWF(a) EWC (b) DELTA
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Domain Adaptive Tuning

Catastrophic Forgetting

• ULMFiT
• DAPT
• SiATL

Adaptive Stage

To bridge dataset shift

LWF

2016

EWC

2017

ULMFiT
Taskonomy

2018

DELTA
BSS

2019

DAPT
LEEP

2020
Zoo-Tuning, B-Tuning

2021

Catastrophic Forgetting
Negative Transfer Hub-Pathway

2022
37



Negative Transfer

Spoon ForkDog Cat

Fox LynxWolf Owl

Task relatedness

LWF

2016

EWC

2017

ULMFiT
Taskonomy

2018

DELTA
BSS

2019

DAPT
LEEP

2020
Zoo-Tuning, B-Tuning

2021

Catastrophic Forgetting
Negative Transfer Hub-Pathway

2022
38

(a) Feature Transfer (b) Fine-Tuning

+

(c) Side-Tuning

pre-trained
modules

+

adapter

ŏ

(d) Adapter Tuning

task 
relatedness

aggressive

conservative

negative
transfer

positive
transfer

transfer
performance



Negative Transfer

• Enhance Safe Transfer

• BSS, Zoo-tuning

• Choose Pre-trained Models

• LEEP, LogME

Feature Space

Detrimental
component

Penalize smallest singular values :

Xinyang Chen, Sinan Wang, Bo Fu, , Jianmin Wang, Mingsheng Long✉. Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe
Transfer Learning, NeurlPS 2019

err%(𝑔) ≤ err &%
'(𝑓) + 𝑂

𝑝( log) 𝑟(
𝑛

39



Transferable knowledge pool

Transferability (LogME)

MSE

Negative Transfer

• Enhance Safe Transfer

• BSS, Zoo-tuning

• Choose Pre-trained Models

• LEEP, LogME

Kaichao You, Yong Liu, Jianmin Wang, Mingsheng Long✉. LogME: Practical Assessment of Pre-trained Models for Transfer Learning, ICML 2021 40



• Adapt one model
- Which one is the best?

• Adapt multiple models 
- How to aggregate transferable knowledge? 

Various Models and Platforms

Plenty of Transferable Knowledge

Avoid Heavy Pre-training
Accuracy (MoCo V3)

Pre-trained Model Hub

Same architecture
Pre-trained differently

41



Transferability Assessment by LogME

Kaichao You, Yong Liu, Jianmin Wang, Mingsheng Long✉. LogME: Practical Assessment of Pre-trained Models for Transfer Learning, ICML 2021

Estimate adaption performance of PTM on given dataset without finetuning. 

LogME Approach

𝑥% ℎ𝜙
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w ⇠ N (0,↵�1I)

Extracted feature

GT label

• Fixed PTM (as feature extractor).

• 𝑃 𝑦 𝐹 : Graphical modeling
between extracted features and GT 
label.

• Parameterize 𝑃 𝑦 𝐹 by prior 𝛼, 𝛽.
• Maximize evidence 𝑃 𝑦 𝐹, 𝛼, 𝛽 .

• MacKay algorithm with guarantee!
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Effectiveness of LogME

Vision tasks

NLP tasks

High correlation between LogME and finetuned performance.

General and Accurate

Transferability (LogME)

M
SE

Regression task

Unsupervised PTMs
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Theoretical Guarantee of LogME
• MacKay algorithm (1992) is a heuristic method for solving the evidence 

maximization procedure of empirical Bayesian learning (Bishop, 1995). 
• We provide the theoretical guarantee for MacKay algorithm.

44

You, Liu, Zhang, Wang, Jordan, Long

MacKay’s algorithm (Algorithm 2) consists of a while-loop which is presented in Al-
gorithm 4. The key to analyzing the whole algorithm is to analyze each iteration of the
while-loop. During each iteration, new values ↵

0
, �

0 are computed based on old values ↵, �,
which can be regarded as evaluating a vector-valued function (↵0

, �
0) = g(↵, �).

Algorithm 4 One iteration of evidence maximization in Algorithm 2.

1: Input: ↵, �; Output: ↵
0
, �

0 for the next iteration.

2: Compute A = ↵I + �F
T
F, m = �A

�1
F

T
y, � =

PD
i=1

��2
i

↵+��2
i

3: Return ↵
0 = �

mTm
, �

0 = n��
||Fm�y||22

MacKay’s algorithm converges if and only if (↵0
, �

0) = (↵, �) in Algorithm 4. With F, y

as constants, the convergence of Algorithm 2 is equivalent to the existence of the fixed point
of the vector-valued function g, i.e., the existence of ↵, � such that (↵, �) = g(↵, �).

In general, fixed points of vector-valued functions are di�cult to analyze and visualize.
Fortunately, we find that the vector-valued function (↵0

, �
0) = g(↵, �) is homogeneous:

g(k↵, k�) = kg(↵, �), 8k > 0. Let t = ↵/�, and t
0 = ↵

0
/�

0, the vector-valued function
(↵0

, �
0) = g(↵, �) induces a scalar function t

0 = f(t), whose explicit form can be derived in
Theorem 1. Evaluating g(↵, �) is equivalent to calculating f(↵� ), which is easier to analyze.

Theorem 1 Algorithm 4 induces a scalar function (Equation 3) with t = ↵
� and t

0 = ↵0

�0 .

t
0 = f(t) =

0
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i z

2
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(t+�2
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2

. (3)

The proof is in Appendix B. Although f(t) seems very complicated and completely
understanding its behavior is di�cult, surprisingly, the existence of a fixed point of f(t) can
be guaranteed with an interpretable condition, as presented in the following Theorem 2.

Theorem 2 If r < n and
P

1i,jn(z2i � z
2
j )(�

2
i � �

2
j ) > 0, then f(t) has a fixed point and

thus MacKay’s algorithm will converge.

The proof is in Appendix C. Theorem 2 requires two conditions to guarantee the fixed
point: r < n and

P
1i,jn(z2i � z

2
j )(�

2
i � �

2
j ) > 0. The first condition is easy to interpret

and can be easily satisfied: usually n > D, and n > D � r naturally holds. The conditionP
1i,jn(z2i � z

2
j )(�

2
i � �

2
j ) > 0 is new in this paper. Note that z = U

T
y and zi = U

T
i y,

where Ui (the i-th column of U) is the left-singular vector of the singular value �i, which
means that zi is the projection of label vector y in the direction of the left-singular vector
for the singular value �i. Intuitively speaking,

P
1i,jn(z2i � z

2
j )(�

2
i � �

2
j ) > 0 requires z

2
i

to share roughly the same descending order as �
2
i . For larger �

2
i (i.e., smaller i), it means

the projection of y in the corresponding left-singular vector should be larger, which can
be interpreted as a rigorous way to say that labels y are meaningful with respect to the
features F . We would like to emphasize that the requirement on the order of z

2
i is soft :

strict order z
2
i � z

2
j () i  j () �

2
i � �

2
j certainly assures the convergence condition
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Efficiency of LogME
Computation Efficient --- MacKay algorithm with improved complexity.

Biquadrate complexity Cubic complexity Cubic complexity with fewer terms
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Tuning Pre-trained Models

Best ranked models (e.g. DenseNet-201)
tend to be large and expensive to deploy.

Given a desired target architecture
in industrial requirement.

Transfer from multiple pre-trained
models can be more beneficial.

Why adapt multiple models? Scal
ing law I

Scal
ing law II
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Ranking and Tuning Paradigm
Ranking
/STEP 1

Selection
/STEP 2

Tuning
/STEP 3

• Ranking
• LEEP, NCE, LogME…

• Selection
• Top-K: Heuristic but Effective

• Tuning
• Architecture heterogeneity
• Dimensionality of features

• Always challenging part…
47



B-Tuning

Kaichao You, Yong Liu, Jianmin Wang, Michael I Jordan, Mingsheng Long✉. Ranking and Tuning Pre-trained Models: A New Paradigm of Exploiting Model Hubs,
JMLR 2022

Consider simple Knowledge Distillation (KD):

𝐿12 =
1
𝑛
5
!34

5
1
𝐾
5
634

'

ϕ6 𝑥! −𝑊6ϕ7 𝑥! 8
8

• Needs additional learnable projection 𝑊6 for each teacher model.
• Treats all teacher models as equal:

• No adaptive mechanism to transfer only useful knowledge.
• Violates the “Many could be better than all” theorem (Zhou et al. 

2002).
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B-Tuning
Posterior predictive distributions 𝑝 𝑦&' 𝑓& , 𝐹& , 𝑦 from LogME

Weighted average: ;𝑦* = ∑+,-. π+𝑦+*

by LogME score: π+ =
/01 ℒ#/4

∑$%&
' /01 ℒ$/4

• Project teacher features into a common output space by LogME.
• Transfer them to target model with weighting from their LogME score.

Intuition: encourage the target model to

behave like the best top-K teachers.

Kaichao You, Yong Liu, Jianmin Wang, Michael I Jordan, Mingsheng Long✉. Ranking and Tuning Pre-trained Models: A New Paradigm of Exploiting Model Hubs,
JMLR 2022 49
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Effectiveness of B-Tuning
Reduced burden of Selection and Adaptation.
• Exhaustively fine-tune 10 times: 84.41% accuracy.
• Rank by LogME and fine-tune once: 84.29% accuracy.
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Effectiveness of B-Tuning

• Just fine-tune the
most popular
model is sub-
optimal.

• The ranking and
B-Tuning
paradigm brings
3%~5%
accuracy gain.

Fully utilization of transferable knowledge in Model Hub.
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Homogeneous Model Zoo

𝐖/
/

𝐖/
6

𝐖/
7

Source Model 1
⋯

m
i
⋯

⋯

⋯

?To tune or 
not to tune

Considering models with same architecture but different knowledge.
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Zoo-Tuning
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Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, Mingsheng Long✉. Zoo-Tuning: Adaptive Transfer from A Zoo of Models, ICML 2021

Adaptively aggregate source model parameters to derive target model.
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Adaptive Aggregation
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Channel alignment 

Data-dependent 
gating

Zoo-Tuning: Adaptive Transfer from a Zoo of Models
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Figure 1. The framework of our proposed method. We derive the target model cW by aggregating the parameters of the source models Wi

in each layer, controlled by the learnable adaptive aggregation modules based on the input data. During training, the adaptive modules
are trained, and the source parameters are tuned to transfer to the target task. After training, the tuned source models are aggregated
depending on each query data for inference.

get task D = {(x, y)}. In transfer learning from a zoo of

models, we consider a more complicated situation where we
have a zoo of pretrained models M = {M1,M2, · · · ,Mm}.
This problem is challenging in two ways: (1) The diverse
pretrained models hold different relationships to the target
tasks, which needs transferring knowledge from different
pretrained models to different extents; (2) Different mod-
els are pretrained on various data and thus store different
knowledge, which may be complementary to each other to
solve the downstream tasks. How to aggregate knowledge
from various pretrained models is an essential but difficult
problem for model zoo transfer learning.

In this paper, we consider the situation that different mod-
els in the zoo have the same architecture but are trained
with different data, tasks, or pretraining algorithms. This
assumption of the same architecture is reasonable and has
its value in practice since architectures such as ResNet (He
et al., 2016) can be widely used in various datasets and
tasks, and diverse pretrained models of these architectures
with rich source knowledge are provided for use. It is eas-
ier and more reliable to apply these models with the same
simple and familiar architectures, especially on new prob-
lems. Besides, The same architecture enables more effective
layer-wise knowledge transfer, which is hard to realize on
different architectures. A more relaxed situation where mod-
els have arbitrary architectures would be interesting and
challenging to explore for future work.

3.2. Zoo-Tuning

We address the problem of transfer learning from a zoo
of models by Zoo-Tuning. The framework is shown in
Figure 1. Zoo-Tuning enables knowledge transfer from

multiple models by adaptively aggregating source model
parameters in each layer, based on the input data, to form the
target model. The adaptive aggregation consists of channel
alignment and gating modules to control the extent of each
model in transfer learning. As the adaptive aggregation
mechanism is lightweight and the target data pass through
the derived target model instead of all source models, the
proposed approach only introduces similar inference time
to a single model, which is computationally efficient. We
further propose a lite version of Zoo-Tuning to reduce the
storage cost.

Channel Alignment. Different models are separately
trained on diverse datasets or tasks, so even parameters
at the same channel of the same layer in different pretrained
models may indicate different semantic meanings. The mis-
aligned channels cause difficulty in aggregating parameters
of different pretrained models. To address the problem,
we adopt a channel alignment module that transforms and
aligns channels of different pretrained models. We consider
parameters Wl

i of a convolutional layer in any source model
Mi with the size Cout ⇥ Cin ⇥ K ⇥ K, where Cout is the
number of output channels, Cin indicates input channels,
and K is the kernel size of the convolutional layer. We
adopt a lightweight convolutional layer Tl

i with 1⇥1 kernel
of size Cout ⇥ Cout ⇥ 1⇥ 1 as the channel alignment mod-
ule. Specifically, the channels in the source convolutional
parameters Wl

i are reorganized by the channel alignment
layer to result in the transformed parameters fWl

i as follows:

fWl
i = Tl

i ⇤Wl
i, (1)

where we also use Tl
i to denote the parameters of the align-

ment module. We show an implementation of the channel
alignment module for source parameters of convolutional
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(b) Integrating AdaAgg Layers in a Residual Block

Figure 2. (a) Illustration of the Adaptively Aggregation Layer. The target input ĥl�1 goes through the gating networks Al
i to compute

gating values. The source parameters Wl
i are first aligned by Tl

i and then aggregated with these gating values to form the target parameters
cWl. The input ĥl�1 is finally forwarded through the layer parameterized by cWl. (b) We can change the layers of the network backbone
into AdaAgg layers to aggregate models in the zoo. Here is an example where the backbone is composed of residual blocks.

layers here. The idea is easy to extend to other kinds of
layers, such as fully connected layers, by employing a linear
alignment layer. We initialize the channel alignment layer
as an identical mapping, which gives the target model a
smooth warm-up from the pretrained weights.

Adaptive Aggregation. With channel-aligned source pa-
rameters, we develop an adaptive aggregation (AdaAgg)
layer to dynamically aggregate source model parameters.
We have two key insights in the design of the AdaAgg layer:
(1) Each data point of each downstream task should have
a different aggregation since each data point holds specific
relationships with source tasks; (2) The aggregation should
be computationally efficient for a large number of source
models. We integrate these two key insights into the design
of the AdaAgg layer. As shown in Figure 2(a), considering
the l-th layer of the network, the AdaAgg layer is equipped
with a gating network Al

i for each source model Mi, which
controls the mixing of its corresponding parameters Wl

i.
The gating network Al

i takes the feature of the previous
layer in the target model ĥl�1 as the input and outputs the
gating value ali. The aligned source parameters fWl

i are
aggregated with the gating values to derive the parameters
of the target model in this layer cWl as follows:

cWl =
mX

i=1

alifWl
i =

mX

i=1

Al
i(ĥ

l�1)
�
Tl

i ⇤Wl
i

�
, (2)

We consider lightweight gating networks to reduce the com-
putation and storage cost of the gating network. For exam-
ple, for a convolutional layer, the gating network consists
of a global average pooling layer, 2 convolutional layers
with 1⇥ 1 kernel, and a sigmoid activation function. Such
design brings little additional computational cost of the gat-

ing network compared to processing data with the original
convolution operation, even with a large-scale model zoo.

We can easily change the backbone layers of source models
into AdaAgg layers to aggregate source models’ parameters
in each layer. In Figure 2(b), we give an example of the
residual block. With the target model parameters, the target
data are passed through the target model for training and in-
ference. We can solve the optimization problem of adapting
the model zoo to the target task as follows:

min
⇥

E(x,y)⇠DL
⇣
fL(·; cWL) � · · · � f1(x; cW1), y

⌘
, (3)

where D = {(x, y)} is the target dataset, L is the total
number of layers, f l is the operation of the l-th layer pa-
rameterized by cWl and L is the loss for the target task.
⇥ = (Wi,Ai,Ti) includes source models parameters Wl

i,
channel alignment parameters Tl

i, and gating network pa-
rameters Al

i in all AdaAgg layers. All of these parameters
are adaptively trained or tuned to fit for the target task.

3.3. Lite Zoo-Tuning

The adaptive aggregation introduced above is computation-
ally efficient both during training and inference but still
requires all the source parameters at the inference stage, as
the gating values can be computed only when the target data
is presented at inference time. As shown in Figure 3, to
further save the storage for applying Zoo-Tuning to devices
with limited resource, we relax the dependency of the gating
values on each individual target sample to the dependency
on the entire dataset, resulting in a unified gating value for
all data during inference. During training, for a layer l of a
source model i, we firstly compute gating values for each



Experiments
• Adaptive transfer from multiple models → Better accuracy.

• Adaptive aggregation of model parameters → More efficient than ensemble.

Zoo-Tuning: Adaptive Transfer from a Zoo of Models

Table 1. Comparison of top-1 accuracy(%) and complexity on the classification benchmarks including General benchmark, Fine-grained
benchmark, and Specialized benchmark.
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IMAGENET SUP. 81.18 81.97 84.63 89.38 73.69 74.57 98.43 83.41 4.12 23.71M 4.12 23.71M
MOCO PT. 75.31 75.66 83.44 85.38 70.98 75.06 98.82 80.66 4.12 23.71M 4.12 23.71M
MASKRCNN PT. 79.12 81.64 84.76 87.12 73.01 74.73 98.65 82.72 4.12 23.71M 4.12 23.71M
DEEPLAB PT. 78.76 80.70 84.97 88.03 73.09 74.34 98.54 82.63 4.12 23.71M 4.12 23.71M
KEYPOINT PT. 76.38 76.53 84.43 86.52 71.35 74.58 98.34 81.16 4.12 23.71M 4.12 23.71M

ENSEMBLE 82.26 82.81 87.02 91.06 73.46 76.01 98.88 84.50 20.60 118.55M 20.60 118.55M
DISTILL 82.32 82.44 85.00 89.47 73.97 74.57 98.95 83.82 24.72 142.28M 4.12 23.71M
KNOWLEDGE FLOW 81.56 81.91 85.27 89.22 73.37 75.55 97.99 83.55 28.83 169.11M 4.12 23.71M

LITE ZOO-TUNING 83.39 83.50 85.51 89.73 75.12 75.22 99.12 84.51 4.53 130.43M 4.12 23.71M
ZOO-TUNING 83.77 84.91 86.54 90.76 75.39 75.64 99.12 85.16 4.53 130.43M 4.18 122.54M

Results. We report the top-1 accuracy on the test data of
each task and the complexity of each method. For our
method, we report Zoo-Tuning and lite Zoo-Tuning. For the
single-model transfer method, we compare with fine-tuning
from every single pretrained model. For methods using all
pretrained models, we compare with three methods: using
the ensemble of fine-tuned source models for prediction,
distilling from the ensemble, and Knowledge Flow (Liu
et al., 2019), which is designed to transfer from multiple
models. From Table 1. We have the following observations:

On all the three benchmarks, Zoo-Tuning consistently out-
performs fine-tuning from each single pretrained model,
which indicates that Zoo-Tuning successfully aggregates
and utilizes the rich knowledge in the whole zoo of models.

Compared with the methods using all pretrained models,
Zoo-Tuning shows higher or comparable performance on
most of the tasks. Compared with the parameters in the
model zoo, the additional parameters in Zoo-Tuning is about
10%, which shows that the adaptive modules are lightweight.
With the adaptive parameter aggregation mechanism, Zoo-
Tuning is more computationally efficient. Note that the
ensemble predictions require fine-tuning all the candidate
pretrained models on the target task firstly. Even at inference
time, each query sample should go through all the fine-tuned
models to get the final prediction, causing high inference
cost. Distilling and knowledge flow show similar inference
costs as Zoo-Tuning, but Zoo-Tuning achieves higher per-
formance on almost all the tasks. The results demonstrate
that Zoo-Tuning is a both effective and efficient solution to
transfer learning from a zoo of models.

Lite Zoo-Tuning also outperforms compared methods on
average accuracy. We specially compare it with distilling
from the ensemble (Distill) since they are both efficient in

inference. Although the performance gain is not large, lite
Zoo-Tuning still outperforms Distill consistently on all tasks
and achieves greater advantages in the training cost. This is
because Distill still needs to forward data through all source
models, while lite Zoo-Tuning only needs to pass the data
through the aggregated model. Furthermore, Distill needs
to fine-tune all the pretrained models on the target data first
and then distill a target model from the ensemble outputs
of fine-tuned models, which requires a high training cost
linearly increasing with the number of source models. The
results match the goal of lite Zoo-Tuning to substantially
reduce the storage cost in inference while keeping relatively
high performance, which is more scalable when training
with a large number of source models.

Zoo-Tuning achieves higher accuracy than lite Zoo-
Tuning, which demonstrates that capturing fine-grained data-
dependent gating values would help to adapt the pretrained
models to the target task but with more cost of storage and
computation in inference. Lite Zoo-Tuning costs the same
GFLOPs and parameters as the single model in inference,
with slight performance drop than Zoo-Tuning, which serves
as a trade-off between performance and efficiency.

4.3. Transfer Learning in Facial Landmark Detection

Benchmarks. To explore the usage of Zoo-Tuning on more
diverse and complex downstream vision tasks, we use the
same model zoo as the image classification tasks in Sec-
tion 4.2 and consider transferring to three facial landmark
detection tasks, 300W (Sagonas et al., 2013), WFLW (Wu
et al., 2018), and COFW (Burgos-Artizzu et al., 2013).
The 300W is a combination of HELEN (Le et al., 2012),
LFPW (Belhumeur et al., 2013), AFW (Zhu & Ramanan,
2012), XM2VTS and IBUG datasets, where each face has
68 landmarks. We follow (Ren et al., 2016) and use the
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Applied to RL tasks
• Reinforcement Learning: Atari Games.

• Pre-trained Models: Models trained from other games.
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Heterogeneous Model Hub
Design data-dependent pathways throughout the Model Hub.
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Yang Shu, Zhangjie Cao, Ziyang Zhang, Jianmin Wang, Mingsheng Long✉. Hub-Pathway: Transfer Learning from A Hub for Pre-trained Models, Preprint 2022 57



Hub-Pathway
• Input level: route different data to different models.
• Output level: aggregate transferred knowledge to make predictions.
• Pathway flow: control training and inference costs with Top-K activation.
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Experiments
• Data dependent pathways → General for heterogenous models.

• Control the costs with top-k activation→ More efficient than ensemble.
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Adaptive Pathways
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Remarks on Task Adaptation

61

44 Adaptation

Table 3.2: Comparison between di�erent task adaptation methods.

Adaptation
Accuracy1

Data
E�ciency2

Parameter
E�ciency3

Modality
Scalability4

Task
Scalability5

Feature Transfer F FF FFF FFF FFF
Vanilla Fine-tuning FFF F F FFF FFF
Domain Adaptive Tuning FFF FF F FF FFF
Regularization Tuning FFF FF F FFF F
Residual Tuning FF FF FF FF FF
Parameter Di�erence Tuning FF FF FF FFF FFF
Metric Learning F FFF FFF FFF F
Prompt Learning FF FFF FFF F F
1 Accuracy when there are large-scale labeled data in downstream tasks.
2 Accuracy when there are only small-scale labeled data in downstream tasks.
3 Whether parameters can be controlled when the number of downstream tasks increases.
4 Whether pre-trained model can be adapted to various modalities, such as text, graph.
5 Whether pre-trained model can be adapted to di�erent downstream tasks, such as detection.

The motivation of many task adaptation methods can be understood
from the perspective of transferability. For instance, domain adaptive
tuning aims to bridge the domain discrepancy between the pre-training
task and the downstream task by further obtaining a pre-trained model
on the target data distribution. Prompt learning aims to bridge the task
discrepancy between the pre-training task and the downstream task by
reformulating all the tasks to the same format. In this scenario, when
all tasks can be expressed in the same form, the di�erence between
the pre-training task and the downstream task is only the shift in
data distributions, i.e., task adaptation becomes the domain adaptation
problem.

3.2 Domain Adaptation

The pre-training and fine-tuning paradigm has greatly improved the
state-of-the-arts for diverse machine learning problems and applica-
tions, and the pre-trained deep networks can be easily adapted to the
tasks at hand even with a small amount of labeled data. However, in
many practical scenarios, there is no labeled training data and thus
there is the demand to transfer a deep network from a source domain
where labeled training data is available to a target domain where only



Domain Adaptation
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Domain Adaptation

• How to measure the discrepancy between 𝑃 and 𝑄?
• Can we control target error 𝜖% ℎ ?
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H∆H-Divergence
• H∆H-Divergence

𝑑ℋQℋ 𝑃, 𝑄 = sup
R,R$∈ℋ

𝜖% ℎ, ℎT − 𝜖U ℎ, ℎT

64Ben-David et al. A Theory of Learning from Different Domains. Machine Learning 2010.
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H∆H-Divergence
• H∆H-Divergence

𝑑ℋQℋ 𝑃, 𝑄 = sup
R,R$∈ℋ

𝜖% ℎ, ℎT − 𝜖U ℎ, ℎT

• Theorem (Generalization Bound with H∆H-Divergence)

• Denote by 𝑑 the VC-dimension of hypothesis space ℋ and ideal joint error 

𝜖!VWXY = 𝜖U ℎ∗ + 𝜖% ℎ∗ . We have

𝜖% ℎ ≤ 𝜖 )U ℎ + 𝑑ℋQℋ B𝑃, B𝑄 + 𝜖!VWXY + 𝑂
𝑑 log 𝑛
𝑛

+
𝑑 log 𝑚
𝑚

65Ben-David et al. A Theory of Learning from Different Domains. Machine Learning 2010.



Domain Adversarial Learning
• Learning representation 𝜙 to minimize 𝑑ℋQℋ 𝜙(𝑃), 𝜙(𝑄) :

min
$,R

𝔼 [,\ ∼U𝐿(ℎ(𝜙(𝑥)), 𝑦) + max^ 𝔼U𝐿(𝐷(𝜙(𝑥)), 1) + 𝔼%𝐿(𝐷(𝜙(𝑥)), 0)

66Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.

Supervised Learning on source Minimize Upper bound of 𝑑ℋ9ℋ
Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

ℎ

"
#



Domain Adversarial Learning
• Learning representation 𝜙 to minimize 𝑑__2 𝜙(𝑃), 𝜙(𝑄) :

min
$,R

𝔼 [,\ ∼U𝐿 ℎ 𝜙 𝑥 , 𝑦 + 𝜆max
6∈𝒦

𝔼U 𝜙 𝒙a − 𝔼% 𝜙 𝒙7 𝒦
8

67Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.

Supervised Learning on source Minimize Upper bound of 𝑑ℋ9ℋ
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Theory vs. Practice

• Binary Classification vs. Multiclass Classification

• Discrete Classifier vs. Classifier with Scoring Function
• H∆H is excessively large that is hard to estimate and optimize
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Disparity Discrepancy
• Disparity Discrepancy

𝑑R,ℋ 𝑃, 𝑄 = sup
R$∈ℋ

𝜖% ℎ, ℎT − 𝜖U ℎ, ℎT

69Yuchen Zhang & Mingsheng Long et al. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Disparity Discrepancy
• Disparity Discrepancy

𝑑R,ℋ 𝑃, 𝑄 = sup
R$∈ℋ

𝜖% ℎ, ℎT − 𝜖U ℎ, ℎT

• Theorem (Generalization Bound with Disparity Discrepancy)

• For any 𝛿 > 0 and binary classifier ℎ ∈ ℋ, with probability 1 − 3𝛿, we have 
𝜖% ℎ ≤ 𝜖 )U ℎ + 𝑑R,ℋ B𝑃, B𝑄 + 𝜖!VWXY + 2ℜ5,U ℋ

+2ℜ5,U ℋΔℋ + 2ℜb,% ℋΔℋ + 2
log 2𝛿
2𝑛

+
log 2𝛿
2𝑚

70Yuchen Zhang & Mingsheng Long et al. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.



Margin Disparity Discrepancy
• Margin Disparity Discrepancy

𝑑c,ℱ
(f) 𝑃, 𝑄 = sup

c$∈ℱ
𝜖%
(f) 𝑓T, 𝑓 − 𝜖U

(f) 𝑓T, 𝑓
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Margin Disparity Discrepancy
• Margin Disparity Discrepancy

𝑑c,ℱ 𝑃, 𝑄 = sup
c$∈ℱ

𝜖%
(f) 𝑓T, 𝑓 − 𝜖U

(f) 𝑓T, 𝑓

• Theorem (Generalization Bound with Margin Disparity Discrepancy)

• For any 𝛿 > 0 and scoring classifier 𝑓 ∈ ℱ, with probability 1 − 3𝛿, we have 

𝜖% 𝑓 ≤ 𝜖 )U
f 𝑓 + 𝑑R,ℋ

f B𝑃, B𝑄 + 𝜖!VWXY +
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Margin Disparity Discrepancy
• Margin Disparity Discrepancy
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Theory vs. Practice

• A common observation is that difficulty of transfer is asymmetric.

• Previous bounds will remain unchanged after switching P and Q.
• Previous discrepancies are supremum over the whole hypothesis space.
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pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,

manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0
�

di log d̂i + (1�di) log(1� d̂i)
 

, where
di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-
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• Theorem (Generalization Bound with Localized Disparity Discrepancy)
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Remarks on Domain Adaptation
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66 Adaptation

di�erent modalities. Finally, statistics matching methods are based on
nonparametric distances, which are data-e�cient but weak in expressive-
ness, thereby more suitable for low-data regimes. In contrast, domain
adversarial learning and hypothesis adversarial learning methods are
based on parametric distances, which can only be measured throughout
learning, but are more performant when scaling up data.

Table 3.3: Comparison between di�erent domain adaptation methods.

Adaptation
Accuracy2

Data
E�ciency2

Modality
Scalability3

Task
Scalability4

Theory
Guarantee5

Statistics Matching F FFF FFF FF FFF
Domain Adversarial Learning FF FF FFF FF FFF
Hypothesis Adversarial Learning FFF FF FFF FF FFF
Domain Translation FF F F FFF F
Semi-Supervised Learning FF FF FF F F

1 Accuracy when there are large-scale data in source and target domains.
2 Accuracy when there are only small-scale data in source and target domains.
3 Whether the model can be adapted to various modalities, such as text, time series.
4 Whether the model can be adapted to di�erent tasks, such as regression, detection.
5 Whether the generalization error of target domain can be theoretically bounded in adaptation.

Domain adaptation is closely related to pre-training and task adap-
tation. First, pre-training can boost the transferability in domain adap-
tation, since pre-training will reduce the allowed hypothesis space and
decrease the generalization bound on the target domain, as mentioned
in Section 3.2. Thus pre-training on the source domain also serves as
the first step in many domain adaptation methods, such as RegDA
(Jiang et al., 2021). Pre-training also provides some new solutions for
domain adaptation. When there exists a large unlabeled target domain,
a feasible solution is to first perform unsupervised pre-training on the
target domain, and then fine-tune with the labeled data on the source
domain. This is widely adopted in cross-lingual adaptation (Lample
and Conneau, 2019).

When using pre-trained models for domain adaptation, we will also
encounter the problems in task adaptation, such as the catastrophic

forgetting mentioned in 3.1.1. Thus, many domain adaptation methods
babysit the learning rates to avoid catastrophic forgetting (Long et al.,
2015; Ganin and Lempitsky, 2015). Compared with task adaptation,
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Fig. 1. SegNet predictions on road scenes and indoor scenes. To try our system yourself, please see our online web demo at http://mi.eng.cam.ac.
uk/projects/segnet/.

advantages; (i) it improves boundary delineation , (ii) it reduces the
number of parameters enabling end-to-end training, and (iii) this
form of upsampling can be incorporated into any encoder-decoder
architecture such as [2], [10] with only a little modification.

One of the main contributions of this paper is our analysis
of the SegNet decoding technique and the widely used Fully
Convolutional Network (FCN) [2]. This is in order to convey
the practical trade-offs involved in designing segmentation archi-
tectures. Most recent deep architectures for segmentation have
identical encoder networks, i.e VGG16, but differ in the form
of the decoder network, training and inference. Another common
feature is they have trainable parameters in the order of hundreds
of millions and thus encounter difficulties in performing end-to-
end training [4]. The difficulty of training these networks has led
to multi-stage training [2], appending networks to a pre-trained
architecture such as FCN [10], use of supporting aids such as
region proposals for inference [4], disjoint training of classification
and segmentation networks [18] and use of additional training data
for pre-training [11] [20] or for full training [10]. In addition,
performance boosting post-processing techniques [3] have also
been popular. Although all these factors improve performance on
challenging benchmarks [21], it is unfortunately difficult from
their quantitative results to disentangle the key design factors
necessary to achieve good performance. We therefore analysed
the decoding process used in some of these approaches [2], [4]
and reveal their pros and cons.

We evaluate the performance of SegNet on two scene seg-
mentation tasks, CamVid road scene segmentation [22] and SUN
RGB-D indoor scene segmentation [23]. Pascal VOC12 [21] has
been the benchmark challenge for segmentation over the years.
However, the majority of this task has one or two foreground

classes surrounded by a highly varied background. This implicitly
favours techniques used for detection as shown by the recent
work on a decoupled classification-segmentation network [18]
where the classification network can be trained with a large set of
weakly labelled data and the independent segmentation network
performance is improved. The method of [3] also use the feature
maps of the classification network with an independent CRF post-
processing technique to perform segmentation. The performance
can also be boosted by the use additional inference aids such as
region proposals [4], [24]. Therefore, it is different from scene
understanding where the idea is to exploit co-occurrences of
objects and other spatial-context to perform robust segmentation.
To demonstrate the efficacy of SegNet, we present a real-time
online demo of road scene segmentation into 11 classes of interest
for autonomous driving (see link in Fig. 1). Some example test
results produced on randomly sampled road scene images from
Google and indoor test scenes from the SUN RGB-D dataset [23]
are shown in Fig. 1.

The remainder of the paper is organized as follows. In Sec.
2 we review related recent literature. We describe the SegNet
architecture and its analysis in Sec. 3. In Sec. 4 we evaluate the
performance of SegNet on outdoor and indoor scene datasets. This
is followed by a general discussion regarding our approach with
pointers to future work in Sec. 5. We conclude in Sec. 6.

2 LITERATURE REVIEW
Semantic pixel-wise segmentation is an active topic of research,
fuelled by challenging datasets [21], [22], [23], [25], [26]. Before
the arrival of deep networks, the best performing methods mostly
relied on hand engineered features classifying pixels indepen-
dently. Typically, a patch is fed into a classifier e.g. Random
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Figure 6: Selected examples of object detection results on the MS COCO test-dev set using the Faster R-CNN
system. The model is VGG-16 and the training data is COCO trainval (42.7% mAP@0.5 on the test-dev set).
Each output box is associated with a category label and a softmax score in [0, 1]. A score threshold of 0.6 is
used to display these images. For each image, one color represents one object category in that image.
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