
A Geometric Understanding of Deep Learning

Na Lei

DUT-RU International School of Information Science and Engineering
Dalian University of Technology

Nov. 6, 2022

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 1 / 76



References

Na Lei, Kehua Su, Li Cui, Shing-Tung Yau and Xianfeng Gu, “A Geometric View
of Optimal Transportation and Generative Model”, Computer Aided Geometric
Design, 68(2019), 1-21.

Na Lei, Dongsheng An, Yang Guo, Kehua Su, Shixia Liu, Zhongxuan Luo,
Shing-Tung Yau, Xianfeng Gu, A Geometric Understanding of Deep Learning,
Engineering, 6(2020), 361-374.

Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-Tung Yau, Xianfeng
Gu, AE-OT: A New Generative Model Based on Extended Semi-Discrete
Optimal Transport, ICLR 2020.

Dongsheng An, Yang Guo, Min Zhang, Xin Qi, Na Lei, Xianfeng Gu,
AE-OT-GAN: Training GANs from data specific latent distribution, ECCV 2020.

Na Lei, Xianfeng Gu, FFT-OT: A Fast Algorithm for Optimal Transportation, ICCV
2021.

D. An, N. Lei and X. Gu, Approximate Discrete Optimal Transport Plan with
Auxiliary Measure Method, ECCV 2022.

D. An, N. Lei, X. Xu and X. Gu, Efficient Optimal Transport Algorithm by
Accelerated Gradient Descent, AAAI, 2022.

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 2 / 76



International Peer’s Opinion

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 3 / 76



International Peer’s Opinion

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 4 / 76



Outline

1 Manifold Distribution Hypothesis
2 Manifold Learning
3 Distribution Transformation
4 Mode Collapse
5 AE-OT framework
6 AE-OT-GAN framework

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 5 / 76



Manifold Distribution Hypothesis
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Manifold Assumption

Manifold Assumption[1,2]
Natural high dimensional data concentrates close to a non-linear
low-dimensional manifold.

Deep learning method can learn and represent the manifold structure,
and transform the probability distributions.

[1] Roweis S T, Saul L K 2000. Nonlinear dimensionality reduction by locally
linear embedding. Science 290(5500):2323-2326.

[2] Tenenbaum J B, De Silva V, Langford J C 2000. A global geometric
framework for nonlinear dimensionality reduction. Science,
290(5500):2319-2323.
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MNIST tSNE Embedding

(a) LeCunn’s MNIST handwritten (b) Hinton’s t-SNE embemdding
digits samples on manifold on latent space

Each image 28×28 is treated as a point in the 784 dimensional
image space;
The hand-written digits image manifold M is of very low
dimension;
Each digit corresponding to a distribution on M;
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General Model

ϕi
ϕj

ϕij

Uj

Ui

Σ
Rn

Ambient Space- data
space Rn

manifold - Support of a
distribution µ

parameter domain -
latent space Rm

coordinates map ϕi -
encoding/decoding
maps

ϕij controls the
probability measure
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Encoding/Decoding

a. Input manifold b. latent representation c. reconstructed mfld
M ⊂X D = ϕθ (M)⊂Z M̃ = ψθ (D)⊂X

Figure: Auto-encoder pipeline.

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 10 / 76



Example

The encoding map is ϕi : Σ→Z ; the decoding map is ϕ
−1
i : Z → Σ.
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Example

The automorphism of the latent space ϕij : Z →Z is the chart
transition.
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Example

Uniform distribution ζ on the latent space Z , non-uniform distribution
on Σ produced by a decoding map.
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Example

Uniform distribution ζ on the latent space Z , uniform distribution on Σ
produced by another decoding map.
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Generative Task

Σ
X

Z Z

ζ

fθ

ν

T

µ = (fθ)#ν

gξ

The central tasks for a generative model are
1 Learn the manifold structure from the data (fθ ,gξ );
2 Distribution transformation in the latent space (T ).
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Learn the manifold structure
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Non-Adversarial Model: Autoencoder

Figure: Auto-encoder architecture.

Ambient space X , latent space Z , encoding map ϕθ : X →Z ,
decoding map ψθ : Z →X .

(ϕ,ψ) = argmin(ϕ,ψ)

∫
X

L (x,ψ ◦ϕ(x))dµ(x),
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ReLU DNN

Definition (ReLU DNN)
For any number of hidden layers k ∈ N, input and output dimensions
w0,wk+1 ∈ N, a Rw0 → Rwk+1 ReLU DNN is given by specifying a
sequence of k natural numbers w1,w2, . . . ,wk representing widths of
the hidden layers, a set of k affine transformations Ti : Rwi−1 → Rwi for
i = 1, . . . ,k and a linear transformation Tk+1 : Rwk → Rwk+1

corresponding to weights of hidden layers.

The mapping ϕθ : Rw0 → Rwk+1 represented by this ReLU DNN is

ϕ = Tk+1 ◦σ ◦Tk ◦ · · · ◦T2 ◦σ ◦T1, (1)

where ◦ denotes mapping composition, θ represent all the weight and
bias parameters.
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Activated Path

Fix the encoding map ϕθ , let the set of all neurons in the network is
denoted as S , all the subsets is denoted as 2S .

Definition (Activated Path)
Given a point x ∈X , the activated path of x consists all the activated
neurons when ϕθ (x) is evaluated, and denoted as ρ(x). Then the
activated path defines a set-valued function ρ : X → 2S .
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Cell Decomposition

Definition (Cell Decomposition)
Fix a encoding map ϕθ represented by a ReLU DNN, two data points
x1,x2 ∈X are equivalent, denoted as x1 ∼ x2, if they share the same
activated path, ρ(x1) = ρ(x2). Then each equivalence relation
partitions the ambient space X into cells,

D(ϕθ ) : X =
⋃
α

Uα ,

each equivalence class corresponds to a cell: x1,x2 ∈ Uα if and only if
x1 ∼ x2. D(ϕθ ) is called the cell decomposition induced by the
encoding map ϕθ .

Furthermore, ϕθ maps the cell decomposition in the ambient space
D(ϕθ ) to a cell decomposition in the latent space.
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Encoding/Decoding

a. Input manifold b. latent representation c. reconstructed mfld
M ⊂X D = ϕθ (M) M̃ = ψθ (D)

Figure: Auto-encoder pipeline.
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Piecewise Linear Mapping

d. cell decomposition e. latent space f. cell decomposition
D(ϕθ ) cell decomposition D(ψθ ◦ϕθ )

Piecewise linear encoding/decoding maps induce cell decompositions
of the ambient space and the latent space.
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RL Complexity of a DNN

Definition (Rectified Linear Complexity of a ReLU DNN)
Given a ReLU DNN N(w0, . . . ,wk+1), its rectified linear complexity is
the upper bound of the number of pieces of all PL functions ϕθ

represented by N,
N (N) := max

θ

N (ϕθ ).

Rectified Linear complexity gives a measurement for the
representation capability of a neural network.
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RL Complexity Estimate

Lemma
The maximum number of parts one can get when cutting
d-dimensional space Rd with n hyperplanes is denoted as C (d ,n),
then

C (d ,n) =

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
d

)
. (2)

Proof.
Suppose n hyperplanes cut Rd into C (d ,n) cells, each cell is a convex
polyhedron. The (n +1)-th hyperplane is π, then the first n hyperplanes
intersection π and partition π into C (d −1,n) cells, each cell on π

partitions a polyhedron in Rd into 2 cells, hence we get the formula

C (d ,n + 1) = C (d ,n) +C (d −1,n).

It is obvious that C (2,1) = 2, the formula (2) can be easily obtained by
induction.
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RL Complexity Upper Bound

Theorem (Rectified Linear Complexity of a ReLU DNN)
Given a ReLU DNN N(w0, . . . ,wk+1), representing PL mappings
ϕθ : Rw0 → Rwk+1 with k hidden layers of widths {wi}ki=1, then the linear
rectified complexity of N has an upper bound,

N (N)≤ Πk+1
i=1 C (wi−1,wi). (3)
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RL Complexity of Manifold

a. linear rectifiable b. non-linear-rectifiable

Definition (Linear Rectifiable Manifold)
Suppose M is a m-dimensional manifold, embedded in Rn, we say M
is linear rectifiable, if there exists an affine map ϕ : Rn→ Rm, such that
the restriction of ϕ on M, ϕ|M : M → ϕ(M)⊂ Rm, is homeomorphic. ϕ

is called the corresponding rectified linear map of M.
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Manifold RL Complexity

Definition (Linear Rectifiable Atlas)
Suppose M is a m-dimensional manifold, embedded in Rn,
A = {(Uα ,ϕα} is an atlas of M. If each chart (Uα ,ϕα ) is linear
rectifiable, ϕα : Uα → Rm is the rectified linear map of Uα , then the
atlas is called a linear rectifiable atlas of M.

Definition (Rectified Linear Complexity of a Manifold)
Suppose M is a m-dimensional manifold embedded in Rn, the rectified
linear complexity of M is denoted as N (Rn,M) and defined as,

N (Rn,M) := min{|A | |A is a linear rectifiable altas of M} . (4)
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Encodable Condition

Definition (Encoding Map)
Suppose M is a m-dimensional manifold, embedded in Rn, a
continuous mapping ϕ : Rn→ Rm is called an encoding map of
(Rn,M), if restricted on M, ϕ|M : M → ϕ(M)⊂ Rm is homeomorphic.

Theorem (Encodable Condition)
Suppose a ReLU DNN N(w0, . . . ,wk+1) represents a PL mapping
ϕθ : Rn→ Rm, M is a m-dimensional manifold embedded in Rn. If ϕθ is
an encoding mapping of (Rn,M), then the rectified linear complexity of
N is no less that the rectified linear complexity of (Rn,M),

N (Rn,M)≤N (ϕθ )≤N (N).
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Representation Limitation Theorem

C1 Peano curve C2 Peano curve

Figure: N (R2,Cn)≥ 4n+1

Theorem
Given any ReLU deep neural network N(w0,w1, . . . ,wk ,wk+1), there is
a manifold M embedded in Rw0 , such that M can not be encoded by N.
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How does DL control the probability distribution?
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Concept

Concept
Consider the total space Ω consisting all possible n by n images, a
concept is a subset D in the space, D ⊂ Ω. A concept is represented
as a probability measure

P(x) = Prob{x ∈ D}.
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Generative Model

Generative Model
G : Z →X maps a fixed probability distribution ζ to the training data
probability distribution ν .
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Optimal Transport Problem

(Ω, �)

(D, �)

�

p

�(p)

Earth movement cost.
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Optimal Transportation

Definition (Transportation Cost)
Given two bounded domains in Rn with probability measures (X ,µ)
and (Y ,ν), with equal total measure µ(X ) = ν(Y ). Suppose the cost of
moving a unit mass from point x to point y is c(x ,y), for a
transportation map f : (X ,µ)→ (Y ,ν), the total transportation cost is

C (T ) =
∫

X
c(x,T (x))dµ(x).

(X,µ) (Y, ν)

T
x T (x)
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Optimal Mass Transportation

Definition (Measure-Preserving Mapping)
Given two bounded domains in Rn with probability measures (X ,µ)
and (Y ,ν), with equal total measure µ(X ) = ν(Y ), a transportation
mapping T : X → Y is measure-preserving, if for any measurable set
B ⊂ Y , ∫

T−1(B)
dµ(x) =

∫
B

dν(y),

and denoted as T#µ = ν .

Suppose T is a smooth map, then measure-preserving condition is
equivalent to the Jacobian equation µ(x)dx = ν(y)dy

det(DT ) =
µ(x)

ν ◦T (x)
.
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Optimal Transport Problem

Problem (Monge)
Find a measure-preserving transportation map T : (X ,µ)→ (Y ,ν) that
minimizes the transportation cost,

(MP) min
T#µ=ν

C (T ) = min
T#µ=ν

∫
X

c(x ,T (x))dµ(x).

such kind of map is called the optimal transportation map.

Definition (Wasserstein distance)
The transportation cost of the optimal transportation map
T : (X ,µ)→ (Y ,ν) is called the Wasserstein distance between µ and
ν , denoted as

Wc(µ,ν) := min
T#µ=ν

C (T ).
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Cost Function c(x ,y)

The cost of moving a unit mass from point x to point y .

Monge(1781) : c(x ,y) = |x−y |.

This is the natural cost function. Other cost functions include

c(x ,y) = |x−y |p,p 6= 0
c(x ,y) = − log |x−y |
c(x ,y) =

√
ε + |x−y |2,ε > 0

Any function can be cost function. It can be negative.
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Kantorovich Problem

Kantorovich relaxed transportation maps to transportation schemes.

Problem (Kantorovich)
Find an optimal transportation scheme, namely a joint probability
measure ρ ∈P(X ×Y ), with marginal measures ρx# = µ, ρy# = ν ,
that minimizes the transportation cost,

(KP) min
ρ

{∫
X×Y

c(x ,y)dρ(x ,y)
∣∣ρx# = µ, ρy# = ν

}
.

Kantorovich solved this problem by inventing linear programming, and
won Nobel’s prize in economics in 1975.
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Kantorovich Dual Problem

By the duality of linear programming, Kantorovich problem has the
dual form:

Problem (Kantorovich Dual)
Find an functions ϕ : X → R and ψ : Y → R, such that

(DP) max
ϕ,ψ

{∫
X

ϕ(x)du(x) +
∫

Y
ψ(y)dν(y),ϕ(x) + ψ(y)≤ c(x ,y)

}
.

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 39 / 76



Kantorovich Dual Problem

Definition (c-transformation)
Given a function ϕ : X → R, and c(x ,y) : X ×Y → R, its c-transform
ϕc : Y → R is given by

ϕ
c(y) := inf

x∈X
{c(x ,y)−ϕ(x)}.

Problem (Kantorovich Dual)
The Kantorovich Dual problem can be reformulated as

(DP) max
ϕ

{∫
X

ϕ(x)du(x) +
∫

Y
ϕ

c(y)dν(y)

}
.

ϕ is called Kantorovich potential.
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Brenier’s Approach

Theorem (Brenier)
If µ,ν > 0 and X is convex, and the cost function is quadratic distance,

c(x,y) =
1
2
|x−y|2

then there exists a convex function u : X → R unique upto a constant,
such that the unique optimal transportation map is given by the
gradient map

T : x→ ∇u(x).

Problem (Brenier)
Find a convex function u : X → R, such that

(BP) (∇u)#µ = ν ,

u is called the Brenier potential.
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Brenier’s Approach

From Jacobian equation, one can get the necessary condition for
Brenier potential.

Problem (Brenier)

Find the C2 Brenier potential u : X → R statisfies the Monge-Ampère
equation

(BP) det
(

∂ 2u
∂xi∂xj

)
=

µ(x)

ν(∇u(x))
.
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Wasserstein GAN Model

Σ
X

Z

ζ

G : gθ

ν

µθ

D : Wc(µθ, ν), ϕξ

ν-training data distribution; ζ -uniform distribution;
µθ = gθ#ζ -generated distribution; G - generator computes gθ ; D
-discriminator, measures the distance between ν and µθ , Wc(µθ ,ν).
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OMT view of WGAN

From the optimal transportation point of view, Wasserstein GAN
performs the following tasks:

The discriminator: computes the Wassersteind distance using
Kantorovich Dual formula:

Wc(µθ ,ν) = max
ϕξ

∫
X

ϕξ (x)dµθ (x) +
∫

Y
ϕ

c
ξ

(y)dν(y),

namely computes the Kantorovich potential ϕ;
The generator: computes a measure-preserving transportation
map gθ : Z →X , s.t. gθ#ζ = µθ = ν .
The WGAN model: min-max optimization

min
θ

max
ξ

∫
X

ϕξ ◦gθ (z)dζ (z) +
∫

Y
ϕ

c
ξ

(y)dν(y)
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OMT view of WGAN

L1 case
When c(x ,y) = |x−y |, ϕc =−ϕ, given ϕ is 1-Lipsitz, the WGAN
model: min-max optimization

min
θ

max
ξ

∫
X

ϕξ ◦gθ (z)dζ (z)−
∫

Y
ϕξ (y)dν(y).

namely
min

θ
max

ξ

Ez∼ζ (ϕξ ◦gθ (z))−Ey∼ν (ϕξ (y)).

with the constraint that ϕξ is 1-Lipsitz.
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OMT view of WGAN

L2 case
The discriminator computes the Kantorovich potential ϕ; the generator
G computes the optimal transportation map, T = ∇u, where u is the
Brenier potential; The Brenier potential equals to

u =
1
2
|x |2−ϕ(x).

Hence, in theory:
G can be obtained from the optimal D without training;
D can be obtained from the optimal G without training;
The competition between D and G should be replaced by
cooperation.
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Reason of Mode Collapse
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Mode Collapse

Generetive models are difficult to train and sensitive to
hyper-parameters;
Generetive models suffer from mode collapsing, the generated
distributions miss some modes;
Generetive models may generate unrealistic samples;
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Mode Collapse

(a) original (b) GAN (c) pacgan
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Singularity Set of OT Maps

x0

x1

γ0

γ1
γ2

γ3

Ω

∂u

Λ

Figure: Singularity structure of an optimal transportation map.

We call ΣΩ as singular set of the optimal transportation map
∇u : Ω→ Λ.
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Mode Collapse

Intrinsic Conflict
Deep neural networks can only represent continuous mappings, but
the transportation maps are discontinuous on singular sets. Namely,
the target mappings are outside the functional space of DNNs. This
conflict induces mode collapsing.
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Discontinuity of Optimal Transportation Map

f1, f̂1 f2 f̂2

(a) convex support (b) concave support: single mode
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Discontinuity of Optimal Transportation Map

f31 f32 f̂3

(c) concave support: multi modes
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Singularity Set Detection

T

ϕ−1ϕ

ϕ−1 ◦ T

p

P

Manifold

Latent Space

Figure: Singularity set detection.
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Mode Collapse

(a) a path inside the manifold (b) a path through a singularity.

Figure: Facial images generated by an AE-OT model, the image in the center
of (b) shows the transportation map is discontinuous.
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AutoEncoder-Optimal Transportation Framework
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AE-OT Model

Encoder

fθ
gξ

Decoder

OT Map T̃

Latent Space Z

ν

µ

Image Space X Image Space X

Input
Recon. Generated

Images
Images Images

Latent Code Distribution ν

Noise Distribution µ

Generator
gξ ◦ T̃

Extended

Use autoencoder to realize encoder and decoder, use OT in the latent
space to realize probability transformation.
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Experiments - Mode Collapse

(a) original (b) GAN

(c) pacgan (d) Our model, AE-OT
Figure: Comparison between conventional models with AE-OT.

Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 58 / 76



Experiments - Mode Collapse

(a) original (b) GAN

(c) pacgan (d) Our model, AE-OT
Figure: Comparison between conventional models with AE-OT.
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Experiments - Mnist

(a) AE reconstruction (b) Lucic et al. 2018

(c) Hoshen and Malik 2019 (d) AE-OT
Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 60 / 76



Experiments - Mnist Fashion

(a) AE reconstruction (b) Lucic et al. 2018

(c) Hoshen and Malik 2019 (d) AE-OT
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Experiments - Cifar 10

(a) AE reconstruction (b) Lucic et al. 2018

(c) Hoshen and Malik 2019 (d) AE-OT
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Experiments - CelebA

(a) AE reconstruction (b) Lucic et al. 2018

(c) Hoshen and Malik 2019 (d) AE-OT
Na Lei (Dalian University of Technology) Geometric Understanding of Deep Learning Nov. 6, 2022 63 / 76



Experiments - CelebA

(a) WGAN-GP (b) WGAN-div

Figure: Failure cases for WGAN-GP and WGAN-div.
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Experiments - CelebA

(c) CRGAN (d) AE-OT

Figure: Mode collapsing of CRGAN.
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Experiments - AE-OT interpolation

Figure: Curves on facial photo manifold.
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Quantitative Comparison with FID

Adversarial
Dataset NS GAN LSGAN WGAN BEGAN
MNIST 6.8 7.8 6.7 13.1
Fansion 26.5 30.7 21.5 22.9

CIFAR-10 58.5 87.1 55.2 71.4
CelebA 55.0 53.9 41.3 38.9

Non-Adversarial Reference
Dataset VAE GLO GLANN AE Reconstruction Ours
MNIST 23.8 49.6 8.6 5.5 6.4
Fansion 58.7 57.7 13.0 4.7 10.2

CIFAR-10 155.7 65.4 46.5 28.2 38.1
CelebA 85.7 52.4 46.3 67.5 68.4
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AE-OT-GAN Model
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AE-OT-GAN Framework

For further improve the quality of the generated images, we proposed
AE-OT-GAN model.
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AE-OT-GAN Framework
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AE-OT-GAN Framework

Comparison between the proposed method and the SOTA methods.
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AE-OT-GAN Framework
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AE-OT-GAN Framework
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AE-OT-GAN Interpolation

The interpolation of the AE-OT-GAN model. The left column shows the
generated images, and the right 5 images are the ones used to
generate the left images in the latent space..
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Conclusion

This work introduces a geometric understanding of deep learning:
The intrinsic pattern of natural data can be represented by
manifold distribution hypothesis.
The deep learning system has two major tasks: manifold learning
and probability distribution transformation.
Optimal transportation methods can be used to accomplish the
second task.
The regularity theory of Monge-Ampère equation explains mode
collapse.
The AE-OT framework can avoid mode collapse, and make half
the blackbox transparent.
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Thanks

Thank you!

For more information, please email to nalei@dlut.edu.cn.
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