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• Optimization problems are ubiquitous.

• Analytical solutions usually do not exist for important optimization problems.

• Such problems could only be solved in an iterative trial-and-error way.
• Simplex method

• Gradient descent method

• Trust-Region method

• Branch-and-Bound method

• Simulated Annealing

• Evolutionary Algorithms

• Bayesian Optimization

• ...

maximize   f (x)
subject to: gi (x) ≤ 0,   i =1...m
                 hj (x) = 0,   j =1...p
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In a nutshell, a trial-and-error procedure maps one candidate solution to another.

The mapping function appears under different names in the literature
• Heuristic function

• Search bias

• Gradient

• Acquisition function

• ...

𝜙: 	x → x&, ∀x, x′ ∈ 𝒳



Introduction

5

It is non-trivial to design a good search bias for many optimization problems.
• The problem is complex (e.g., non-convex, not differentiable, no explicit formulation...)

Toolbox accumulated over 50 years

Truss Design Problem

maximize   f (x)
subject to: gi (x) ≤ 0,   i =1...m
                 hj (x) = 0,   j =1...p

What is the mathematical formulation of these functions? 

? ? ?
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It is non-trivial to design a good search bias for many optimization problems.
• The problem is complex (e.g., non-convex, not differentiable, no explicit formulation...)

• Requires heavy domain expertise and prior knowledge to design
• A surrogate objective function with good properties

• Good heuristic function for heuristic search (such as A*)

• Good sub-problem for branch-and-bound

• ...

Can we acquire prior knowledge from data? – Learn to Optimize (L2O)
• A general methodology

• Not brand new

Artificial Intelligence – A Modern Approach
Third Edition, pp. 102, 2010
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Many instantiations of the L2O idea share a unified framework.

Generate new solution Evaluate the new solution
x1 … xD quality

… … … …

… … … …

archive

Model (Search Bias)
Learn

In machine learning language: What is the model learned for?
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To generate (sampling from a probability distribution) new candidate solutions.
• Bayesian Optimization [1][48]

• Evolution Strategies [2]

• Estimation of Distribution Algorithms [49]

Sampling the learned distribution
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To choose the operator (e.g., a probability distribution) for generating new solutions.
• Self-adaptation [3]

• Hyper-heuristic [4]

• ...

Use the chosen operator
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To accelerate the evaluation of new solutions.
• Surrogate-assisted Evolutionary Optimization [5][47]

• Response Surface Model [6]

• ...

Use the surrogate model for evaluation 
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Learn for What

Generate Solutions

Evaluate Solutions

Choose Operators

Adapt Parameters

Reduce Search Space

Bayesian Optimization [1][48]

Evolution Strategy [2]

Surrogate-assisted Evolutionary Optimization[5][47]

Response Surface Model [6]

Experimental Design [7]

Self-adaptation [3][9]

Hyper-heuristic [4]

Reactive Search [8]

Parameter Control [10]

Hierarchical Decomposition [11][12]

Data-driven Cooperative Coevolution [13][19]

…. Negatively Correlated Search [20]
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Shared framework induces Shared Challenge

• Learning is done on-the-fly (i.e., in the loop of an optimization algorithm)

• Can one hard optimization problem be better solved by introducing another hard

optimization problem (learning) into an optimization algorithm?
• No conclusive answer, although indirect evidence exists for some case studies [17] [18].

How can we obtain the green curve?
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An illustrative example: Learning interactions between decision variables

As the learning “accuracy” increases
• Marginal benefit of learning decreases, while learning cost increases

• What is the best trade-off?
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Learning-in-the-loop could be viewed as the counterpart of online learning in L2O context.

The rise of offline L2O : L2O for algorithm design
• Train an optimization algorithm (solver) with data.

• A data-driven paradigm for algorithm/solver design.

parameterized solver

Instances of optimization problem
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Why offline?
• Offline learning is, in general, more tractable and reliable.

• Less restricted by the time budget allowed for solving an optimization problem.

• Relief human labors + possibly better algorithm

Traditional Human-centric design process Automated algorithm design process
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Like all machine learning tasks, the high-level learning problem is defined by:
• Solver representation: A (a parameterized optimization algorithm, e.g., a heuristic algorithm)

• Training set : 𝐼 = {𝑠0},

• Some performance indicator: 𝑚	(determined by the application/user, e.g., solution quality, runtime)

• Learning Objective: 𝑎𝑟𝑔𝑚𝑎𝑥
7

𝑚(𝐴, 𝐼)

The high-level optimization problems are still tough since the objective function could be

• Not differentiable

• No clear mathematical formulations

• Noisy (particularly for NP-Hard problems)
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Chip Placement [14]

(Nature’2021)

Outputs layouts in 6 hours,
comparable to those designed by
human experts taking several
weeks

Matrix Multiplication [15]

(Nature’2022)

Multiplies two 4×4 matrices in
only 47 multiplications, less than
49 multiplications required by
Strawson's algorithm

Multi-view Pose Estimation [16]

(CVPR’2022 best paper)

Achieves at least 10+ times
speedup compared to the best
known results
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Learning at
Different Levels

Single
Optimizer

Optimizer
Ensemble

Automatic Algorithm Configuration
[33-35]

Automatic Algorithm Selection
[42-45]

Automatic Construction of
Optimizer Ensemble [23][26-28][46]

parameter

Learning to Branch & Bound
[36][37]

rule

Neural Combinatorial Optimization
[29][40][41]

selector

ensemble

optimizer

component Learning Hybrid Optimizers
[38][39]

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning Learning Modes
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Parallel Algorithm Portfolios (PAP) [21][22]
• Run multiple algorithms in parallel, introduce minimum implementation overhead.

• Inherently generalize better than a single algorithm (No-Free-Lunch).

• A framework adopted by many industrial software system.

Performance

Instance index

1+1 1+k



PAP : 𝑃 = {𝐴<, 𝐴= …𝐴?} , Training set : 𝐼 = {s𝑖}

Performance indicator of a PAP:

Objective Function : argmin
H

𝑚(𝑃, 𝐼)

Learning Optimizer Ensembles

𝑚 𝑃, 𝑠0 = min{𝑚 𝐴<, 𝑠0 , 𝑚 𝐴=, 𝑠0 , … ,𝑚 𝐴?, 𝑠0 }

22

Performance indicator of an optimization algorithm

not separable with respect to algorithms



If the training set could be “clustered” in advance, k algorithms could be learned separately.

But how to cluster training instances without problem-specific feature engineering?
• A problem-independent approach [23]: using algorithm behavior data as instance feature

S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAAI 2019

Learning Optimizer Ensembles
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What if we don’t have enough training instances?
• Suppose a solver for combinatorial optimization problem is to be built.

Learning Optimizer Ensembles

Indeed, benchmark set is small [27] Overfitting may also occurs [24]

Problem No. of 
Instance

TSP 143 http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html

CVRP 319 http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/

VRPSPDTW 85 https://github.com/senshineL/
VRPenstein

Randomly generated instances are biased [25]
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A Co-Evolutionary Approach [26]: Alternatively improve the solver and generate pseudo instances

to solve a minimax problem.

In essence, iteratively maximize a generalization bound of the PAP.

K. Tang, S. Liu, P. Yang and X. Yao, “Few-shots Parallel Algorithm Portfolio Construction via Co-evolution,” IEEE Transactions on Evolutionary Computation, 2021

Learning Optimizer Ensembles

𝐦𝐢𝐧
𝑷

𝐦𝐚𝐱
𝒔∈𝑰∗

𝒎 𝐴, 𝒔 		:

𝑱 𝐴& − 𝑱 𝐴 ≤ V [𝒎 𝐴&, 𝒔 −𝒎(𝐴, 𝒔)]
�

𝒔∈𝑰∪𝑰&
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Performance of The Learned PAP

SAT_PAP[23] TSP_PAP[28] VRPSPDTW_PAP[26]

Competitive to SOTA Significantly outperform SOTA New best solution

Priss6：SAT’16 Competition (Agile Track) Winner

PfolioUZK：SAT’12 Competition (Parallel Track) Winner

Plingeling-bbc：SAT’16 Competition (Parallel Track) Winner

LKH, EAX：Best TSP solvers so far

LKH/EAX-TUNED：LKH & EAX with further finetuning

EAX_LKH：PAP consisted with LKH & EAX

BKS：Best Known Solutions by September 2020

26

No more than 7 days * 40core Intel Xeon machines with 128 GB RAM (2.20 GHz, 30 MB Cache)
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• L2O is a general idea/methodology with long history and fruitful results.

• L2O could be viewed from many other facets, each leading to an instantiation of the idea.
• Learning mode viewpoint: Online/Offline mode

• Model representation viewpoint: Heuristic rules, parameters of algorithms, neural networks...

• Learning technique viewpoint: Supervised/Unsupervised/Reinforcement/Evolutionary Learning...

• Recently, the “offline” mode of L2O has made quite a few impressive progresses in

application domains, and may even lead to a paradigm shift for algorithm design.



Road Ahead

29

• What is the key challenge for L2O, in comparison to Learn to Classify/Predict/Rank?
• SOTA NCO solver is not as competitive as traditional solvers [31]

• Where to get the data?
• Deeper integration between optimization and simulation.

• More rigorous theoretical foundation?
• Bridging theory of learning and optimization (e. g. PAC + Robust Optimization )

• How much data do we need to learn an algorithm?
• Some efforts are emerging [32]

TSP-50 TSP-100 TSP-500 TSP-1000

Best NCO Solver (POMO [29]) 0.0006% 0.1278% 1.7621% out of memory

Heuristic Solver (EAX [30]) 0% 0% 0.0140% 0.0182%
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Thanks! 
Comments/Questions are most welcome!

Dr. Shengcai Liu Dr. Peng Yang Dr. Juan Wang Dr. Xiaofen Lu Dr. Fei Peng Dr. Zhenyu Yang
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