
Learn to Optimize – An Overview

Ke TANG

Department of Computer Science and Engineering
Southern University of Science and Technology (SUSTech)

tangk3@sustech.edu.cn
https://faculty.sustech.edu.cn/tangk3/

1

Outline

2

n Introduction

n L2O On-The-Fly

n L2O for Algorithm Design

n Summary

Introduction

3

• Optimization problems are ubiquitous.

• Analytical solutions usually do not exist for important optimization problems.

• Such problems could only be solved in an iterative trial-and-error way.
• Simplex method

• Gradient descent method

• Trust-Region method

• Branch-and-Bound method

• Simulated Annealing

• Evolutionary Algorithms

• Bayesian Optimization

• ...

maximize f (x)
subject to: gi (x) ≤ 0, i =1...m
 hj (x) = 0, j =1...p

Introduction

4

In a nutshell, a trial-and-error procedure maps one candidate solution to another.

The mapping function appears under different names in the literature
• Heuristic function

• Search bias

• Gradient

• Acquisition function

• ...

𝜙: 	x → x&, ∀x, x′ ∈ 𝒳

Introduction

5

It is non-trivial to design a good search bias for many optimization problems.
• The problem is complex (e.g., non-convex, not differentiable, no explicit formulation...)

Toolbox accumulated over 50 years

Truss Design Problem

maximize f (x)
subject to: gi (x) ≤ 0, i =1...m
 hj (x) = 0, j =1...p

What is the mathematical formulation of these functions?

? ? ?

Introduction

6

It is non-trivial to design a good search bias for many optimization problems.
• The problem is complex (e.g., non-convex, not differentiable, no explicit formulation...)

• Requires heavy domain expertise and prior knowledge to design
• A surrogate objective function with good properties

• Good heuristic function for heuristic search (such as A*)

• Good sub-problem for branch-and-bound

• ...

Can we acquire prior knowledge from data? – Learn to Optimize (L2O)
• A general methodology

• Not brand new

Artificial Intelligence – A Modern Approach
Third Edition, pp. 102, 2010

Outline

7

n Introduction

n L2O On-The-Fly

n L2O for Algorithm Design

n Summary

A Unified Framework

8

Many instantiations of the L2O idea share a unified framework.

Generate new solution Evaluate the new solution
x1 … xD quality

… … … …

… … … …

archive

Model (Search Bias)
Learn

In machine learning language: What is the model learned for?

Learn for What?

9

To generate (sampling from a probability distribution) new candidate solutions.
• Bayesian Optimization [1][48]

• Evolution Strategies [2]

• Estimation of Distribution Algorithms [49]

Sampling the learned distribution

Learn for What?

10

To choose the operator (e.g., a probability distribution) for generating new solutions.
• Self-adaptation [3]

• Hyper-heuristic [4]

• ...

Use the chosen operator

Learn for What?

11

To accelerate the evaluation of new solutions.
• Surrogate-assisted Evolutionary Optimization [5][47]

• Response Surface Model [6]

• ...

Use the surrogate model for evaluation

Learn for What?

12

Learn for What

Generate Solutions

Evaluate Solutions

Choose Operators

Adapt Parameters

Reduce Search Space

Bayesian Optimization [1][48]

Evolution Strategy [2]

Surrogate-assisted Evolutionary Optimization[5][47]

Response Surface Model [6]

Experimental Design [7]

Self-adaptation [3][9]

Hyper-heuristic [4]

Reactive Search [8]

Parameter Control [10]

Hierarchical Decomposition [11][12]

Data-driven Cooperative Coevolution [13][19]

…. Negatively Correlated Search [20]

Dilemma of L2O

13

Shared framework induces Shared Challenge

• Learning is done on-the-fly (i.e., in the loop of an optimization algorithm)

• Can one hard optimization problem be better solved by introducing another hard

optimization problem (learning) into an optimization algorithm?
• No conclusive answer, although indirect evidence exists for some case studies [17] [18].

How can we obtain the green curve?

Dilemma of L2O

14

An illustrative example: Learning interactions between decision variables

As the learning “accuracy” increases
• Marginal benefit of learning decreases, while learning cost increases

• What is the best trade-off?

Outline

15

n Introduction

n L2O On-The-Fly

n L2O for Algorithm Design

n Summary

L2O for Algorithm Design – General Ideas

16

Learning-in-the-loop could be viewed as the counterpart of online learning in L2O context.

The rise of offline L2O : L2O for algorithm design
• Train an optimization algorithm (solver) with data.

• A data-driven paradigm for algorithm/solver design.

parameterized solver

Instances of optimization problem

L2O for Algorithm Design – General Ideas

17

Why offline?
• Offline learning is, in general, more tractable and reliable.

• Less restricted by the time budget allowed for solving an optimization problem.

• Relief human labors + possibly better algorithm

Traditional Human-centric design process Automated algorithm design process

L2O for Algorithm Design – General Ideas

18

Like all machine learning tasks, the high-level learning problem is defined by:
• Solver representation: A (a parameterized optimization algorithm, e.g., a heuristic algorithm)

• Training set : 𝐼 = {𝑠0},

• Some performance indicator: 𝑚	(determined by the application/user, e.g., solution quality, runtime)

• Learning Objective: 𝑎𝑟𝑔𝑚𝑎𝑥
7

𝑚(𝐴, 𝐼)

The high-level optimization problems are still tough since the objective function could be

• Not differentiable

• No clear mathematical formulations

• Noisy (particularly for NP-Hard problems)

L2O for Algorithm Design – Recent Advances

19

Chip Placement [14]

(Nature’2021)

Outputs layouts in 6 hours,
comparable to those designed by
human experts taking several
weeks

Matrix Multiplication [15]

(Nature’2022)

Multiplies two 4×4 matrices in
only 47 multiplications, less than
49 multiplications required by
Strawson's algorithm

Multi-view Pose Estimation [16]

(CVPR’2022 best paper)

Achieves at least 10+ times
speedup compared to the best
known results

L2O for Algorithm Design – Recent Advances

20

Learning at
Different Levels

Single
Optimizer

Optimizer
Ensemble

Automatic Algorithm Configuration
[33-35]

Automatic Algorithm Selection
[42-45]

Automatic Construction of
Optimizer Ensemble [23][26-28][46]

parameter

Learning to Branch & Bound
[36][37]

rule

Neural Combinatorial Optimization
[29][40][41]

selector

ensemble

optimizer

component Learning Hybrid Optimizers
[38][39]

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning Learning Modes

Learning Optimizer Ensembles

21

Parallel Algorithm Portfolios (PAP) [21][22]
• Run multiple algorithms in parallel, introduce minimum implementation overhead.

• Inherently generalize better than a single algorithm (No-Free-Lunch).

• A framework adopted by many industrial software system.

Performance

Instance index

1+1 1+k

PAP : 𝑃 = {𝐴<, 𝐴= …𝐴?} , Training set : 𝐼 = {s𝑖}

Performance indicator of a PAP:

Objective Function : argmin
H

𝑚(𝑃, 𝐼)

Learning Optimizer Ensembles

𝑚 𝑃, 𝑠0 = min{𝑚 𝐴<, 𝑠0 , 𝑚 𝐴=, 𝑠0 , … ,𝑚 𝐴?, 𝑠0 }

22

Performance indicator of an optimization algorithm

not separable with respect to algorithms

If the training set could be “clustered” in advance, k algorithms could be learned separately.

But how to cluster training instances without problem-specific feature engineering?
• A problem-independent approach [23]: using algorithm behavior data as instance feature

S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAAI 2019

Learning Optimizer Ensembles

23

What if we don’t have enough training instances?
• Suppose a solver for combinatorial optimization problem is to be built.

Learning Optimizer Ensembles

Indeed, benchmark set is small [27] Overfitting may also occurs [24]

Problem No. of
Instance

TSP 143 http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html

CVRP 319 http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/

VRPSPDTW 85 https://github.com/senshineL/
VRPenstein

Randomly generated instances are biased [25]

24

A Co-Evolutionary Approach [26]: Alternatively improve the solver and generate pseudo instances

to solve a minimax problem.

In essence, iteratively maximize a generalization bound of the PAP.

K. Tang, S. Liu, P. Yang and X. Yao, “Few-shots Parallel Algorithm Portfolio Construction via Co-evolution,” IEEE Transactions on Evolutionary Computation, 2021

Learning Optimizer Ensembles

𝐦𝐢𝐧
𝑷

𝐦𝐚𝐱
𝒔∈𝑰∗

𝒎 𝐴, 𝒔 		:

𝑱 𝐴& − 𝑱 𝐴 ≤ V [𝒎 𝐴&, 𝒔 −𝒎(𝐴, 𝒔)]
�

𝒔∈𝑰∪𝑰&

25

Performance of The Learned PAP

SAT_PAP[23] TSP_PAP[28] VRPSPDTW_PAP[26]

Competitive to SOTA Significantly outperform SOTA New best solution

Priss6：SAT’16 Competition (Agile Track) Winner

PfolioUZK：SAT’12 Competition (Parallel Track) Winner

Plingeling-bbc：SAT’16 Competition (Parallel Track) Winner

LKH, EAX：Best TSP solvers so far

LKH/EAX-TUNED：LKH & EAX with further finetuning

EAX_LKH：PAP consisted with LKH & EAX

BKS：Best Known Solutions by September 2020

26

No more than 7 days * 40core Intel Xeon machines with 128 GB RAM (2.20 GHz, 30 MB Cache)

Outline

27

n Introduction

n L2O On-The-Fly

n L2O for Algorithm Design

n Summary

Summary

28

• L2O is a general idea/methodology with long history and fruitful results.

• L2O could be viewed from many other facets, each leading to an instantiation of the idea.
• Learning mode viewpoint: Online/Offline mode

• Model representation viewpoint: Heuristic rules, parameters of algorithms, neural networks...

• Learning technique viewpoint: Supervised/Unsupervised/Reinforcement/Evolutionary Learning...

• Recently, the “offline” mode of L2O has made quite a few impressive progresses in

application domains, and may even lead to a paradigm shift for algorithm design.

Road Ahead

29

• What is the key challenge for L2O, in comparison to Learn to Classify/Predict/Rank?
• SOTA NCO solver is not as competitive as traditional solvers [31]

• Where to get the data?
• Deeper integration between optimization and simulation.

• More rigorous theoretical foundation?
• Bridging theory of learning and optimization (e. g. PAC + Robust Optimization)

• How much data do we need to learn an algorithm?
• Some efforts are emerging [32]

TSP-50 TSP-100 TSP-500 TSP-1000

Best NCO Solver (POMO [29]) 0.0006% 0.1278% 1.7621% out of memory

Heuristic Solver (EAX [30]) 0% 0% 0.0140% 0.0182%

References

30

1. D. R. Jones, M. Schonlau and W. J. Welch, “Efficient Global Optimization of Expensive Blackbox Functions.” Journal of Global Optimization, 1998.

2. N. Hansen and A. Ostermeier, “Completely Derandomized Self-adaptation in Evolution Strategies.” Evolutionary Computation, 2001.

3. A. C. Wilson et al., “The Marginal Value of Adaptive Gradient Methods in Machine Learning.” NeurIPS-2017.

4. E. K. Burke et al., “Hyper-Heuristics: A Survey of the State of the Art.” Journal of the Operational Research Society, 2013.

5. Y. Jin, M. Olhofer and B. Sendhoff, “A Framework for Evolutionary Optimization with Approximate Fitness Functions.” IEEE Transactions on Evolutionary Computation, 2002

6. R. H. Myers et al., “Response Surface Methodology: A Retrospective and Literature Survey.” Journal of Quality Technology, 2004.

7. M. I. Rodrigues and A. F. Iemma. Experimental design and process optimization. CRC Press, 2014.

8. R. Battiti, M. Brunato and A. Mariello, “Reactive Search Optimization: Learning while Optimizing." Handbook of Metaheuristics. Springer, 2019.

9. X. Lu, K. Tang, S. Menzel and X. Yao, “Dynamic Optimization in Fast-Changing Environments via Offline Evolutionary Search,” IEEE Transactions on Evolutionary, 2022.

10. G. Karafotias, M. Hoogendoorn and A. E. Eiben, “Parameter Control in Evolutionary Algorithms: Trends and challenges." IEEE Transactions on Evolutionary Computation, 2014.

11. K. Tang, J. Wang X. Li and X. Yao, “A Scalable Approach to Capacitated Arc Routing Problems Based on Hierarchical Decomposition.” IEEE Transactions on Cybernetics, 2017.

12. P. Yang, K. Tang and X. Yao, “Turning High-dimensional Optimization into Computationally Expensive Optimization,” IEEE Transactions on Evolutionary Computation, 2018.

13. W. Chen, T. Weise, Z. Yang and K. Tang, “Large-Scale Global Optimization using Cooperative Coevolution with Variable Interaction Learning,” PPSN-2010

References

31

14. A. Mirhoseini et al., “A Graph Placement Methodology for Fast Chip Design.” Nature 2021.

15. A. Fawzi et al., “Discovering Faster Matrix Multiplication Algorithms with Reinforcement Learning.” Nature 2022.

16. P .Hruby, T. Duff, A. Leykin and T. Pajdla, “Learning to Solve Hard Minimal Problems.” CVPR-2022.

17. C. Qian, K. Tang and Z. H. Zhou, “Selection Hyper-heuristics Can Provably be Helpful in Evolutionary Multi-objective Optimization.” PPSN-2016.

18. Z. A. Zhang, C. Bian and C. Qian, “Running Time Analysis of the (1+1)-EA using Surrogate Models on OneMax and LeadingOnes.” PPSN-2022.

19. L. Li and K. Tang, “History-Based Topological Speciation for Multimodal Optimization,” IEEE Transactions on Evolutionary Computation, 2015.

20. K. Tang, P. Yang and X. Yao, “Negatively Correlated Search,” IEEE Journal on Selected Areas in Communications, 2016.

21. F. Peng, K. Tang, G. Chen and X. Yao, “Population-based Algorithm Portfolios for Numerical Optimization,” IEEE Transactions on Evolutionary Computation, 2010.

22. K. Tang, F. Peng, G. Chen and X. Yao, “Population-based Algorithm Portfolios with Automated Constituent Algorithms Selection,” Information Sciences, 2014.

23. S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAAI-2019.

24. F. Hutter, H. H. Hoos and Thomas Stützle, “Automatic Algorithm Configuration based on Local Search." AAAI-2007.

25. K. S. Miles and S. Bowly, “Generating New Test Instances by Evolving in Instance Space.” Computers & Operations Research, 2015.

26. K. Tang, S. Liu, P. Yang and X. Yao, “Few-shots Parallel Algorithm Portfolio Construction via Co-evolution,” IEEE Transactions on Evolutionary Computation, 2021.

27. S. Liu, K. Tang and X. Yao, “Generative Adversarial Construction of Parallel Portfolios,” IEEE Transactions on Cybernetics, 2022.

References

32

28. 刘晟材,杨鹏,唐珂.近似最优并行算法组智能汇聚构造.中国科学:技术科学 2021.

29. Y. D. Kwon et al., “Pomo: Policy Optimization with Multiple Optima for Reinforcement Learning.” NeurIPS-2020.

30. Y. Nagata and S. Kobayashi, “A Powerful Genetic Algorithm Using Edge Assembly Crossover for the Traveling Salesman Problem.” INFORMS Journal on Computing, 2013.

31. S. Liu, Y. Zhang, K. Tang and X. Yao, “How Good Is Neural Combinatorial Optimization?” arXiv preprint arXiv:2209.10913, 2022.

32. M. F. Balcan et al., “How Much Data is Sufficient to Learn High-performing Algorithms? Generalization Guarantees for Data-driven Algorithm Design." STOC-2021.

33. S. Liu, K. Tang, Y. Lei and X. Yao, “On Performance Estimation in Automatic Algorithm Configuration,” AAAI-2020.

34. F. Hutter, H. H. Hoos and K. L. Brown, “Sequential Model-based Optimization for General Algorithm Configuration.” LION-2011.

35. M. Lindauer et al., “SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization.” Journal of Machine Learning Research, 2022.

36. Y. Bengio, A. Lodi, and A. Prouvost. "Machine learning for combinatorial optimization: a methodological tour d’horizon." European Journal of Operational Research, 2021.

37. A. M. Alvarez, Q. Louveaux and L. Wehenkel, “A Machine Learning-Based Approximation of Strong Branching.” INFORMS Journal on Computing, 2017.

38. X. Liang et al., “NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem." NeurIPS-2021.

39. J. Zheng, K. He, J. Zhou, Y. Jin and C.-M. Li, “Combining Reinforcement Learning with Lin-Kernighan-Helsgaun Algorithm for the Traveling Salesman Problem.” AAAI-2021

40. O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks,” NeurIPS-2015.

41. I. Bello, H. Pham, Q. V. Le, M. Norouzi and S. Bengio, “Neural Combinatorial Optimization with Reinforcement Learning,” ICLR-2017.

References

33

42. L. Xu, F. Hutter, H. H. Hoos and K. L. Brown, “SATzilla: Portfolio-based Algorithm Selection for SAT.” Journal of Artificial Intelligence Research, 2007.

43. K. L. Brown, E. Nudelman and Y. Shoham, “Empirical Hardness Models: Methodology and A Case Study on Combinatorial Auctions.” Journal of the ACM, 2009.

44. L. Kotthoff, “Algorithm Selection for Combinatorial Search Problems: A Survey.” AI Magazine, 2014.

45. F. Hutter, L. Xu, H. H. Hoos and K. L. Brown, “Algorithm Runtime Prediction: Methods & Evaluation.” Artificial Intelligence, 2014.

46. M. Lindauer, H. H. Hoos, K. L. Brown and T. Schaub, “Automatic Construction of Parallel Portfolios via Algorithm Configuration.” Artificial Intelligence, 2017.

47. D. Gorissen, T. Dhaene and F. D. Turck, “Evolutionary Model Type Selection for Global Surrogate Modeling.” Journal of Machine Learning Research, 2009.

48. J. Snoek, H. Larochelle and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms.” NeurIPS-2012.

49. P. Larrañaga and J. A. Lozano, “Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation.” Springer Science & Business Media, 2001.

Collaborators

34

Thanks!
Comments/Questions are most welcome!

Dr. Shengcai Liu Dr. Peng Yang Dr. Juan Wang Dr. Xiaofen Lu Dr. Fei Peng Dr. Zhenyu Yang

Prof. Xin Yao Prof. Guoliang Chen

