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What is Machine Teaching?

Machine teaching (MT) [10, 11] is the study of how to design the
, typically with examples, so that learners can quickly learn
based on these examples.

It canbe considered as an of machine learning, where machine learning

aims tolearn model parameters from a dataset, while MT aims to find a minimal dataset
from the target model parameters.

Considering the between teachers and learners, MT can be con-
ducted in either
e batch fashion [10, 5, 1, 6] where the teacher is allowed to interact with the
learner once, or
e iterative fashion [2, 3, 4] where an iterative teacher would feed examples
sequentially based on current status of the iterative learner.
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Previous iterative machine teaching algorithms [2, 3, 9, 8] are solely based on parame-
terized families of target models. They mainly focus on convergence in the parameter
space, resulting in difficulty when the target models are defined to be functions with-
out dependency on parameters.

To address such a limitation, we study a more general task - Nonparametric Iterative

Machine Teaching, which aims to teach nonparametric target models to learners in
an iterative fashion.

(a) Parametric IMT (b) Nonparametric IMT

4/16



Cont. )

Main Contribution:

¢ We comprehensively study Nonparametric Iterative Machine Teaching, which

focuses on exploring iterative algorithms for teaching
from the perspective.
® \We propose two teaching algorithms, which are named
(RFT) and (GFT), respectively. RFT is based

on random sampling with ground truth labels, and the derivation of GFT is based
on the maximization of an informative scalar.

e We theoretically analyze the of both RFT and GFT. We prove
that per-iteration reduction of loss £ for RFT and GFT has a

expressed by the discrepancy of iterative teaching, and we derive that
0

the iterative teaching dimension (ITD) of GFT is (9(1&(%)) which is shown to
be lower than the ITD of RFT, O(2L(f%)/ (i¢)).
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Teaching Settings @

Functional Optimization: We define nonparametric iterative machine teaching as a
over the collection of potential teaching sequences D in the
reproducing kernel Hilbert space:

D* =argmin M(f, f*)+ A-len(D) st f=A(D), (1)
DeD

where M denotes a discrepancy measure, len(D), which is regularized by a constant
A, is the length of the teaching sequence D, and A represents the learning
algorithm of learners.
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Algorithm 1 Random / Greedy Functional Teaching

Input: Target f*, initial £, per-iteration pack size k, small
constant € > 0 and maximal iteration number 7.
Set ft « fO,t=0.
while t < T and || f* — f*||x > edo
The teacher selects & teaching examples:
Initialize the pack of teaching examples K = 0;
for j =1to k do
(RFT) 1. Pick #%” € X randomly;
(GFT) 1. Pick mj* with the maximal difference
between f! and f*:

m;* = argmax |f'(zl) — f*(x})];
aleX—{e!"} 7}
2. Add (z;ﬂ,’yf =f* (z;*)) into K.
end
Provide K to learners.

The learner updates f* based on received K:
fte fr=n'G(L; 115 K).
Sett «t+1.

end

® |t is straightforward for teachers to pick

examples and feed them to
learners, which derives a simple teaching
baseline called Random Functional
Teaching.

Greedy Functional Teaching is to search

examples with gradients, since
the gradient norm at the optimal example
should be at every iteration.
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Analysis of Iterative Teaching Dimension

To conduct theoretical analysis on the iterative teaching dimension, we have listed
the assumptions [7] on £ and the kernel function K (x, ') € H below.

Assumption 1

The loss function L(f)is L.,-Lipschitz smooth, e, Vf, f' € Handx € X
| Ea [VL(F)] = Bo [VL()]| < Le | Ee [f] - Ba [1]], (2)

where L, > 0is a constant.

Assumption 2

The kernel function K (z,z’) € His bounded, ie., Vo, 2’ € X, K(z,z') < Mg, where
Mg > 0is a constant.
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Lemma (Sufficient Descent for RFT)

Under Assumption 1and 2, if n < 1/(2L; - M), RFT teachers can reduce the loss £
by L(f*1) — L(f*) < —n'/2-Sc(f5 ).

Theorem (Convergence for RFT)

Suppose the model of learners is initialized with f° € H and returns f' € H aftert
iterations, we have the upper bound of minimal S ( ft; x!) as
min; Sg(f% xt) < 2L(f°)/ (7jt), where 0 < 7j = mtinnlt < m
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Cont. (GFT)

Lemma (Sufficient Descent for GFT)

Under Assumption 1and 2, if 5 < 1/(2L. - M), GFT teachers can reduce the loss £
at a faster speed, L(f*) — £(f) < —1/2 - Sc(fh2t) < —n/2 - Se(fh ).

Theorem (Convergence for GFT)

Suppose the model of learners is initialized with f° € H and returns f' € H aftert
iterations, we have the upper bound of minimal S (f*; ") as

’ A _ . =
min; Sg(f7;27") < 225 L(f°). where 0 < fj = miny' < gty ¥(t) = Y775 +7 and

2
527) <
N = % € (0, 1] named greedy ratio.
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We test our RFT and GFT on both and
two algorithms present satisfactory capability to tackle
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¢ Real-world data.
Digit Correction. Cheetah Impartation.
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Thank you for listening!
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