

How Re-sampling Helps for Long-Tail Learning?

Jiang-Xin Shi^{1*} Tong Wei^{2*} Yuke Xiang³ Yu-Feng Li^{1†}

¹ National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China ² School of Computer Science and Engineering, Southeast University, Nanjing, China ³ Consumer BG, Huawei Technologies, Shenzhen, China

The 37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Background

• Real-world data often exhibits a long-tail class distribution

• Two-stage learning adopts re-sampling in the second training stage

Motivation

Can re-sampling benefit long-tail learning in the single-stage framework?

• Re-sampling leads to opposite effects on long-tail datasets

- On MNIST-LT dataset, Re-sampling **helps** long-tail learning (More balanced, more helps).
- On CIFAR100-LT dataset, Re-sampling **harms** long-tail learning (More balanced, more harm).

• We hypothesize that **re-sampling is sensitive to the contexts in the samples**

Re-sampling can learn discriminative representations

Table 1: Test accuracy (%) of CE with uniform sampling, classifier re-training (cRT), and classbalanced re-sampling (CB-RS) on four long-tail benchmarks. We report the accuracy in terms of all, many-shot, medium-shot, and few-shot classes.

	MNIST-LT				Fashion-LT				CIFAR100-LT			ImageNet-LT				
	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
CE	65.8	99.1	89.9	0.0	45.6	94.7	43.1	0.0	39.1	65.8	36.8	8.8	35.0	57.7	26.5	4.7
cRT	82.5	96.6	89.4	58.8	60.3	77.1	61.4	42.1	41.6	63.0	40.4	16.5	41.9	52.9	39.2	23.6
CB-RS	90.8	98.7	94.4	77.7	80.5	86.6	74.3	82.8	34.1	59.5	31.1	6.2	37.6	47.5	36.5	16.7

(a) Uniform sampling.

(b) Class-balanced re-sampling.

Figure 2: Visualization of learned representation of training and test set on MNIST-LT. Using classbalanced re-sampling yields more discriminative and balanced representations.

Re-sampling is sensitive to irrelevant contexts

Figure 3: Visualization of features with Grad-CAM [III] on CIFAR100-LT. Uniform sampling mainly learns label-relevant features, while re-sampling overfits the label-irrelevant features.

Figure 4: Comparison of Uniform sampling, cRT, and CB-RS on MNIST-LT and CMNIST-LT.

Method

- Context-Shift Augmentation (CSA)
 - —— a simple approach to make re-sampling robust to context-shift

Experiments

✓ CSA outperforms baseline methods

Dataset	CI	FAR100-	LT	CIFAR10-LT				
Imbalance Ratio	100	50	10	100	50	10		
СЕ	38.3	43.9	55.7	70.4	74.8	86.4		
Focal Loss [31]	38.4	44.3	55.8	70.4	76.7	86.7		
CB-Focal [7]	39.6	45.2	58.0	74.6	79.3	87.1		
CE-DRS [15]	41.6	45.5	58.1	75.6	79.8	87.4		
CE-DRW [15]	41.5	45.3	58.1	76.3	80.0	87.6		
LDAM-DRW [15]	42.0	46.6	58.7	77.0	81.0	88.2		
cRT [6]	42.3	46.8	58.1	75.7	80.4	88.3		
LWS [6]	42.3	46.4	58.1	73.0	78.5	87.7		
BBN [14]	42.6	47.0	59.1	79.8	82.2	88.3		
mixup [29]	39.5	45.0	58.0	73.1	77.8	87.1		
Remix [33]	41.9	-	59.4	75.4	-	88.2		
M2m [32]	43.5	-	57.6	79.1	-	87.5		
CAM-BS [13]	41.7	46.0	-	75.4	81.4	-		
CMO [27]	43.9	48.3	59.5	-	-	-		
cRT+mixup [34]	45.1	50.9	62.1	79.1	84.2	89.8		
LWS+mixup [34]	44.2	50.7	62.3	76.3	82.6	89.6		
CSA (ours)	45.8	49.6	61.3	80.6	84.3	89.8		
CSA + mixup (ours)	46.6	51.9	62.6	82.5	86.0	90.8		

Table 2: Test accuracy (%) on CIFAR datasets with various imbalanced ratios.

✓ CSA remedies class-balanced re-sampling

Figure 9: Comparison of re-sampling and our method under different balance ratios γ .

✓ CSA yields better representations

Figure 10: Visualization of learned representation on CIFAR100-LT.

Conclusion

- This paper investigates the reasons behind the **success/failure of re-sampling** approaches in long-tail learning
- This paper proposes a new **context-shift augmentation** module.

