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Multi-Instance Partial-Label Learning (MIPL)

MIPL1 can be seen as a generalized framework of multi-instance learning
and partial-label learning. In MIPL, a training sample is represented as a
multi-instance bag associated with a bag-level candidate label set, which
comprises a ground-truth label along with several false positive labels.
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Figure 1 Different weakly supervised learning frameworks, where the grey polygons refer to the false positive labels.

i.e., the inexact supervision exists in the instance space. The framework of PLL is shown in Figure 1b,

where each training sample is represented by a single instance coupled with a candidate label set, which

consists of a ground-truth label and several false positive labels [4]. Therefore, the exact ground-truth

label is unknown, i.e., the inexact supervision exists in the label space. In a sense, multi-instance learning

and partial-label learning are dual frameworks to each other in which the inexact supervision exists in

the instance space and the label space, respectively.

However, the inexact supervision can exist simultaneously in the instance space and the label space.

For example, in histopathological image classification (as illustrated in Figure 2a), each image can be

treated as a multi-instance bag, while ground-truth labels are provided by annotators with professional

domain knowledge [5, 6]. To reduce the labeling cost, we can assign each multi-instance bag with a

candidate label set rather than an exact label, and train a model to learn from the partially labeled

multi-instance bags. In video classification (as illustrated in Figure 2b), each video consists of multiple

frames represented as a set of instances, and the labels from social media contain noises that need to

be corrected manually [7, 8]. The labeling cost can be significantly reduced if the video classification

algorithm can learn from samples represented as sets of instances associated with candidate label sets.

Motivated by the potential applications, we formalize a novel framework named multi-instance partial-

label learning (MIPL), which can learn from data with dual inexact supervision, i.e., the inexact su-

pervision exists both in the instance space and the label space. In Figure 1d, each training sample is

represented by a multi-instance bag associated with a bag-level candidate label set, which consists of only

one ground-truth label and some false positive labels. Moreover, the bag contains at least one instance

that belongs to the ground-truth label while no instance pertains to the false positive labels. It is note-

worthy that MIPL is different from multi-instance multi-label learning (MIML) presented in Figure 1c,

where each multi-instance bag is also associated with a label set [9]. The differences between MIPL and

MIML lie in that the label set in MIML only contains ground-truth labels, while the label set in MIPL

consists of one ground-truth label and some false positive labels.

To solve the MIPL problems, we propose a tailored algorithm named MIPLGP, i.e., Multi-Instance

Partial-Label learning with Gaussian Processes. First, in order to assign each instance with a candidate

label set containing the ground-truth label, we propose a label augmentation strategy to augment each

candidate label set with a negative class label. Second, to infer the ground-truth labels from the candidate

label sets, and render the MIPL problems amenable to be solved by a multi-output Gaussian processes

regression model, we propose the Dirichlet disambiguation strategy. Last, to infer the parameters of

the Dirichlet disambiguation strategy accurately, MIPLGP induces a multi-output Gaussian processes

regression model with GPU accelerations.

Empirical evaluation of MIPLGP is conducted on five MIPL datasets. The experimental results indicate

that: (a) The MIPL is an exclusive problem that is difficult to be solved by neither multi-instance

learning approaches nor partial-label learning approaches. (b) MIPLGP achieves superior results against

Figure: The framework of MIPL.
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Figure 2 Potential applications of MIPL, where the ground-truth label is shown in red.

well-established multi-instance learning and partial-label learning approaches. (c) The proposed label

augmentation and Dirichlet disambiguation strategies are both important for solving the MIPL problems.

The rest of the paper is organized as follows. First, related work is briefly reviewed. Second, we present

the proposed MIPLGP and report the experimental setting and results. Last, we conclude this paper.

2 Related Work

2.1 Multi-Instance Learning

Multi-instance learning algorithms can be roughly divided into two groups, i.e., instance-level algorithms

and bag-level algorithms [2]. The former predicts bag-level labels by aggregating instance-level predic-

tions, e.g., averaging the probabilities of all instances in a bag. The latter induces classifiers by treating

each bag as a whole entity, which includes the bag-space paradigm and embedded-space paradigm.

In general, probabilistic multi-instance learning methods create a model that characterizes the distri-

bution of instance-level labels and yields aggregated bag-level labels. Kim and la Torre [10] proposes

a nonparametric model to capture the underlying generative process by integrating a special bag class

likelihood into the Gaussian processes. Along this line, Haußmann et al. [11] modifies the standard bag

likelihood and infers an instance-label Gaussian processes classifier using variational Bayes. To model the

dependencies among the instances, the variational autoencoder is employed to predict both the instance-

level and bag-level labels [12, 13]. A recent tendency to address multi-instance learning problems is

combining neural networks with attention mechanisms [14], where the attention scores indicate the im-

portance of the instances to the bag [6, 15]. To our knowledge, these multi-instance learning algorithms

are designed for binary classification problems, which cannot be directly adopted to solve MIPL prob-

lems. Although there are some multi-instance learning algorithms that can handle multi-classification

problems [16,17], they cannot tackle the challenge of false positive labels in the candidate label set.

2.2 Partial-Label Learning

Partial-label learning algorithms utilize the averaging-based or identification-based disambiguation strate-

gies to disambiguate the candidate label sets. The averaging-based disambiguation strategy treats all

labels in the candidate label set equally, and comprehensively considers the outputs of the learned model

on each candidate label [18, 19]. The identification-based disambiguation strategy considers the poten-

tial ground-truth label as a latent variable, and disambiguates the ambiguous labels by optimizing the

objective function related to the latent variable [20,21].

Figure: colorectal cancer classification
(sourced from CRC-MIPL dataset).

1W. Tang, W. Zhang, M.-L. Zhang. Multi-instance partial-label learning: Towards exploiting dual inexact supervision.
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Motivation & Contribution

Sc = {1, 3, 4}Sb = {0, 1, 4}

Sa = {0, 2, 3}
(a) Instance-level distribution

of three MIPL samples

Ŷc = 4Ŷb = 1
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Figure 1: A brief illustration of DEMIPL, where S and Ŷ are candidate label sets and predicted labels,
respectively. The ground-truth labels are shown in red.

However, inexact supervision can exist in instance and label space simultaneously, i.e., dual inexact
supervision [36]. This phenomenon can be observed in histopathological image classification, where
an image is typically partitioned into a multi-instance bag [37–40], and labeling ground-truth labels
incurs high costs due to the need for specialized expertise. Consequently, utilizing crowd-sourced
candidate label sets will significantly reduce the labeling cost [41]. For this purpose, a learning
paradigm called multi-instance partial-label learning (MIPL) has been proposed to work with dual
inexact supervision. In MIPL, a training sample is represented as a multi-instance bag associated with
a bag-level candidate label set, which comprises a ground-truth label along with several false positive
labels. It is noteworthy that the multi-instance bag includes at least one instance that is affiliated with
the ground-truth label, while none of the instances belong to any of the false positive labels.

Due to the difficulty in handling dual inexact supervision, to the best of our knowledge, MIPLGP
[36] is the only viable MIPL approach. MIPLGP learns from MIPL data at the instance-level by
utilizing a label augmentation strategy to assign an augmented candidate label set to each instance,
and integrating a Dirichlet disambiguation strategy with the Gaussian processes regression model [42].
Consequently, the learned features of MIPLGP primarily capture local instance-level information,
neglecting global bag-level information. This characteristic renders MIPLGP susceptible to negative
instance predictions when aggregating bag-level labels from instance-level labels. As illustrated in
Figure 1(a), identical or similar negative instances can simultaneously occur in multiple positive bags
with diverse candidate label sets, thereby intensifying the challenge of disambiguation.

In this paper, we overcome the limitations of MIPLGP by introducing a novel algorithm, named
DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning, based
on the embedded-space paradigm. Figure 1(b) illustrates that DEMIPL aggregates each multi-instance
bag into a single vector representation, encompassing all instance-level features within the bag.
Furthermore, DEMIPL effectively identifies the ground-truth label from the candidate label set.

Our contributions can be summarized as follows: First, we propose a disambiguation attention
mechanism for learning attention scores in multi-instance bags. This is in contrast to existing
attention-based MIL approaches that are limited to handling classifications with exact bag-level labels
[13, 14, 43]. Second, we propose an attention loss function that encourages the attention scores
of positive instances to approach one, and those of negative instances to approach zero, ensuring
consistency between attention scores and unknown instance-level labels. Third, we leverage the
multi-class attention scores to map the multi-instance bags into an embedded space, and propose a
momentum-based disambiguation strategy to identify the ground-truth labels of the multi-instance
bags from the candidate label sets. In addition, we introduce a real-world MIPL dataset for colorectal
cancer classification comprising 7000 images distributed across seven categories. The candidate
labels of this dataset are provided by trained crowdsourcing workers.

Experiments are conducted on the benchmark as well as real-world datasets. The experimental results
demonstrate that: (a) DEMIPL achieves higher classification accuracy on both benchmark and real-
world datasets. (b) The attention loss effectively enhances the disambiguation attention mechanism,
accurately discerning the significance of positive and negative instances. (c) The momentum-based
disambiguation strategy successfully identifies the ground-truth labels from candidate label sets,
especially in scenarios with an increasing number of false positive labels.

The remainder of the paper is structured as follows. First, we introduce DEMIPL in Section 2 and
present the experimental results in Section 3. Finally, we conclude the paper in Section 4.

2

Figure: A brief illustration of DeMipl.

The scheme based on the instance-space paradigm may be suboptimal as
global bag-level information is ignored and the predicted labels of bags are
sensitive to predictions of negative instances.

B Algorithm: we propose the first algorithm, named DeMipl, based on
the embedded-space paradigm for MIPL.

B Dataset: we introduce a real-world MIPL dataset CRC-MIPL for col-
orectal cancer classification.
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The Framework of DeMipl
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Figure 2: The framework of DEMIPL, where La and Lm are the attention loss and momentum-based
disambiguation loss, respectively.

2 Methodology

2.1 Notations and Framework of DEMIPL

Let X = Rd represent the instance space, and let Y = {l1, l2, · · · , lk} represent the label
space containing k class labels. The objective of MIPL is to derive a classifier f : 2X → Y .
D = {(Xi,Si) | 1 ≤ i ≤ m} is a training dataset that consists of m bags and their associated
candidate label sets. Particularly, (Xi,Si) is the i-th multi-instance partial-label sample, where
Xi = {xi,1,xi,2, · · · ,xi,ni} constitutes a bag with ni instances, and each instance xi,j ∈ X for
∀j ∈ {1, 2, · · · , ni}. Si ⊆ Y is the candidate label set that conceals the ground-truth label Yi,
i.e., Yi ∈ Si. It is worth noting that the ground-truth label is unknown during the training process.
Assume the latent instance-level labels within Xi is yi = {yi,1, yi,2, · · · , yi,ni

}, then ∃yi,j = Yi
and ∀yi,j /∈ Y \ {Yi} hold. In the context of MIPL, an instance is considered a positive instance if
its label is identical to the ground-truth label of the bag; otherwise, it is deemed a negative instance.
Moreover, the class labels of negative instances do not belong to the label space.

The framework of the proposed DEMIPL is illustrated in Figure 2. It consists of three main steps.
First, we extract instances in the multi-instance bag Xi and obtain instance-level feature Hi. Next,
we employ the disambiguation attention mechanism to integrate the multi-instance bag into a single
feature vector zi. Finally, we use a classifier to predict the classification confidences P i of the
multi-instance bag. To enhance classification performance, we introduce two loss functions for model
training: the attention loss La and the momentum-based disambiguation loss Lm. During the training
process, the attention mechanism and the classifier work collaboratively.

2.2 Disambiguation Attention Mechanism

Based on the embedded-space paradigm, a key component of DEMIPL is the disambiguation attention
mechanism. The attention mechanisms are common models [44–46], which can calculate attention
scores to determine the contribution of each instance to the multi-instance bag [13, 14]. The attention
scores are then utilized to aggregate the instance-level features into a single vector representation.

For a multi-instance bag Xi = {xi,1,xi,2, · · · ,xi,ni}, we employ a neural network-based function
parameterized by h to extract its feature information:

Hi = h(Xi) = {hi,1,hi,2, · · · ,hi,ni
}, (1)

where hi,j = h(xi,j) ∈ Rd′ is the feature of the j-th instance within i-th bag. For the MIPL problems,
we propose a multi-class attention mechanism. First, we calculate the relevance of each instance to
all classes, and then transform the relevance into the contribution of each instance to the bag-level
feature by a learnable linear model. The attention score ai,j of xi,j is calculated as follows:

ai,j =
1

1 + exp
{
−W>

(
tanh

(
W>

v hi,j + bv

)
� sigm

(
W>

u hi,j + bu

))} , (2)

3

Figure: The framework of DeMipl.

Two key procedures in DeMipl:

B Feature aggregation: disambiguation attention mechanism

B Label disambiguation: momentum-based disambiguation strategy
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Disambiguation Attention Mechanism

We propose a multi-class attention mechanism to calculate the attention
score ai ,j of xi ,j as follows:

ai ,j =
1

1 + exp {−W> (tanh (W>
v hi ,j + bv )� sigm (W>

u hi ,j + bu))} . (1)

To ensure that the attention scores of positive instances should be higher
than those of negative instances, the proposed attention loss is shown below:

La = − 1

m

m∑

i=1

ni∑

j=1

ai ,j log ai ,j . (2)
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Momentum-based Disambiguation Strategy

We propose momentum-based disambiguation loss to accurately identify the
ground-truth label from the candidate label set:

Lm =
1

m

m∑

i=1

k∑

c=1

w
(t)
i ,c `

(
f
(t)
c (z (t)

i ),Si
)
. (3)

Initialize the weights:

w
(0)
i ,c =

{ 1
|Si | if Yi ,c ∈ Si ,
0 otherwise,

(4)

where 1
|Si | is the cardinality of the candidate label set Si .

Update the weights:

w
(t)
i ,c =





λ(t)w
(t−1)
i ,c + (1− λ(t)) f

(t)
c (z(t)

i )∑
j∈Si

f
(t)
j (z(t)

j )
if Yi ,c ∈ Si ,

0 otherwise,
(5)

where t refers to the t-th epoch and λ(t) = T−t
T .
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Experimental Results

Table: Accuracy on the benchmark datasets.

Table 2: Classification accuracy (mean±std) of each comparing algorithm in terms of the different
number of false positive candidate labels [r ∈ {1, 2, 3}]. •/◦ indicates whether the performance of
DEMIPL is statistically superior/inferior to the compared algorithm on each dataset (pairwise t-test at
a significance level of 0.05).

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

DEMIPL

1 0.976±0.008 0.881±0.021 0.744±0.016 0.635±0.041
2 0.943±0.027 0.823±0.028 0.701±0.024 0.554±0.051
3 0.709±0.088 0.657±0.025 0.696±0.024 0.503±0.018

MIPLGP

1 0.949±0.016• 0.847±0.030• 0.716±0.026• 0.669±0.019◦
2 0.817±0.030• 0.791±0.027• 0.672±0.015• 0.613±0.026◦
3 0.621±0.064• 0.670±0.052 0.625±0.015• 0.569±0.032◦

Mean

PRODEN

1 0.605±0.023• 0.697±0.042• 0.296±0.014• 0.219±0.014•
2 0.481±0.036• 0.573±0.026• 0.272±0.019• 0.184±0.014•
3 0.283±0.028• 0.345±0.027• 0.211±0.013• 0.166±0.017•

RC

1 0.658±0.031• 0.753±0.042• 0.362±0.015• 0.279±0.011•
2 0.598±0.033• 0.649±0.028• 0.335±0.011• 0.258±0.017•
3 0.392±0.033• 0.401±0.063• 0.298±0.009• 0.237±0.020•

LWS

1 0.463±0.048• 0.726±0.031• 0.265±0.010• 0.240±0.014•
2 0.209±0.028• 0.720±0.025• 0.254±0.010• 0.223±0.008•
3 0.205±0.013• 0.579±0.041• 0.237±0.005• 0.194±0.026•

PL-AGGD

1 0.671±0.027• 0.743±0.026• 0.353±0.019• 0.355±0.015•
2 0.595±0.036• 0.677±0.028• 0.314±0.018• 0.315±0.019•
3 0.380±0.032• 0.474±0.057• 0.296±0.015• 0.286±0.018•

MaxMin

PRODEN

1 0.508±0.024• 0.424±0.045• 0.387±0.014• 0.316±0.019•
2 0.400±0.037• 0.377±0.040• 0.357±0.012• 0.287±0.024•
3 0.345±0.048• 0.309±0.058• 0.336±0.012• 0.250±0.018•

RC

1 0.519±0.028• 0.731±0.027• 0.390±0.014• 0.306±0.023•
2 0.469±0.035• 0.666±0.027• 0.371±0.013• 0.288±0.021•
3 0.380±0.048• 0.524±0.034• 0.363±0.010• 0.267±0.020•

LWS

1 0.242±0.042• 0.435±0.049• 0.225±0.038• 0.289±0.017•
2 0.239±0.048• 0.406±0.040• 0.207±0.034• 0.271±0.014•
3 0.218±0.017• 0.318±0.064• 0.216±0.029• 0.244±0.023•

PL-AGGD

1 0.527±0.035• 0.391±0.040• 0.383±0.014• 0.397±0.028•
2 0.439±0.020• 0.371±0.037• 0.372±0.020• 0.360±0.029•
3 0.321±0.043• 0.327±0.028• 0.344±0.011• 0.328±0.023•

Table 3: Classification accuracy (mean±std) of each comparing algorithm on the CRC-MIPL datasets.
Algorithm CRC-MIPL-Row CRC-MIPL-SBN CRC-MIPL-KMeansSeg CRC-MIPL-SIFT
DEMIPL 0.408±0.010 0.486±0.014 0.521±0.012 0.532±0.013
MIPLGP 0.432±0.005◦ 0.335±0.006• 0.329±0.012• –

Mean
PRODEN 0.365±0.009• 0.392±0.008• 0.233±0.018• 0.334±0.029•
RC 0.214±0.011• 0.242±0.012• 0.226±0.009• 0.209±0.007•
LWS 0.291±0.010• 0.310±0.006• 0.237±0.008• 0.270±0.007•
PL-AGGD 0.412±0.008 0.480±0.005• 0.358±0.008• 0.363±0.012•

MaxMin
PRODEN 0.401±0.007 0.447±0.011• 0.265±0.027• 0.291±0.011•
RC 0.227±0.012• 0.338±0.010• 0.208±0.007• 0.246±0.008•
LWS 0.299±0.008• 0.382±0.009• 0.247±0.005• 0.230±0.007•
PL-AGGD 0.460±0.008◦ 0.524±0.008◦ 0.434±0.009• 0.285±0.009•

dataset. When compared to the PLL algorithms, DEMIPL achieves better results in 28 out of 32 cases,245

and only underperforms against PL-AGGD in 2 cases on CRC-MIPL-Row and CRC-MIPL-SBN.246

The above results indicate thatDEMIPL achieves the best performance when combined with stronger247

bag generators such as CRC-MIPL-KMeansSeg and CRC-MIPL-SIFT. This combination enables the dis-248

ambiguation attention mechanism to learn meaningful embeddings. This aligns with the fact that249

CRC-MIPL-Row and CRC-MIPL-SBN use classic multi-instance bag generators that only consider pixel250

colors, and lack the ability to extract any of the content information. In contrast, CRC-MIPL-KMeansSeg251
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dataset. When compared to the PLL algorithms, DEMIPL achieves better results in 28 out of 32 cases,245

and only underperforms against PL-AGGD in 2 cases on CRC-MIPL-Row and CRC-MIPL-SBN.246

The above results indicate thatDEMIPL achieves the best performance when combined with stronger247

bag generators such as CRC-MIPL-KMeansSeg and CRC-MIPL-SIFT. This combination enables the dis-248
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CRC-MIPL-Row and CRC-MIPL-SBN use classic multi-instance bag generators that only consider pixel250

colors, and lack the ability to extract any of the content information. In contrast, CRC-MIPL-KMeansSeg251
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Table 4: Classification accuracy (mean±std) of DEMIPL-MD and DEMIPL.

Algorithm
FMNIST-MIPL SIVAL-MIPL

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3
DEMIPL-MD 0.744±0.273 0.784±0.018 0.586±0.101 0.607±0.024 0.530±0.021 0.499±0.035
DEMIPL 0.881±0.021 0.823±0.028 0.657±0.025 0.635±0.041 0.554±0.051 0.503±0.018

0.474 0.476 0.478 0.480 0.4820

1000 13000

13500

0.0 0.2 0.4 0.6 0.80

500
13000

13500

0.0 0.2 0.4 0.6 0.80

500

0.540 0.545 0.5500

250

500 13000

13500

0.0 0.2 0.4 0.6 0.8 1.00

500
13000

13500

0.0 0.2 0.4 0.6 0.8 1.00

500

fr
eq

ue
nc

y
fr

eq
ue

nc
y

attention score (epoch 10) attention score (epoch 50) attention score (epoch 100)

DEMIPL

DEMIPL-MD

Figure 3: The frequency distribution of attention scores on MNIST-MIPL dataset (r = 1).
and CRC-MIPL-SIFT are content-aware generators that are capable of producing semantically meaning-252

ful features. Both CRC-MIPL-Row and CRC-MIPL-SBN segment images using fixed grids, and represents253

instances based on their pixel-level colors and the colors of their adjacent rows or grids. Consequently,254

instances in CRC-MIPL-Row and CRC-MIPL-SBN exhibit similar feature representations, and possess lim-255

ited discriminative power when distinguishing positive and negative instances. With more powerful256

bag generators such as CRC-MIPL-KMeansSeg and CRC-MIPL-SIFT, which generate content-aware features257

that are more informative and discriminative, the disambiguation power of DEMIPL can be fully258

utilized as demonstrated by the significant performance advantages against all compared baselines.259

Furthermore, the CRC-MIPL dataset exhibits distinct differences between tissue cells and the back-260

ground in each image. The Mean strategy diminishes the disparities and discriminations, leading to261

superior outcomes for the Maxmin strategy in most cases when compared to the Mean strategy.262

3.4 Further Analysis263

Effectiveness of the Attention Loss To further validate the effectiveness of the proposed attention264

loss, we introduce a degenerated variant named DEMIPL-MD, which excludes the attention loss func-265

tion from DEMIPL. Table 4 verifies that DEMIPL achieves superior classification accuracy compared266

to DEMIPL-MD on both the FMNIST-MIPL and SIVAL-MIPL datasets. Notably, the difference is more267

pronounced on the FMNIST-MIPL dataset than on the SIVAL-MIPL dataset. This can be attributed to268

the fact that the feature representation of each instance in the FMNIST-MIPL dataset solely comprises269

self-contained information, enabling clear differentiation between positive and negative instances.270

Conversely, the feature representation of each instance in the SIVAL-MIPL dataset encompasses both271

self and neighboring information, leading to couplings between the feature information of positive272

instances and negative instances.273

To further investigate the scores learned by the attention loss, we visualize the frequency distribution of274

attention scores throughout the training process. As illuminated in Figure 3, the top row corresponds275

to DEMIPL-MD, while the bottom row corresponds to DEMIPL. During the initial stages of training276

(epoch=10), attention scores generated by DEMIPL show higher dispersion, suggesting that DEMIPL277

trains faster than DEMIPL-MD. At epoch=50 and 100, attention scores computed by DEMIPL tend278

to converge towards two extremes: attention scores for negative instances gravitate towards zero,279

while attention scores for positive instances approach one. More specifically, for negative instances,280

DEMIPL assigns attention scores closer to 0 compared to DEMIPL-MD. For positive instances,281

DEMIPL predominantly assigns attention scores in the range of 0.8 to 1.0, while DEMIPL-MD282

assigns scores mainly in the range of 0.6 to 0.9.283

In conclusion, the proposed attention loss effectively assigns appropriate attention scores to positive284

and negative instances, thereby improving classification accuracy.285

Effectiveness of the Momentum-based Disambiguation Strategy To further investigate the286

momentum-based disambiguation strategy, the performance of DEMIPL is compared with its two287

degenerated versions denoted as DEMIPL-PR and DEMIPL-AV. DEMIPL-PR is obtained by setting288
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Figure: The frequency distribution.
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the momentum parameter λ(t) = 0 in Equation 7, which corresponds to progressively updating the289

weights based on the current output of the classifier. In contrast, DEMIPL-AV is obtained by setting290

the momentum parameter λ(t) = 1, resulting in uniform weights throughout the training process.291

Figure 4 illustrates the performance comparison among DEMIPL, DEMIPL-PR, and DEMIPL-AV on292

the MNIST-MIPL, FMNIST-MIPL, and Birdsong-MIPL datasets. When the number of false positive labels293

is small, DEMIPL-PR and DEMIPL-AV demonstrate similar performance to DEMIPL. However,294

as the number of false positive labels increases, DEMIPL consistently outperforms DEMIPL-PR295

and DEMIPL-AV by a significant margin. This observation suggests that the momentum-based296

disambiguation strategy is more robust in handling higher levels of disambiguation complexity.297

Furthermore, it can be observed that DEMIPL-PR generally outperforms DEMIPL-AV across various298

scenarios. However, when r = 3 in the MNIST-MIPL and FMNIST-MIPL datasets, DEMIPL-AV299

surpasses DEMIPL-PR. We believe this can be attributed to the following reason: having three false300

positive labels within the context of five classifications represents an extreme case. DEMIPL-PR301

likely assigns higher weights to false positive labels, whereas DEMIPL-AV uniformly assigns weights302

to each candidate label, adopting a more conservative approach to avoid assigning excessive weights303

to false positive labels.304

In a nutshell, the proposed momentum-based disambiguation strategy demonstrates superior robust-305

ness compared to existing methods for disambiguation. This is particularly evident in scenarios306

involving a large number of false positive labels.307

Parameter Sensitivity Analysis The weight λa in Equation 8 serves as the primary hyperparameter308

in DEMIPL. Figure 5 illustrates the sensitivity analysis of the weight λa on the MNIST-MIPL and309

CRC-MIPL-SIFT datasets. The learning rates on the MNIST-MIPL dataset are set to 0.01, 0.01, and310

0.05 for r = 1, 2, 3, respectively, while on the CRC-MIPL-SIFT dataset, the learning rate is set to311

0.01. DEMIPL demonstrates insensitivity to changes in the weight λa. In the experiments involving312

DEMIPL and its variants, the weight λa is chosen from a set of {0.0001, 0.001}.313

4 Conclusion314

In this paper, we propose DEMIPL, the first deep learning-based algorithm for multi-instance partial-315

label learning, accompanied by a real-world dataset. Specifically, DEMIPL utilizes the disambiguation316

attention mechanism to aggregate each multi-instance bag into a single vector representation, which317

is further used in conjunction with the momentum-based disambiguation strategy to determine318

the ground-truth label from the candidate label set. The disambiguation attention mechanism and319

momentum-based strategy synergistically facilitate disambiguation in both the instance and label320

spaces. Extensive experimental results indicate that DEMIPL outperforms the compared algorithms321

in 96.3% of cases on benchmark datasets and 88.6% of cases on the real-world dataset. However, on322

the SIVAL-MIPL dataset, DEMIPL does not demonstrate superiority over MIPLGP. In the future, we323

will investigate the inter-instance relationships within the context of MIPL.324
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Figure: Accuracy of DeMipl and variants.

B DeMipl outperforms the compared algorithms in 96.3% of cases on benchmark datasets
and in 88.6% of cases on the CRC-MIPL dataset.

B Both the attention loss and momentum-based disambiguation strategy are conducive to
improving accuracy.
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Thank you for listening!

More resources are available at http://palm.seu.edu.cn/zhangml/
and https://github.com/tangw-seu/DEMIPL.

Codes & Datasets GitHub
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