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ih Background

[ Time series

B Time series data are sequences of observations collected over time, have been the subject of
significant research interest in recent years due to their importance in various domains.

B The analysis of time series data not only has significant academic research value but also 1s an
essential tool for data-driven decision-making broad range of applications.
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Abnormal Traffic Detection Healthcare Monitoring Industrial Detection



||| Problem Definition

O Time series classification (TSC)
B The goal of TSC is to build a function model that can learn the patterns in the time series data
and generalize well to make accurate predictions on unseen data.

O Find informative patterns relative to target class labels
B [t usually refers to various complex patterns to be mined for TSC

B A typical feature is to cover different time scales
v" Local sub-series or long time interval

Sinus Rhythm Sinus Bradycardia

Example of ECG Classification



||| Related Works & Motivation

0 Traditional methods

B Shapelet based model B Key limitations
B Lcarning shapelets v Expensive computation cost

B Distance-based v' Hard to serve large scale time series scenario
B NN-DTW v' Linear transformation

B Feature based

> XGBoost

O Convolution neural networks (CNNs) play a vital role in time series classification . o
B Three aspects of strength w.r.t. applying CNNs in time series classification o~
v Multi-scale representations with varying strides
v" Weight-sharing mechanism
v" Can be computed in parallel Sl
O One key limitation N
B [acking of the capacity of global context modeling

B Key strengths of deep learning models

v" Can easily scale to large-scale data
v Non-linear transformation capacity

Ruiz, Alejandro Pasos, et al. "The great multivariate time series classification bake off: a review and experimental
evaluation of recent algorithmic advances." Data Mining and Knowledge Discovery 35.2 (2021): 401-449.



||| Related Works & Motivation

O Transformer models
O Transformer models preserve the strong capacity of global contexts and has achieved great success in
language text representation.
O Challenges in adapting Transformers from language to time series
0 Basic semantic unit: human-generated discrete word v.s. temporal continuous value.
O Sequence length: very short or limited sequence length v.s. very long sequences.
O Position information: only sequence v.s. time property.
O Drawback of TST [Zerveas et al, KDD2021], which a transformer-based framework proposed for time
series classification
» Expensive computation cost
» Its computation cost is sequence length
» Lack of multi-scale representations
» Lack of hierarchical architecture
» Weak translation invariance capacity
» Dynamic weight instead of weight-sharing

Zerveas, George, et al. "A transformer-based framework for multivariate time series representation learning." Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 2021.



||| Overview of the FormerTime

Temporal slicing partition operation and multi-scale representation.

’ \ f 1 1
I 1 | 1 1 :
I 1 | 1
A N 1 ) | | 'R . | (G
sarfe b | I 3} 1 1 L 1 . L
™ 1 © 1 1 = ! " = 20
- | ' | @& ! (N 7 I 7 .8
o [ Transformer ! = Transformer ! D= Transformer >
S o
Sy —— I'): E Encoder ; : 5 Encoder ; L (RS Encoder ~
~ =% =%
1| & Network v | Network I = Network §
Multivariate 1! | N - o e S
. . I 1
Time Series i | ! .
M ] S S ] ppmee= A
| Temporal Slice Transformer Encoder Network }
———————————— : B S s e e S e s I
! 1 (B i ! i !
| 1 i H !
. Element-wise | ) | | P
I 1 1
\  Add ! !l . | P (Q L
: | 1 i % 1 i E :
i 0 el | 5 L
! | 1o 5 = i Multi-Head = P!
’ ’ — 5 8§ — : ——> ; > T P
[ @ : . ; g 5 : N K Temporal Self-Attention = =
] B ] ! - —>1 |
. Contextual ' -%; | e | Reduction E i
g H H 1 I
. Positional : el 2 ' Positional | Vv P
. Information ; Ly i Information E | :

1 1]
It N e e e e e e e e e e e e e e

__________________________________________________________________________________

Figure 1: Illustration of the FormerTime, i.e., a efficient hierarchical trafisformer architecture for the MTSC task.

Contextual positional encoding strategies.

Temporal reduction attention layer.



||| Temporal Slice Partition

Temporal slicing partition: time series point in Stage-wise network architecture: the varying
local regions are modeled together instead of scale of time series data can be effectively
individually learning their representation. learned by flexibly updating the number of stages.

b,
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Single scale representations. :> Multi-scale representation transformation.
Expensive computation costs. The sequence length is largely reduced.




||| A Novel Transformer Encoder

Multi-Head Self- Multi-Head Self-

Attention (MHSA) Attention (MHSA)
L ><C
Temporal Reduction
oMK v ﬂ
Query Key Value  Query Key Value

Vanilla Multi-head Self- Temporal Reduction Multi-
Attention Layer head Self-Attention Layer

Raw time series

v Making the input sequence permutation-
variant but temporal invariant is a necessity

for time series classification.
v’ Having the ability to provide absolute
information also matters.




il  Experiment Settings

[ Datasets
B Ten public time series classification datasets chosen from UEA archive.
B Evaluation Metrics

B Classification performance
v' Accuracy Table 1: Statics of datasets in the experiments.

® Computation cost Dataset Train Size Test Size Dimensions Length Classes

) 215 300 9 144 25

B Compared Baselines AF 15 15 2 640 3
B Shapelet-based methods CT 1.422 1,436 3 182 20

v' Learning Shapelets CR 108 7 6 1,197 12

v" Shapelet Transformation D 5.890) 3.524 144 62 2

B Convolution-based methods FM 316 100 28 50 2

¥ MDCNN MI 278 100 64 3,000 2

v InceptionTime SRS1 268 293 6 896 2

¥ MiniRocket SRS2 200 180 7 1,152 2

B Self-attention based methods UWG 120 320 3 315 8

v TST/Informer/GTN



||| Experimental Results

Table 3: Classification performance of compared methods in ten datasets. Bold numbers represent the best results.

Datasets IT LS ST MCDCNN TCN MCNN ResNet MR TST GTN  Informer Ours
AWR 0.9827 0.9127 0.8700 0.7800 0.9467 0.8200 0.9827 0.9720 0.9789 0.9767 0.9820 0.9847
AF 0.4400 0.2533 0.2667 0.3733 0.4933  0.3467 0.4000 0.3333  0.4000 0.4000 0.4267 0.6000
CT 0.9983 0.9866 0.7224 0.8826 0.9915 0.9238 0.9965 0.9876  0.9882 0.9783 0.9862 0.9914
CR 0.9889 0.9639 0.9722 0.6278 0.9083 0.9167 0.9972 0.9806 0.9583 0.7917 0.9778 0.9806
FD 0.6820 0.5129 0.5085 0.5000 0.6801  0.6747 0.5760 0.6065 0.6005 0.5542 0.5265 0.6872
FM 0.6000 0.4840 0.4940 0.5920 0.5880  0.5920 0.6080 0.6380 0.5900 0.5350 0.6120 0.6180
MI 0.5860 0.5180 0.6100 0.5000 0.6040  0.5980 0.5780 0.5640 N/A N/A 0.6240 0.6320
SRS1 0.8942  0.7038 0.6724 0.9079 0.9031  0.8949 0.8730 0.9352 0.8771 0.8019 0.9188 0.8867
SRS2 0.5689 0.5111 0.5300 0.5256 0.5978 0.5989 0.5622 0.5411 0.5796 0.5611 0.5767 0.5922
UWG 0.8869  0.8031 0.7769 0.8438 0.7981 0.8044 0.7994 0.9075 0.8271 0.8406 0.8363 0.8881
Average 0.7628 0.6649 0.6423 0.6533 0.7511  0.7170 0.7373 0.7466  0.7555 0.7155 0.7467 0.7861
MACs (M) 89 - - 263 283 929 132 - 408 1,565 141 98

Our FormerTime can achieve superior classification accuracy in average, reflecting the

potential application of Transformers in time series classification tasks.
The computation cost of FormerTime 1s only similar with convolutional based models.




||| Experimental Results

Studying the impact of Studying the impact of Studying the effectiveness

stage number. temporal slice size. of our positional encodings.

Table 4: Experimental results w.r.t. studying the hyper- Table 5: Experimental results w.r.t. studying the hyper- Table 6: Experimental results w.r.t. studying the effectiveness
parameter sensitivity with varying stages. parameter sensitivity w.r.t. temporal slice size. of contextual positional embeddings.
Datasets 1 2 3 4 Datasets ﬁ16,32,64i' [8,16,32] [4.8.16] [2,4.8] Datasets None  Static Learnable | Ours
AWR 0.9811 0.9811 | 0.9720 § 0.9767 AWR 0.9720 0.9740 0.9820 0.9847 AWR 0.9433  0.9822 0.9811 0.9720
AF 0.4222  0.4667 ]0.6000 | 0.5778 AF 0.6000 | 05600  0.4267  0.4400 AF 0.4667 05111  0.5556 |0.6000
CT 0.9907  0.9909 §0.9914 | 0.9902 CT 0.9914 | 09886  0.9868  0.9873 CT 0.9821 09902  0.9863 [0.9914
CR  0.9861 09815 [0.9806 | 0.9769 CR 0.9806 | 0.9806 09778  0.9667 CR 0.9815 0.9676  0.9769 | 0.9806
FD 0.6750  0.6793 | 0.6776 | 0.6748 FD 0.6776 | 0.6794  0.6823  0.6872 FD 0.6740 0.6804  0.6774 | 0.6776
FM 0.6200  0.6033 J0.6140 § 0.6067 FM 0.6140 0.6080  0.6180  0.6040 FM 0.5900  0.5867  0.6200 | 0.6140
MI 0.6200  0.6267 §0.6280 | 0.6133 MI 0.6280 | 0.6280  0.6160  0.6180 MI 0.6233  0.5833  0.6167 0.6280
SRS1 ~ 0.8760  0.8692 | 0.8771 | 0.8840 SRS1 0.8771 0.8826  0.8710  0.8867 SRS1  0.8635 0.8817  0.8749 | 0.8771
SRS2 05722 0.5815 |0.5922 § 0.5889 SRS2 0.5922 0.5811  0.5856  0.5600 SRS2  0.5704 0.5759  0.6018 | 0.5922
UWG  0.9021 0.8948 0.8844 | 0.8844 UWG 0.8844 | 0.8881 08781  0.8775 UWG 08479 08729  0.8677 |0.8844
Averge 07645 07675 J0.7817 ] 0.7774 Averge [ 07817 | 07770 07624  0.7612 Averge 07543 07632  0.7758 | 0.7817

v" In terms of the hierarchical
architecture, it seems to require

different number of stage with us achieve superior clqssiﬁp ation exhibit other several prevalent methods
respect to the specific datasets. v performance in most situations, of positional encoding methods.

v" In the UEA datasets, it can help us T}.HS 1s most p robably because larger It indicates the essence of absolute and
achieve superior performance while slice size can further enhance the relevance of positional encoding strategy.

preserving the number of stage as 3. information density of sub-series.



||| Experimental Results

w/o positional embeddings w/ static embeddings w/ learnable embeddings w/ contextual embeddings
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Figure 3: Normalized attention score from the first encoder block of the first stage in FormerTime: (1) without taking positional
information into account, (2) using static embeddings, (3) using learnable vectors, (4) using our contextual embeddings.
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Figure 4: Left plot: Visualization of the t-SNE result of the Figure 5: Visualization of the representation of whole time
embedding layer output on the AF dataset. Right plot: visu- series on the SRS1 (left plot) and UW (right plot) datasets,
alization of sub-sequences on raw time series data. extracted by pooling operation from the last hidden layer.

FormerTime can learn high-quality
representations of time series data via
supervised learning.

FormerTime can effectively capture the

semantic information of sub-series.




ili Conclusion & Take Away Message

O We try to show the potential of applying Transformer network in the classification of time series so
as to promote the development of time series mining.

O We proposed a novel Transformer based model for time series classification
B Multi-scale representation of time series
v Temporal slicing partition

. ) . GitHub
v Hierarchical network architecture \
B A novel Transformer encoder network
v Contextual positional encoding https://github.com/Mingyue-Cheng/FormerTime

v Temporal reduction attention layer

O We conduct extensive experiments on 10 UEA datasets
B FormerTime can achieve superior performance for the classification of time series in average.
B FormerTime can overcome the inefficient computation issue incurred by the original setting of
feeding raw time series into vanilla self-attention mechanism.



||| Our Research Plan for Time Series Classification

Transformer-based :> Self-supervised based :> Multimodal based Universal
Classification Network Pre-trained Model Time Series Model
Towards Universal
Time Series Modeling (Working)

FormerTime (WWW, 2023) TimeMAE (Preprint, 2023)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2022 1

TimeMAE: Self-Supervised Representations of
Time Series with Decoupled Masked
Autoencoders

Mingyue Cheng, Qi Liu*, Zhiding Liu, Hao Zhang, Rujiao Zhang, Enhong Chen

https://github.com/Mingyue-Cheng/TimeMAE

Cheng, Mingyue, et al. "TimeMAE: Self-Supervised Representations of Time Series with Decoupled Masked
Autoencoders." arXiv preprint arXiv:2303.00320 (2023).
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