

A Bounded Ability Estimation for Computerized Adaptive Testing

NeurlPS 2023

Yan Zhuang, Qi Liu, GuanHao Zhao, Zhenya Huang, Weizhe Huang Zachary A. Pardos, Enhong Chen, Jinze Wu, Xin Li

1: Anhui Province Key Laboratory of Big Data Analysis and Application,
 University of Science and Technology of China
 2: State Key Laboratory of Cognitive Intelligence
 3: University of California, Berkeley
 4: iFLYTEK Co., Ltd

Computerized Adaptive Testing (CAT):

How to **efficiently** measure student's ability?

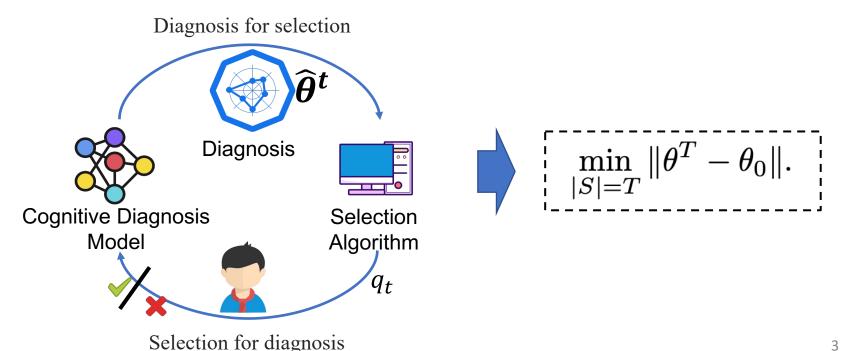
VS

Too many questions:
low-efficiency and heavy burden
for students

of questions to accurately measure their ability (e.g. GRE)

Computerized Adaptive Testing (CAT):

- CAT's Goal: Accurately assess student true ability θ_0 with as few questions as possible (accuracy and efficiency)
 - (1) Cognitive Diagnosis Model: estimates the student's current ability θ^t based on previous t responses.
 - (2) The Selection Algorithm: find the next valuable or best-fitting question from the bank, guided by his/her θ^t .



Problem:

$$\min_{|S|=T} \|\theta^T - \theta_0\|.$$

The exact true ability θ_0 of student is unknown, thus it is impossible to find such ground truth in datasets to directly optimize/design the selection algorithm. (Existing methods are implicit)

- Solution:
 - 1. Find $\theta_0's$ theoretical approximation θ^* as the new target ($\theta^* \approx \theta_0$)
 - 2. Design a selection algorithm: select questions set *S* such that the estimate can best approximates this new target.

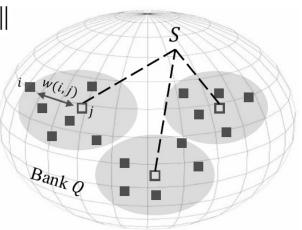
$$\min_{|S|=T} \|\theta^T - \theta^*\| \Rightarrow \min_{|S|=T} \max_{\theta \in \Theta} \|\sum_{j \in S} \gamma_j \nabla l_j(\theta) - \sum_{i \in Q} \nabla l_i(\theta)\|.$$

Problem transformation and optimization:

$$\begin{split} \min_{|S|=T} \|\theta^T - \theta^*\| &\Rightarrow \min_{|S|=T} \max_{\theta \in \Theta} \|\sum_{j \in S} \gamma_j \nabla l_j(\theta) - \sum_{i \in Q} \nabla l_i(\theta)\|. \\ &\Rightarrow \min_{|S|=T} \max_{\theta \in \Theta} \sum_{i \in Q} \min_{j \in S} \|\nabla l_i(\theta) - \nabla l_j(\theta)\| \\ &\Rightarrow \max_{|S|=T} \sum_{i \in Q} \max_{j \in S} w(i,j), \quad \text{(submodular facility location function)} \end{split}$$

where $w(i, j) = d - \max_{\theta \in \Theta} ||\nabla l_i(\theta) - \nabla l_j(\theta)||$

This is equivalent to selecting the most representative items to form the subset S



- The above algorithm is **impractical**: The responses to the bank Q are unavailable (gradient difference $\|\nabla l_i(\theta) \nabla l_j(\theta)\|$ in w(i,j) can not be calculated without labels)
- Solution: we propose an **expected gradient difference** approximation method to replace the original to calculate their similarity w(i, j):

$$w(i,j) \triangleq d - \max_{\theta \in \Theta} \|\nabla l_i(\theta) - \nabla l_j(\theta)\|$$

$$\widetilde{w}(i,j) \triangleq d - \max_{\theta \in \Theta} \mathbb{E}_{y \sim p_{\theta^t}} [\|\nabla l_i(\theta) - \nabla l_j(\theta)\|],$$

Soft Pseudo-Labels

 Theoretical guarantees for ability estimation: Upper-bound of expected estimation error (Theorem 1):

$$\mathbb{E}\left[\|\theta^{t+1} - \theta^*\|^2\right] \le \frac{2\epsilon D\alpha + \sigma_l^2 + 2\sigma_f D\alpha H_p(\theta^t, \theta^*)}{\alpha^2}$$

• Experiments:

CDM		IRT			NeuralCDM	
Metric@Step	ACC/AUC@5	ACC/AUC@10	ACC/AUC@20	ACC/AUC@5	ACC/AUC@10	ACC/AUC@20
Random	66.45/69.05	68.23/71.66	70.23/74.82	67.19/69.32	68.44/71.56	70.57/74.99
FSI	67.70/70.60	69.62/73.62	71.03/76.24	_	_	_
KLI	67.09/69.79	69.27/73.30	70.42/75.73	_	_	_
MAAT	66.70/70.32	69.13/72.41	69.07/74.46	67.86/70.12	70.07/72.58	70.66/75.83
BOBCAT	69.51/74.42	70.94/75.73	71.73/76.58	71.13/76.00	72.52/77.87	73.47/79.00
NCAT	67.30/72.11	70.68/75.80	71.91/76.66	70.47/74.10	72.81/77.99	73.47/79.12
BECAT	66.98/73.15	71.61/75.87	72.00/76.82	71.33/76.30	73.09/78.34	73.58/79.36

It surpasses the data-driven methods, which requires training on large-scale data.

Thanks

MLA Poster编号: 45