

Online Semi-Supervised Learning with Mix-Typed Streaming Features

Di Wu¹, Shengda Zhuo², Yu Wang², Zhong Chen³, Yi He⁴ ¹College of Computer and Information Science, Southwest University ²Institute of Artificial Intelligence and Blockchain, Guangzhou University ³Department of Computer Science, Xavier University of Louisiana ⁴Department of Computer Science, Old Dominion University

Corresponds to: yihe@cs.odu.edu

Learning from data: Statistical or Sequential? It is a question

Statistical Learning: $\exists h \in \mathcal{H}, \quad h: \sim \mathcal{X} \mapsto \mathcal{Y}$ $\min_{h} E_{(x,y) \in \mathcal{X} \times \mathcal{Y}} [\mathcal{L}(h(x), y)]$

Sequential (Online) Learning: $\min_{h_1,\dots,h_T} \frac{1}{N} \sum_{t=1}^{N} \mathcal{L}(h_t(x_{t+1}), y_{t+1})$

Why online Learning

How much we lose by learning online?

• By "Lose" we mean "Regret":

[Cesa-Bianchi and Lugosi, 2006; Zinkevich, ICML'03]

"A good online learner suffers asymptotically no regret"

Goes beyond time horizon: Streaming Features

As new data points and label arrive:

- Increasing more features trapezoidal DS [Zhang et al., ICDM'15, T.KDE'16]
- Shifts batch to batch feature-evolvable DS [Hou et al., NeurIPS'17, AAAI'20; Zhang et al., ICML'20,]
- Variable Feature Space(VFS) [Beyazit et al., AAAI'19; He et al., IJCAI'19, AAAI'20]
- Label Scarcity [Hou et al., NeurIPS'17; He et al., AAAI' 21]

Limitation of Current Doubly-Streaming Data Learners

• Do not support mixed data types:

• Do not support label propagation:

(Credit to Ahmet Iscen et al.)

Which is ubiquitous

"Online Mixed Data" face "Streaming Features"

- Preprocessing, e.g., normalization?
 - 1. Unknow data volume
 - 2. Missing feature entries exacerbate bias
 - 3. Missing labels cause the model not to update

Definition 1 (GC (Masarotto and Varin 2012)). For $\forall \mathbf{x} \in \mathbb{R}^d$ that follows the GC is a random vector, there is a correlation matrix Σ and an element-wise monotone function $g: \mathbb{R}^d \mapsto \mathbb{R}^d$ to make that $\mathbf{x} = g(\mathbf{z})$ for $\mathbf{z} \sim N_d(\mathbf{0}, \Sigma)$.

Our Idea

Missing entries completion

1. Establishing relationship among features

2. Learner enjoys a complete observation

Construction of missing labels

- 1. Establishing geometric structure
- 2. Learner update the model with pseudo-labels
- Discrete features relaxation

Expedite convergence -> lower regret

0

...

1

Online Correlation Estimation [Zhao and Udell, KDD'20]

- Latent representations (continuous)
- \succ stabilize the oscillating gradients (discrete)

the instances

• Learning Cluster center

• Constructing geometric spaces

Ensemble Learning to further improve

? Y. 2 ? 1 Y2 ? ? ? \mathbf{X}_1 X_3 \mathbf{X}_2 Y3 2 X5 X_2 X_4 $Y_4 = 0$? X_3 X₁ X_4 Y_5 ? X_3 X_4 X5 *** ... Y_T 1 $X_T \mathbf{x}_1$? ? \mathbf{X}_3 X5

Too few observable entries

1. Imputation noises

2. Weak predictions

Hedge Reweighing: $\mathcal{O}(\sqrt{T})$ Regret

Learner 1

Learner 2

$$\hat{y_t} = \alpha_1 \cdot y_0 + \alpha_2 \cdot y_Z$$
$$\alpha_1 + \alpha_2 = 1$$

$$\alpha_1 = e^{-\mu R_O(T)} / \left(e^{-\mu R_O(T)} + e^{-\mu R_Z(T)} \right)$$

Empirical Results

- Superiority over trapezoidal and VPS competitors
- In mixed data, more advanced methods tend to lose to simple baseline

Dataset	Trapezoidal Data Streams				Capricious Data Streams			
	FOBOS	OMR	OLSF	OSLMF	FOBOS	OMR	OVFM	OSLMF
wpbc	$.237 \pm .000$	$.345 \pm .000$	$.366 \pm .001$	$.235 \pm .003$	$.248 \pm .000 \bullet$	$.320 \pm .000 \bullet$	$.309 \pm .000 \bullet$	$.567 \pm .001$
ionosphere	$.342 \pm .000$	$.443 \pm .000$	$.230 \pm .000$	$.225 \pm .000$	$.479 \pm .000$	$.418 \pm .000 \bullet$	$.269 \pm .000 \bullet$	$.466 \pm .000$
wdbc	$.577 \pm .000$	$.460 \pm .000$	$.347 \pm .000$	$.187 \pm .000$	$.628 \pm .000$	$.399 \pm .000$	$.113 \pm .000$	$.110 \pm .000$
australian	$.497 \pm .000$	$.491 \pm .000$	$.486 \pm .000$	$.356 \pm .000$	$.455 \pm .000$	$.492 \pm .001$	$.255 \pm .000$	$.194 \pm .000$
credit-a	$.445 \pm .000$	$.415 \pm .000$	$.312 \pm .000$	$.186 \pm .000$	$.445 \pm .000$	$.484 \pm .000$	$.484 \pm .000$	$.416 \pm .000$
wbc	$.345 \pm .000$	$.394 \pm .000$	$.455 \pm .000$	$.219 \pm .000$	$.162 \pm .000$	$.461 \pm .000$	$.072 \pm .000$	$.059 \pm .000$
diabetes	$.349 \pm .000$	$.376 \pm .000$	$.331 \pm .000$	$.170 \pm .000$	$.349 \pm .000$	$.426 \pm .000$	$.399 \pm .000$	$.331 \pm .004$
dna	$.518 \pm .000$	$.496 \pm .000$	$.499 \pm .000$	$.462 \pm .000$	$.511 \pm .000$	$.496 \pm .000$	$.282 \pm .000$	$.229 \pm .000$
german	$.300 \pm .000$	$.381 \pm .000$	$.407 \pm .000$	$.227 \pm .000$	$.700 \pm .000$	$.372 \pm .000$	$.321 \pm .000$	$.227 \pm .000$
splice	$.500 \pm .000$	$.493 \pm .000$	$.375 \pm .000$	$.311 \pm .000$	$.519 \pm .000$	$.400 \pm .001$	$.498 \pm .000$	$.424 \pm .000$
kr-vs-kp	$.482 \pm .000$	$.523 \pm .000$	$.239 \pm .000$	$.221 \pm .000$	$.478 \pm .000$	$.242 \pm .000$	$.280 \pm .000$	$.241 \pm .000$
magic04	$.665 \pm .000$	$.529 \pm .000$	$.374 \pm .000$	$.348 \pm .000$	$.689 \pm .000$	$.438 \pm .000$	$.317 \pm .000$	$.091 \pm .000$
a8a	$.375 \pm .000$	$.482 \pm .003$	$.273 \pm .004$	$.179 \pm .001$	$.401 \pm .003$	$.368 \pm .001$	$.191 \pm .001$	$.086 \pm .001$
stream	$.615 \pm .000$	$.472 \pm .000$	$.233\pm.000$	$.230 \pm .000$	$.621 \pm .000$	$.471 \pm .000$	$.231\pm.000$	$.224 \pm .000$
loss/win	0/14	0/14	0/14	0/42	1/13	2/12	2/12	5/37
p-value	.0005	.0005	.0005		.0008	.0015	.0071	
F-rank	3.286	3.124	2.500	1.000	3.357	3.071	2.286	1.285

Table 2: The comparison results on cumulative error rates. We repeated the experiment 10 times for each dataset, averaged the cumulative error rate (CER), and calculated the variance of the 10 times values. Experimental results (CER \pm Variance) for 14 data sets in the case of trapezoidal and capricious data streams. • indicates the cases that OSLMF loses the comparison.

Empirical Results

- Superiority over trapezoidal and VPS competitors
- In mixed data, more advanced methods tend to lose to simple baseline

Figure 3: CER trends of four methods in capricious data streams.

Figure 4: Temporal variation of ensemble weight α_1 and CERs of OSLMF and its ablation variant OSLMF-F.

Thanks

Q & A

