

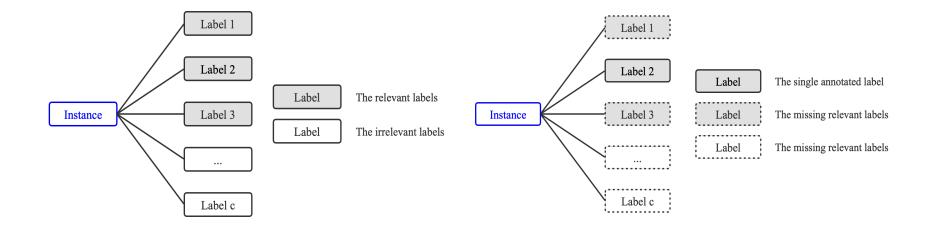
Revisiting Pseudo-Label for Single-Positive Multi-Label Learning

Biao Liu¹, Ning Xu^{1*}, Jiaqi Lv², Xin Geng^{1*} 1 School of Computer Science and Engineering, Southeast University 2 RIKEN Center for Advanced Intelligence Project

Single-Positive Multi-Label Learning

Multi-Label Learning

Single-Positive Multi-Label Learning



SPMLL问题中伪标记生成的可学习性

Small Unreliability Degree Condition

Intuitive explanation: From the perspective of pseudo-label generation,

for any pseudo-label of an instance, it must be not always be mislabeled. Theorem 1: Suppose a SPMLL pseudo-label-based method has an unreliability degree of pseudo-label $\xi = \sup_{\substack{(x,y,l) \sim p(x,y,l) \\ j \in \{1,2,...,c\}}} \Pr(l^j \neq y^j), 0 \le \xi \le 1$. Let $\theta_1 = c \log \frac{2}{1+\xi}$,

and suppose the Natarajan dimension of the hypothesis ${\mathcal H}$ is $d_{{\mathcal H}}$, define

$$n_0(\mathcal{H},\epsilon,\delta) = \frac{4}{\theta_1\epsilon} \Big(d_{\mathcal{H}} \Big(\log(4d_{\mathcal{H}}) + 2c\log c + \log\frac{1}{\theta_1\epsilon} \Big) + \log\frac{1}{\delta} + 1 \Big).$$

Then when $n > n_0(\mathcal{H}, \epsilon, \delta)$, $\mathcal{R}_{ham}(\mathcal{A}(\overline{\mathcal{D}})) < \epsilon$ with probability $1 - \delta$.

SPMLL问题中伪标记生成的可学习性

Non-Zero Minimum Positive Label Sampling Probability Condition:

Intuitive explanation: From the perspective of data generation, every relevant label of each instance can possibly be sampled as the single label. Theorem 1: Suppose a SPMLL pseudo-label-based method has an unreliability degree of pseudo-label $\tau = \inf_{\substack{(x,y,\gamma) \sim p(x,y,\gamma) \\ y_j = 1, j \in \{1,2,...,c\}}} \Pr(j \neq \gamma), \tau > 0$. Let $\theta_2 = c \log \frac{2}{2-\tau}$, and

suppose the Natarajan dimension of the hypothesis $\mathcal H$ is $d_{\mathcal H}$, define

$$n_0(\mathcal{H},\epsilon,\delta) = \frac{4}{\theta_2\epsilon} \Big(d_{\mathcal{H}} \Big(\log(4d_{\mathcal{H}}) + 2c\log c + \log\frac{1}{\theta_2\epsilon} \Big) + \log\frac{1}{\delta} + 1 \Big).$$

Then when $n > n_0(\mathcal{H}, \epsilon, \delta)$, $\mathcal{R}_{ham}(\mathcal{A}(\overline{\mathcal{D}})) < \epsilon$ with probability $1 - \delta$.

The MIME Approach

The information-based objective function:

$$\mathcal{L}_{IB} = \sum_{j=1}^{c} I(\mathbf{z}^{j}, y^{j}) - \beta_{j}I(\mathbf{z}^{j}, \mathbf{x})$$

$$\geq \sum_{j=1}^{c} I(\mathbf{z}^{j}, l^{j}) - \beta_{j}I(\mathbf{z}^{j}, \mathbf{x})$$

Expressive about the label \square Compressive about \mathbf{x}

Variational Bayes Techniques:

$$\mathcal{L} \approx \frac{1}{nc} \sum_{i=1}^{n} \sum_{j=1}^{c} \mathbb{E}_{\epsilon \sim p(\epsilon)} \left[-\log q_{\phi} \left(l_{i}^{j} \mid f_{\theta}(\boldsymbol{x}_{i}, \epsilon) \right) \right] + \beta_{j} \mathrm{KL} \left[p(\boldsymbol{z}^{j} \mid \boldsymbol{x}_{i}), r(\boldsymbol{z}^{j}) \right]$$

Experimental Results

Table 1: Predictive performance of each comparing methods on four MLIC datasets in terms of *mean average precision* (mAP) (mean \pm std). The best performance is highlighted in bold (the larger the better).

	VOC	COCO	NUS	CUB
AN	$85.546 {\pm} 0.294$	$64.326 {\pm} 0.204$	$42.494{\pm}0.338$	$18.656 {\pm} 0.090$
AN-LS	$87.548 {\pm} 0.137$	$67.074 {\pm} 0.196$	43.616 ± 0.342	$16.446 {\pm} 0.269$
WAN	$87.138 {\pm} 0.240$	$65.552{\pm}0.171$	$45.785 {\pm} 0.192$	14.622 ± 1.300
Epr	$85.228 {\pm} 0.444$	$63.604 {\pm} 0.249$	$45.240{\pm}0.338$	$19.842 {\pm} 0.423$
ROLE	$88.088 {\pm} 0.167$	$67.022{\pm}0.141$	$41.949 {\pm} 0.205$	$14.798 {\pm} 0.613$
Ем	$88.674 {\pm} 0.077$	$70.636 {\pm} 0.094$	$47.254{\pm}0.297$	$20.692 {\pm} 0.527$
EM-APL	$88.860 {\pm} 0.080$	$70.758 {\pm} 0.215$	$47.778 {\pm} 0.181$	$21.202{\pm}0.792$
SMILE	86.311 ± 0.450	$63.331 {\pm} 0.112$	43.611 ± 0.172	18.611 ± 0.144
LAGC	88.021±0.121	70.422 ± 0.062	46.211±0.155	$21.840 {\pm} 0.237$
MIME	89.199±0.157	$72.920{\pm}0.255$	48.743±0.428	$21.890{\pm}0.347$

liubiao01@seu.edu.cn

