

Accurate Interpolation for Scattered Data through Hierarchical Residual Refinement

Anthors: Shizhe Ding, Boyang Xia, Dongbo Bu

Shizhe Ding Institute of Computing Technology, CAS University of Chinese Academy of Sciences <u>dingshizhe19s@ict.ac.cn</u>

Scattered data interpolation

- Given n scattered observed points $O = \{(x_i, y_i)\}_{i=1}^n$ interpolate O to reconstruct a function fIt is assumed that f belongs to a latent function distribution, denoted by $f \in \mathcal{F}$
- Wide range of application scenarios

Temperature field reconstruction

Particle tracking velocimetry

rregularly-sampled time-
series interpolation

Ding et al. arXiv:2209.09078, 2023.

Motivation

- Existing neural interpolators neglect the information of interpolation residuals
- The interpolation residuals can be progressively and hierarchically exploited

Our Hierarchical INTerpolation framework (HINT)

- 1. Multiple lightweight interpolation block, dual residual linked, utilizing residual of observed points
- 2. Hierarchical local constraint for better refining residual predictions

Transformer-based interpolation block

- 1. Masked Transformer encoder for accurate correlation modeling of scattered points
- 2. KNN graph mask as local constraint

Results

• SOTA interpolation accuracy on representative datasets

	Interpolation approach	MSE $(\times 10^{-4})$ on Mathit-2D test set		Interpolation approach	MSE ($\times 10^{-5}$) on Perlin test set	
	CNP	24.868		CNP	48.642	
	ANP	14.001		ANP	23.731	
	BANP	8.419		BANP	20.737	
TI	FR-Transformer	5.857	3.34 %	TFR-Transformer	12.101	18.61 %
	NIERT	3.167		NIERT	7 185	10101 //
	HINT (ours)	2.903		HINT (ours)	5.848	

Table 1: Interpolation accuracy on Mathit dataset. Table 2: Interpolation accuracy on Perlin dataset.

Table 3: Interpolation accuracy on PTV dataset. Table 4: Interpolation accuracy on TFRD dataset.

Interpolation	tion MSE $(\times 10^{-3})$ on		Interpolation	MAE ($\times 10^{-3}$) on TFRD test set			
approach	PTV test set		approach	HSink	ADlet	DSine	-
CNP	137.573		CNP	204 351	91 782	92 456	-
ANP	32.111		ANP	164.491	54.684	58.589	
BANP	33.585		BANP	59.728	28.671	19.107	
TFR-Transformer	17.125 32	12 %	TFR-Transformer	64.987	27.074	29.961	1. 11 96 % on Avg
NIERT	5.167 V JZ	.13 /0	NIERT	23 519	3 473	8 785	V 44.30 /0 011 Avg.
HINT (ours)	3.507		HINT (ours)	13.758	1.761	4.912	

Case study and analysis

- Progressively predict of the main function components and interpolation residuals
- Decouple the function at different scales

Output from each interpolation block on an interpolation task from Perlin dataset

Conclusion

- We introduce HINT, a novel hierarchical framework for scattered point interpolation
- HINT enhances accuracy using coarse-to-fine interpolation blocks and outperforms SOTA methods
- Paper:

https://nips.cc/virtual/2023/poster/72636

• Source code:

https://github.com/DingShizhe/HINT

Thanks

