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What is Machine Teaching?

Machine teaching (MT) [10, 11] considers the problem of how to design the most effec-

tive , typically with the of (teaching) examples possible,
to facilitate rapid learning of the by learners based on these examples.
It can be thought of as , in the sense that the learner

is to learn models on a given dataset, while the teacher is to seek a (minimal) dataset
from a target model.

Depending on how teachers and learners with each other, MT can be carried
out in either
® batch fashion [10, 7, 3, 8] which focuses on interaction, that is, the

most representative and effective teaching dataset are designed to be fed to
the learner in one shot, or
e iterative fashion [4, 5, 6] where an iterative teacher would feed examples based
on learners’ status (current learnt models)
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Multi-learner nonparametric teaching
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Previous nonparametric teaching algo-
rithms [9] merely focus on the
(i.e., teaching a
target model or function to a single
learner). To empower them to fulfill the
practical needs of complex tasks, we
introduce a more comprehensive task
called Multi-learner Nonparametric
Teaching (MINT). In MINT, the teacher aims
to instruct , with each
learner focusing on learning a
target model.

(a) Single-learner no

The target is a

7 monochrome

(b1) Multi-learner nonparametric teaching

R

The target is a
colored one with
RGB channels

(b2) Multi-learner nonparametric teaching

SN The e is BEPIRER
a colored one. 213 D IR
iy

inpcces T
[ L |

Figure: Comparison between the single-learner
teaching and MINT.
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Main Contribution:

® By analyzing general , we study the multi-learner nonpara-
metric teaching (MINT), where the teacher selects examples based on a
(each component of it is a scalar-valued one for a single
learner) such that learners can learn its components simultaneously in
a fast speed.

e Allowing the across multiple learners, that is, learners are al-
lowed to carry out on current learnt functions of all learners,
we investigate a communicated MINT where the teacher not only selects exam-
plesbut also constructs a as the guide of communicationin eachiteration.

® Under amild assumption, we prove the efficiency of our
of nonparametric teaching. We also demonstrate its
applicability and efficiency in extensive multi-learner experiments.
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Teaching Settings T pronmoy

Vector-valued Functional Optimization: We define multi-learner noparametric
teaching as a over the collection of potential
teaching sequences D in the vector-valued reproducing kernel Hilbert space:

D* =argmin  M(f*, f*)+ A-len(D) st f*= A(D) 1)
Dehd

where M denotes a discrepancy measure, len(D), which is regularized by a constant
A, is the length of the teaching sequence D, and A represents the learning
algorithm of learners. Specifically, A is taken as f* = argminE, ) [L(f (), y)],

feHd
where (z,y) € X% x Y4 and (x,y) ~ [Q;(z;,y;)]¢. Evaluated at an example vector
(x,y) = [(zij:,vi,,)]? with the example index j; € Ni, the loss £

thereinis £L(f(z),y) = >0, Li(fi(zij.),vigi) = Bw [[Li(fiyvij)]%]. where £; is the
loss for i-th learner.
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We investigate MINT in the gray-box setting, which is equivalent to the one
considered in [9]. To facilitate the theoretical analysis, we adopt some moderate
assumptions regarding £,; and kernels, which align with those made in [9].

Assumption 1

Each loss £;(fi),i € Nyis L,-Lipschitz smooth, i.e., Vf;, f/ € H,xz; € X andi € Ny
‘Eifi [Vfﬁi(fi)] - Exi [Vfﬁz(le)” < Lﬁi Eﬁ?i [fz] - Ewi [le] | )

where Lz, > 0is a constant. To simplify the notation, we assume that L, = L for
all i € Ny.

Assumption 2

Each kernel K (z, ') € H is bounded, i.e., Vz,2' € X, K(z,2') < My, where Mg >0

iIs a constant. 7/18
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Vanilla Multi-learner Teaching

In tackling MINT, we begin by examining a basic scenario in which multiple learners
concurrently learns corresponding components of a vector-valued target function
without communication between them [2, 1].

Lemma 3 (Sufficient Descent for multi-learner RFT)

Suppose there are d learners, and the example mean for each learner is
pi = Eg,op;(2;)(%i) < 00, and the variance v = B,y () (Ti — pi)? < 00,i € Ng.
Under the Lipschitz smooth and bounded kernel assumptions, if if < W for all

i € Ny, then RFT teachers can, on average, reduce the multi-learner loss L( f) by:
Epip @yt [C(FHY) = LOFY] < =% L (e (i) + MU?) < — L% miniey, (mi,t(ﬂi) +F WUE), (2)
where ﬁt = minieNd ’I];t and mi,t(a’c) = Ex[(Vfﬁz(fﬂf:ﬁ)Q]
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Theorem 4 (Convergence for multi-learner RFT)

.
|
o
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Suppose the vector-valued model for multiple learners is initialized with f° € 7% and
returns f! € H¢ after t iterations, we have the upper bound of

min;en, <m¢7t(,ui) + mgtt(ui)af/2) w.r.t. ¢

min (mie—1(pa) +mi'y 1 ()07 /2) < 2By (e [L(F0)] /(dit), (3)
where0 <7 = min 7' <1/(2L; - Mk), and given a small constant € > 0 it

1€{0} UN;_1
would take approximately
) <2(Ew~[ @ [L(F)] — €)/(dimingen, (mi,t_l(ui) + mgft_l(ui)a§/2>)) iterations
to reduce the multi-learner loss £ to a sufficiently small value and to reach a
stationary point in terms of L.
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Lemma 5 (Sufficient Descent for multi-learner GFT)

Under the same assumption, if 5} < W for all i € Ny, the GFT teachers can
achieve a greater reduction in the mult| Iearner loss L:

* ~td *
EQZN[Pz(wz ]d[ (ft+1) .ft Zmzt i) < ?72 mlnmzt( i B (4)

1€Ny

where 7j* and m; ;(-) retain their previous meaning.
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Theorem 6 (Convergence for multi-learner GFT)

Suppose the vector valued model for multiple learners is initialized with £ € #? and
returns f¢ € H? after t iterations, we have the upper bound of min;en, m; +(2!") w.r.t.
t:

t—1

> (lef" = illz) . ®)

=0 i=1

2 1
t—1%

minmie-1(2; ) <GB (L) + 5
where 1) has the same definition as before, and given a small constant ¢ > 0 it would
need around O <2( eiPi (e [L(F0)] — €)/(dnmingen, mi 1 (a] ol ))) iterations to

decrease the multi-learner loss £ to a sufficiently small value and to reach a
stationary point in terms of L.
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Communicated Multi-learner Teaching u

An infant would integrate previously learnt knowledge to grasp a new target concept,
such as comprehending what a zebra is by combining the learnt ideas of horses and
black-and-white stripes. Such an efficient paradigm motivates us to explore the
communicated MINT, which enables the communication between learners.

Proposition 5

If the proximity between f and f* is sufficiently close, meaning that || ff — f*|| e < €
where ¢ is a tiny positive constant, then A? equals the identity matrix I,.

Lemma 6

Under Lipschitz smooth assumption, the communication across learners will result in
areduction of the multi-learner convex loss £ by

0<L(f) — LA S) < 2L f* = F*llpa.
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Theorem 7

Suppose the communication in the t-th iteration of multiple learners is denoted by
the matrix A* and returns f4i' € H4, for both RFT and GFT we have:

Epmipi@gd (L) — L(FN)] < Bpppuye [LFHT) — LIATFN)] <0
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Experiments and Results

jot!

Testing the teaching of a , MINT presents
more satisfactory performance than repeatedly carrying out the single-learner teach-
ing, which is

® MINT in gray scale.

(a) Single-learner teaching

Teaqhing of al’lion by partition.

(c) Single-learner teaching (d) Vanilla MINT
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¢ MINT in three (RGB) channels.

' a) Smge—lam teaching. )

t=10000 t=50000 t=100000 t=150000 =210000

(b) Van

00

(©) Communicated MINT.
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Thank you for listening!
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