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Source code is available at https://github.com/chen2hang/MINT_NonparametricTeaching.
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Machine teaching (MT) [10, 11] considers theproblemof how todesign themost effec-
tive teaching set, typically with the smallest amount of (teaching) examples possible,
to facilitate rapid learning of the target models by learners based on these examples.

It can be thought of as an inverse of machine learning, in the sense that the learner
is to learn models on a given dataset, while the teacher is to seek a (minimal) dataset
from a target model.

Depending on how teachers and learners interact with each other, MT can be carried
out in either
• batch fashion [10, 7, 3, 8] which focuses on single-round interaction, that is, the
most representative and effective teaching dataset are designed to be fed to
the learner in one shot, or

• iterative fashion [4, 5, 6] where an iterative teacher would feed examples based
on learners’ status (current learnt models) round by round.
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Previous nonparametric teaching algo-
rithms [9] merely focus on the single-
learner setting (i.e., teaching a scalar-
valued target model or function to a single
learner). To empower them to fulfill the
practical needs of complex tasks, we
introduce a more comprehensive task
called Multi-learner Nonparametric
Teaching (MINT). In MINT, the teacher aims
to instruct multiple learners, with each
learner focusing on learning a scalar-
valued target model.

The target is a 
monochrome

G

B

R

(a)  Single-learner nonparametric teaching

(b1)  Multi-learner nonparametric teaching

The target is a
colored one with
RGB channels

(b2)  Multi-learner nonparametric teaching

The target is
a colored one
in pieces

Figure: Comparison between the single-learner
teaching and MINT.
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Main Contribution:
• By analyzing general vector-valued RKHS, we study the multi-learner nonpara-
metric teaching (MINT), where the teacher selects examples based on a vector-
valued target function (each component of it is a scalar-valued one for a single
learner) such that multiple learners can learn its components simultaneously in
a fast speed.

• Allowing the communication across multiple learners, that is, learners are al-
lowed to carry out linear combination on current learnt functions of all learners,
we investigate a communicated MINT where the teacher not only selects exam-
plesbut alsoconstructs amatrix as theguideof communication in each iteration.

• Underamild assumption, we theoretically prove theefficiencyofourmulti-learner
generalization of nonparametric teaching. We also empirically demonstrate its
applicability and efficiency in extensive multi-learner experiments.
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Vector-valued Functional Optimization: We define multi-learner noparametric
teaching as a vector-valued functional minimization over the collection of potential
teaching sequences D in the vector-valued reproducing kernel Hilbert space:

D∗ = arg min
D∈Dd

M(f̂∗,f∗) + λ · len(D) s.t. f̂∗ = A(D) (1)

whereM denotes a discrepancy measure, len(D), which is regularized by a constant
λ, is the length of the teaching sequenceD, andA represents the learning
algorithm of learners. Specifically,A is taken as f̂∗ = arg min

f∈Hd

E(x,y) [L(f(x),y)],

where (x,y) ∈ X d × Yd and (x,y) ∼ [Qi(xi, yi)]
d. Evaluated at an example vector

(x,y) = [(xi,ji , yi,ji)]
d with the example index ji ∈ Nk, the multi-learner convex loss L

therein is L(f(x),y) =
∑d

i=1 Li(fi(xi,ji), yi,ji) = Ex

[
[Li(fi, yi,ji)]

d
]
, where Li is the

convex loss for i-th learner.
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We investigate MINT in the gray-box setting, which is equivalent to the one
considered in [9]. To facilitate the theoretical analysis, we adopt some moderate
assumptions regarding Li and kernels, which align with those made in [9].

Assumption 1

Each loss Li(fi), i ∈ Nd is LLi-Lipschitz smooth, i.e., ∀fi, f ′
i ∈ H, xi ∈ X and i ∈ Nd∣∣Exi [∇fLi(fi)]− Exi

[
∇fLi(f

′
i)
]∣∣ ≤ LLi

∣∣Exi [fi]− Exi

[
f ′
i

]∣∣ ,
where LLi ≥ 0 is a constant. To simplify the notation, we assume that LLi = LL for
all i ∈ Nd.

Assumption 2

Each kernelK(x, x′) ∈ H is bounded, i.e., ∀x, x′ ∈ X , K(x, x′) ≤ MK , whereMK ≥ 0
is a constant.
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In tackling MINT, we begin by examining a basic scenario in which multiple learners
concurrently learns corresponding components of a vector-valued target function
without communication between them [2, 1].

Lemma 3 (Sufficient Descent for multi-learner RFT)

Suppose there are d learners, and the example mean for each learner is
µi = Exi∼Pi(xi)(xi) < ∞, and the variance σ2

i = Exi∼Pi(xi)(xi − µi)
2 < ∞, i ∈ Nd.

Under the Lipschitz smooth and bounded kernel assumptions, if ηti ≤ 1
2LL·MK

for all
i ∈ Nd, then RFT teachers can, on average, reduce the multi-learner loss L(f) by:

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

∑d
i=1(mi,t(µi) +

m′′
i,t(µi)

2 σ2
i ) ≤ − η̃td

2 · mini∈Nd

(
mi,t(µi) +

m′′
i,t(µi)

2 σ2
i

)
, (2)

where η̃t = mini∈Nd
ηti andmi,t(ẋ) := Eẋ[(∇fLi(f)|f=f t

i
)2].
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Theorem 4 (Convergence for multi-learner RFT)

Suppose the vector-valued model for multiple learners is initialized with f0 ∈ Hd and
returns f t ∈ Hd after t iterations, we have the upper bound of
mini∈Nd

(
mi,t(µi) +m′′

i,t(µi)σ
2
i /2

)
w.r.t. t:

min
i∈Nd

(
mi,t−1(µi) +m′′

i,t−1(µi)σ
2
i /2

)
≤ 2Ex∼[Pi(xi)]d

[
L(f0)

]
/(dη̇t), (3)

where 0 < η̇ = min
l∈{0}

∪
Nt−1

η̃l ≤ 1/(2LL ·MK), and given a small constant ϵ > 0 it

would take approximately
O
(
2(Ex∼[Pi(xi)]d

[
L(f0)

]
− ϵ)/(dη̇ mini∈Nd

(
mi,t−1(µi) +m′′

i,t−1(µi)σ
2
i /2

)
)
)
iterations

to reduce the multi-learner loss L to a sufficiently small value and to reach a
stationary point in terms of L.
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Lemma 5 (Sufficient Descent for multi-learner GFT)

Under the same assumption, if ηti ≤ 1
2LL·MK

for all i ∈ Nd, the GFT teachers can
achieve a greater reduction in the multi-learner loss L:

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

d∑
i=1

mi,t(x
t
i
∗
) ≤ − η̃td

2
· min
i∈Nd

mi,t(x
t
i
∗
), (4)

where η̃t andmi,t(·) retain their previous meaning.
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Theorem 6 (Convergence for multi-learner GFT)

Suppose the vector-valued model for multiple learners is initialized with f0 ∈ Hd and
returns f t ∈ Hd after t iterations, we have the upper bound of mini∈Nd

mi,t(x
t
i
∗
) w.r.t.

t:

min
i∈Nd

mi,t−1(x
t−1
i

∗
) ≤ 2

dη̇t
Ex∼[Pi(xi)]d

[
L(f0)

]
+

1

d

t−1∑
l=0

d∑
i=1

(
∥xli

∗ − µi∥2
)
, (5)

where η̇ has the same definition as before, and given a small constant ϵ > 0 it would
need aroundO

(
2(Ex∼[Pi(xi)]d

[
L(f0)

]
− ϵ)/(dη̇ mini∈Nd

mi,t−1(x
t−1
i

∗
))
)
iterations to

decrease the multi-learner loss L to a sufficiently small value and to reach a
stationary point in terms of L.
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An infant would integrate previously learnt knowledge to grasp a new target concept,
such as comprehending what a zebra is by combining the learnt ideas of horses and
black-and-white stripes. Such an efficient paradigm motivates us to explore the
communicated MINT, which enables the communication between learners.

Proposition 5

If the proximity between f t and f∗ is sufficiently close, meaning that ∥f t − f∗∥Hd ≤ ϵ
where ϵ is a tiny positive constant, thenAt equals the identity matrix Id.

Lemma 6
Under Lipschitz smooth assumption, the communication across learners will result in
a reduction of the multi-learner convex loss L by
0 ≤ L(f t)− L(Atf t) ≤ 2LL∥f t − f∗∥Hd .

C. Zhang et al. Nonparametric Teaching for Multiple Learners 12/18



Cont.
�_J• 

��•.\!,. J: • · ��u�AL INFORMATION

�• PROCESSING SYSTEMS 
•;•� 
-�;.

Theorem 7
Suppose the communication in the t-th iteration of multiple learners is denoted by
the matrixAt and returns f t+1

At ∈ Hd, for both RFT and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0.
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Testing the teaching of a multi-learner (vector-valued) target model, MINT presents
moresatisfactoryperformance than repeatedlycarryingout thesingle-learner teach-
ing, which is consistent with our theoretical findings.
• MINT in gray scale.

Simultaneous teaching of a tiger and a cheetah.
t=0 t=10000 t=30000 t=60000 t=70000 t=100000

(a) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=100000

(b) Vanilla MINT
t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(c) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(d) Vanilla MINT

Figure 2: Comparison between single-learner teaching and MINT. (a) Repeatedly invoking single-learner GFT:
teaching a white tiger at first and subsequently teaching a cheetah. (b) Simultaneous teaching of a white tiger
and a cheetah by GFT. (c) Single-learner teaching of the lion. (d) Partitioning a single lion image into 16 pieces
and teaching them concurrently.

4.3 Communicated multi-learner teaching

An infant would integrate previously learnt knowledge to grasp a new target concept, such as
comprehending what a zebra is by combining the learnt ideas of horses and black-and-white stripes.
Such an efficient paradigm motivates us to explore the communicated MINT, which enables the
communication between learners. In other words, multiple learners can execute linear combination
on the currently learnt functions of all learners [20, 22, 75, 12], that is, At is not constrained as an
identity matrix.

Practically, to direct this communication, the teacher can utilize a two-layer perceptron (MLP) to
derive the matrix At in 8 by searching a matrix A that minimizes ∥Af t−f∗∥Hd as much as possible,
which is an addition step beyond example selection in each iteration.

Proposition 11. If the proximity between f t and f∗ is sufficiently close, meaning that ∥f t−f∗∥Hd ≤
ϵ where ϵ is a tiny positive constant, then At equals the identity matrix Id.

The proof of Prop.11 is given in Appe.B. This suggests that there is no need for MLP to be used in
solving matrix At in every iteration, but only at the beginning, because as the iterations progress, f t

will approach near to f∗.

Lemma 12. Under Assumption 3, the communication across learners will result in a reduction of the
multi-learner convex loss L by 0 ≤ L(f t)− L(Atf t) ≤ 2LL∥f t − f∗∥Hd .

Proof of Lemma 12 is given in Appe.B. The difference in L between the case where the communica-
tion exists and that where it doesn’t is lower bounded by zero and upper bounded by the distance
between f t and f∗. This suggests that if f t is far from f∗, then matrix At can potentially decrease
L significantly at the best case while not causing any increase at the worst case.

Theorem 13. Suppose the communication in the t-th iteration of multiple learners is denoted by the
matrix At and returns f t+1

At ∈ Hd, for both RFT and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0. (17)

Proof of Theorem 13 is in Appe.B. This shows that the addition of communication has led to an
improvement in model updates, which is evident from the larger loss discrepancy between f t+1

At and
f t compared to the difference observed between f t+1

At and Atf t.
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Figure 3: Comparison of convergence performance between single-learner teaching and MINT. (a) is corre-
sponding to (a)-(b) in Fig.2. (b) is for (c)-(d) in Fig.2. (c) pertains to teaching of a colored lion.
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Teaching of a lion by partition.

t=0 t=10000 t=30000 t=60000 t=70000 t=100000

(a) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=100000

(b) Vanilla MINT
t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(c) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(d) Vanilla MINT

Figure 2: Comparison between single-learner teaching and MINT. (a) Repeatedly invoking single-learner GFT:
teaching a white tiger at first and subsequently teaching a cheetah. (b) Simultaneous teaching of a white tiger
and a cheetah by GFT. (c) Single-learner teaching of the lion. (d) Partitioning a single lion image into 16 pieces
and teaching them concurrently.

4.3 Communicated multi-learner teaching

An infant would integrate previously learnt knowledge to grasp a new target concept, such as
comprehending what a zebra is by combining the learnt ideas of horses and black-and-white stripes.
Such an efficient paradigm motivates us to explore the communicated MINT, which enables the
communication between learners. In other words, multiple learners can execute linear combination
on the currently learnt functions of all learners [20, 22, 75, 12], that is, At is not constrained as an
identity matrix.

Practically, to direct this communication, the teacher can utilize a two-layer perceptron (MLP) to
derive the matrix At in 8 by searching a matrix A that minimizes ∥Af t−f∗∥Hd as much as possible,
which is an addition step beyond example selection in each iteration.

Proposition 11. If the proximity between f t and f∗ is sufficiently close, meaning that ∥f t−f∗∥Hd ≤
ϵ where ϵ is a tiny positive constant, then At equals the identity matrix Id.

The proof of Prop.11 is given in Appe.B. This suggests that there is no need for MLP to be used in
solving matrix At in every iteration, but only at the beginning, because as the iterations progress, f t

will approach near to f∗.

Lemma 12. Under Assumption 3, the communication across learners will result in a reduction of the
multi-learner convex loss L by 0 ≤ L(f t)− L(Atf t) ≤ 2LL∥f t − f∗∥Hd .

Proof of Lemma 12 is given in Appe.B. The difference in L between the case where the communica-
tion exists and that where it doesn’t is lower bounded by zero and upper bounded by the distance
between f t and f∗. This suggests that if f t is far from f∗, then matrix At can potentially decrease
L significantly at the best case while not causing any increase at the worst case.

Theorem 13. Suppose the communication in the t-th iteration of multiple learners is denoted by the
matrix At and returns f t+1

At ∈ Hd, for both RFT and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0. (17)

Proof of Theorem 13 is in Appe.B. This shows that the addition of communication has led to an
improvement in model updates, which is evident from the larger loss discrepancy between f t+1

At and
f t compared to the difference observed between f t+1

At and Atf t.
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Figure 3: Comparison of convergence performance between single-learner teaching and MINT. (a) is corre-
sponding to (a)-(b) in Fig.2. (b) is for (c)-(d) in Fig.2. (c) pertains to teaching of a colored lion.
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• MINT in three (RGB) channels.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(a) Single-learner teaching.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(b) Vanilla MINT.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(c) Communicated MINT.
Figure 4: Visualization of f t taught by GFT. Starting from a random initialization, the communicated multi-
learner GFT help multiple learners learn a more clear image than the vanilla one followed by single-learner one.

5 Experiments and Results

Testing the teaching of a multi-learner (vector-valued) target model, MINT presents more satisfactory
performance than repeatedly carrying out the single-learner teaching, which is consistent with
our theoretical findings. Detailed configurations and supplementary experiments are given in the
Appendix C.

MINT in gray scale. A grayscale figure can be viewed as a 3D surface where the z axis corresponds
to the level of gray, while the x, y axes depict the placement of pixels [71]. We consider two scenarios:
one involves the simultaneous teaching of a tiger and a cheetah figure, while the other focuses on
the teaching of a lion. After comparing (a) and (b) in Fig.2, we see that when teaching two target
functions by GFT simultaneously, the vanilla MINT requires almost half the number of cost iterations
compared to single-learner teaching, which is also evident from the loss plot shown in Fig.3 (a).
By comparing (c) and (d) in Fig.2, we can observe that dividing a single-learner target figure into
smaller pieces and recasting them into MINT can significantly improve the efficiency, which is also
demonstrated by the loss plot in Fig.3 (b).

MINT in three (RGB) channels. To further demonstrate the benefits of communication, we examine
with a lion image with three channels in RGB format. The loss plot in Fig.3 (c) reveals that the
most efficient teaching is the communicated MINT for both RFT and GFT. The vanilla MINT and
single-learner teaching follow in order of decreasing efficiency. Furthermore, as anticipated, the
multi-learner GFT proves to be more efficient compared to RFT. One intriguing observation is that
the communicated MINT leads to a significant reduction in multi-learner loss at the outset, which
aligns with our theoretical findings in Lemma 12 and confirms the validity of Prop.11 that At could
eventually become an identity matrix after numerous iterations. Fig.4 compares the specific learnt
f t for three versions of GFT during each iteration, wherein we observe that MINT consistently
outperforms the single-learner one, and the learnt image under the communicated MINT is more
clear compared to that of the vanilla one. To be more persuasive, we also offer detailed and additional
experiments in Appendix, including channel-wise visualization of specific f t (Fig.7), RFT-taught
f t (Fig.8-9) and teaching multiple learners with a particular initialization of f0 (Fig.11-10), which
includes an extremely case that only one-time communication is sufficient to help multiple learners
learn f∗ (Fig.15).

6 Concluding Remarks

In this paper, we seek to address a practical limitation of current nonparametric iterative machine
teaching, that is, enable the teaching of multi-learner (vector-valued) target models rather than
restricting the process to single-learner ones. This expansion of teaching ability involves generalizing
the model space from space of scalar-valued functions to that of vector-valued functions. In addressing
multi-learner nonparametric teaching (MINT), we firstly analyze a vanilla MINT where the teacher

Our source code is available at https://github.com/chen2hang/MINT_NonparametricTeaching.
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