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Outline

introduction

weak meta-model: multiple meta-models

large variance in meta-learning: variance reduction

con�icting gradients in meta-learning: soft improvement
function

conclusion
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Data, Data, Data

deep networks need huge
amount of labeled samples

some applications have few labeled
samples (e.g., aviation turbulence)
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Limited Data

few-shot learning

how to learn quickly with limited data?

like humans, take advantage of prior experiences
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Meta-Learning (Learning to Learn)

idea

extract meta-knowledge from learned tasks

utilize meta-knowledge to learn new tasks more quickly

meta-learner learns generic information (meta-knowledge)
across source tasks

base learner takes meta-knowledge as prior knowledge, then
generalizes for the new task using task-speci�c information

advantages

data e�ciency, compute e�ciency, lifelong learning
James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

Model-Agnostic Meta-Learning (MAML) Algorithm

MAML

learns a meta-initialization w

(shared among all tasks) from
historical tasks

�ne-tune on new task (using a few
gradient updates)

bilevel optimization

minw
1

|I|
∑
i∈I
L((w ,θi (w));Di

vld)

s.t. θi (w) = argmin
θ
L((w ,θ);Di

tr)

outer level: �nds a suitable meta-initialization w

inner level: adapts w to produce task-speci�c θi (w)
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Lots of Tasks

Example (5-way few-shot learning)

miniImageNet dataset

meta-training set has 64 classes

number of meta-training tasks:
(64
5

)
≈ 7.6× 106

tieredImageNet dataset

meta-training set has 351 classes

total number of meta-training tasks:
(351

5

)
≈ 4.3× 1010

Example (recommender system)

each user is a task

number of Amazon Prime subscribers: 150 million as of 2020
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Problem: Weak Meta-Model

complex environment

diverse task model parameters → one meta-model is not su�cient
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Problem: Large Variance

large variance

1 data variance: limited data samples for each task

2 task variance: task sampling from task distribution

large variance → slow convergence
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Problem: Con�icting Gradients

con�icting gradients

meta-learning: minimize average loss in outer level

min
w

1

|I|
∑
i∈I
L((w ,θi (w));Di

vld)

di�erent task gradients point in di�erent directions

con�icting gradients: signi�cantly in�uenced by a small subset
of tasks

→ poor performance
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One Meta-Model is not Su�cient

subspace

MUSML (MUltiple Subspaces for Meta-Learning)

multiple subspaces

each subspace: one type of
meta-knowledge

more challenging in meta-learning

bilevel optimization

unseen tasks with limited
samples

[Subspace learning for e�ective meta-learning (ICML 2022)]
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MUSML

base learner

task parameters wτ 's for tasks τ 's

lie in K subspaces {S1, . . . ,SK}; with basis {S1, . . . , SK}
in each subspace Sk , search for a linear combination v?τ,k to
form wτ

v
?
τ,k = arg min

vτ∈Rm
L(Dtr

τ ; Skvτ )

meta-learner

learn meta-parameters {S1, . . . , SK}
James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

One-Hot Subspace Selection

not e�cient: only one subspace is updated at each step

oτ,k : training loss
when using Sk to
construct τ 's model

all spaces are updated simultaneously

(one-hot) 0← γ →∞ (uniform)
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MUSML Algorithm

1: for t = 0, 1, . . . ,T − 1 do

2: sample a task τ with Dtr
τ and Dvl

τ ;
3: base learner:
4: for k = 1, . . . ,K do

5: initialize v
(0)
τ,k = v

(0);
6: for t′ = 0, 1, . . . ,Tin − 1 do

7: v
(t′+1)
τ,k = v

(t′)
τ,k − α∇

v
(t′)
τ,k

L(Dtr
τ ; Sk,tv

(t′)
τ,k );

8: end for

9: vτ,k ≡ v
(Tin)
τ,k ;

10: oτ,k = L(Dtr
τ ;Sk,tvτ,k);

11: end for

12: meta-learner:
13: Lvl =

∑K
k=1

exp(−oτ,k/γt )∑K
k′=1 exp(−oτ,k′/γt )

L(Dvl
τ ; Sk,tvτ,k);

14: {S1,t+1, . . . , Sk,t+1} = {S1,t , . . . , Sk,t} − ηt∇{S1,t ,...,Sk,t}Lvl ;
15: end for

16: Return S1,T , . . . , SK ,T .
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Bound on Expected Excess Risk

R(S) ≤ R? + ρ
√
m Eτ ′EDtr

τ ′
‖vτ ′,kτ ′ − v

?
τ ′,kτ ′
‖

+%Eτ ′EDtr
τ ′
dist(w?

τ ′ , Skτ ′)+K

√
ν2+12%ν(1+mαδ)Tin

2Ntr

dist(w?
τ ′ ,Skτ ′)≡minw∈Skτ ′

‖w −w?
τ ′‖: distance between w?

τ ′

and Skτ ′

1 minimum risk

2 distance between approximate minimizer vτ ′,kτ ′ and exact
minimizer v?τ ′,kτ ′

3 approximation error of w?
τ ′ using the learned subspaces

4 complexity of subspaces (m and K )
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Few-shot Classi�cation Experiments
data sets

1 Meta-Dataset-BTAF : consists of 4 image classi�cation
datasets: Bird, Texture, Aircraft, Fungi

2 Meta-Dataset-ABF : consists of Aircraft, Bird, and Fungi
3 Meta-Dataset-CIO: consists of CIFAR-FS, mini-ImageNet,

Omniglot

architecture

Conv4 backbone + Prototype classi�er

meta-learning baselines

one globally-shared meta-model: MAML, ProtoNet, ANIL,
BMG
multiple meta-models arranged in hierarchy/graph/clusters

Dirichlet process mixture model (DPMM)
hierarchically structured meta-learning (HSML)
automated relational meta-learning (ARML)
task similarity aware meta-learning (TSA-MAML,
TSA-ProtoNet)
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5-way 5-shot Classi�cation Accuracy

Meta-Dataset-BTAF Meta-Dataset-ABF Meta-Dataset-CIO

MAML 57.78 63.86 74.46
ProtoNet 62.29 65.62 76.51
ANIL 58.57 64.43 74.61
BMG 60.10 65.80 77.46

DPMM 63.00 66.26 76.63
TSA-MAML 63.20 68.17 76.89

HSML 62.39 64.17 75.54
ARML 63.95 64.52 76.12

TSA-ProtoNet 63.57 68.77 77.27
MUSML 66.18 71.10 77.83

MUSML is more accurate
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Task Assignment to Learned Subspaces

Meta-Dataset-BTAF (5-way 5-shot)

meta-training

1 2 3 4
Subspace index

Bi
rd

Te
xt
ur
e

Ai
rc
ra
ft

Fu
ng
i

Da
ta
se
t

100% 0% 0% 0%

0% 100% 0% 0%

0% 0% 100% 0%

0% 0% 0% 100%

meta-validation

1 2 3 4
Subspace index

Bi
rd

Te
xt
ur
e

Ai
rc
ra
ft

Fu
ng
i

100% 0% 0% 0%

13% 49% 13% 26%

0% 0% 100% 0%

6% 3% 3% 89%

meta-testing

1 2 3 4
Subspace index

Bi
rd

Te
xt
ur
e

Ai
rc
ra
ft

Fu
ng
i

96% 1% 3% 0%

7% 64% 4% 24%

0% 0% 100% 0%

10% 3% 4% 83%

tasks from the same dataset are assigned to the same subspace
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Cross-Domain 5-way 5-shot Classi�cation

Meta-Dataset-BTAF → Meta-Dataset-CIO

MAML 64.25
ProtoNet 66.13
ANIL 65.19
BMG 66.98

DPMM 66.73
TSA-MAML 66.85

HSML 65.18
ARML 65.37

TSA-ProtoNet 66.92
MUSML 67.41
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Improving Existing Meta-learning Algorithms

MUSML can be used with any meta-learning algorithm

5-way 5-shot classi�cation accuracy

Meta-Dataset-BTAF Meta-Dataset-ABF Meta-Dataset-CIO

Meta-SGD 58.93 64.19 75.95
MUSML-SGD 65.72 69.15 77.48

Meta-Curvature 60.02 64.51 76.13
MUSML-Curvature 66.10 69.23 77.96
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Meta-Learning for Prompt Learning in LLM

large language models

[from �A Survey of Large Language Models", Zhao et al, 20223]
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Pre-Train and Fine-Tune

pre-training

train on a large-scale corpora → a very capable LLM

�ne-tuning on downstream tasks

adapt the pre-trained LLM according to speci�c goals

�ne-tune the whole model? expensive for large models
(e.g., GPT-3 contains 100+ billion parameters)

James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

Prompt Tuning

freeze the pre-trained model

learn a continuous-valued prompt wrapped into the input
embedding

Masked Languange Model (MLM) 
(e.g., BERT)

Input Embedding Layer
<latexit sha1_base64="tzd8/317omgCKvrV8KxyhnDFI0c=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiQi6rIogssK9gFNKJPJpB06mQkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkDCqtON8Wyura+sbm5Wt6vbO7t6+fVDrKpFKTDpYMCH7AVKEUU46mmpG+okkKA4Y6QWTm8LvPRKpqOAPepoQP0YjTiOKkTbS0K55MdJjjFh2mzc8HAp9OrTrTtOZAS4TtyR1UKI9tL+8UOA0JlxjhpQauE6i/QxJTTEjedVLFUkQnqARGRjKUUyUn82y5/DEKCGMhDSPazhTf29kKFZqGgdmskiqFr1C/M8bpDq68jPKk1QTjueHopRBLWBRBAypJFizqSEIS2qyQjxGEmFt6qqaEtzFLy+T7lnTvWi69+f11nVZRwUcgWPQAC64BC1wB9qgAzB4As/gFbxZufVivVsf89EVq9w5BH9gff4ApXCULw==</latexit>E(·)
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Meta-Learning the Prompt

learning the prompt can be sensitive to initialization

MetaPrompting [Hou et al., 2022]

learn a meta-initialization for all task-speci�c prompts
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Problems

learn only one single meta-initialized prompt
→ hard to �nd such a prompt when the tasks are complex

need to tune the whole LM → expensive

5-way 5-shot
classi�cation

with or without
MLM tuning
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Meta-Learning a Prompt Pool

use a pool of prompts to extract more task knowledge

[E�ective structured-prompting by meta-learning and representative verbalizer
(ICML 2023)]

more �exible
→ allows better adaptation to complex tasks
→ no need to �ne-tune the whole LM

only the prompt pool is tuned → parameter-e�cient

e.g., 1800× fewer parameters than MetaPrompting

also proposed a new verbalizer
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MetaPrompter

prompt pool: has K learnable prompts

{(ki ,θi ) : i = 1, . . . ,K}, with key ki and value θi
shared meta-knowledge learned by meta-learning algorithms
(e.g., MAML)

compute attention between input x and the K prompts

instance-dependent prompt

weighted combinations of all the prompts in the pool via
attention

θx(K,Θ) =
∑K

i=1 ai (x)θi
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Experiments

6 topic classi�cation data sets

LM: pre-trained BERT

5-way 5-shot classi�cation
#param (×106) 20News Amazon Hu�Post Reuters HWU64 Liu54

HATT 0.07 55.00 66.00 56.30 56.20 � �
DS 1.73 68.30 81.10 63.50 96.00 � �

MLADA 0.73 77.80 86.00 64.90 96.70 � �
ConstrastNet 109.52 71.74 85.17 65.32 95.33 92.57 93.72

MetaPrompting 109.52 85.67 84.19 72.85 95.89 93.86 94.01
MetaPrompter 0.06 88.57 86.36 74.89 97.63 95.30 95.47

MetaPrompter

better than both prompt-based and non-prompt-based
baselines

much more parameter-e�cient than MetaPrompting

James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

Visualization

samples from each target class
prefer prompts whose tokens are
related to that class

samples from cocoa tend to use
the 4th and 7th prompts (whose
tokens are close to words like
cocoa, chocolate)

1 2 3 4 5 6 7 8
Prompt

cocoa
coffee

copper
cotton

cpi
crude
earn
gnp
gold

grain
interest

ipi
acq

alum
bop

To
pi

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

prompt id nearest tokens

1 copper, steel, trading, gas, fx, aluminum, earn, co�ee
2 gross, ship, index, money, gold, tin, iron, retail
3 product, cpi, industrial, acquisitions, jobs, supplying, orange, sugar
4 cocoa, production, grain, livestock, wholesale, cotton, bop, crude
5 oil, national, rubber, nat, interest, price, reserves, regional
6 nat, wholesale, sugar, golden, reserves, drinks, production, product
7 chocolate, sugar, cheat, orange, trade, fx, cash, acquiring
8 aluminum, livestock, cpc, tin, shops, wheat, petrol, supply
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Integration with Other Meta-Learning Algorithms

similar performance gain when used with any meta-learning
algorithm

example: BMG

5-way 5-shot classi�cation meta-testing accuracy

20News Amazon Hu�Post Reuters HWU64 Liu54

MetaPrompting+BMG 85.71 83.47 73.92 96.27 93.31 93.04
MetaPrompter+BMG 87.91 86.45 74.99 98.01 95.41 94.52
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Variance Reduction

two sources of gradient variance

1 data sampling for each task

2 sampling of tasks

variance reduction: reduce variance in the stochastic gradients

single-level optimization

classic methods: SVRG, SAG, SDCA

faster convergence than SGD both theoretically and empirically

bilevel optimization

SUSTAIN, MRBO/VRBO, RSVRB, VR-BiAdam

faster than bilevel algorithms without variance reduction
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Removing Batch Gradient

batch gradient has to be computed occasionally → expensive

STORM [Cutkosky & Orabona (2019)]

does NOT need batch gradient
compute stochastic gradients at two points wt ,wt−1 with the
same mini-batch ξt

1: Input: w0, step-size {ηt}, decay parameter {γt}.
2: c0 = ∇`(w0; ξ0)
3: w1 = w0 − η0c0
4: for t = 1 to T − 1 do

5: sample ξt
6: ct = ∇`(wt ; ξt) + (1− γt)(ct−1 −∇`(wt−1; ξt))
7: wt+1 = wt − ηtct
8: end for

cf. SGD: ct = ∇`(wt ; ξt)
cf. momentum: ct = γt∇`(wt ; ξt) + (1− γt)ct−1
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Variance Reduction for Meta-Learning

straightforward approach

use existing variance reduction methods

replace the original gradients by their variance-reduced
counterparts

meta-learning as bilevel optimization

requires storing all task-speci�c parameters → prohibitive
storage for large number of tasks or huge task models

requires a large number of inner steps for convergence

meta-learning often uses only a small number of steps to avoid
over�tting the limited data

James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

Variance Reduction in Single-Level Meta-Learning

1: for t = 0 to T − 1 do

2: sample tasks It ⊂ I
3: for i ∈ It do

4: u
i
0 = wt

5: for k = 0 to K − 1 do

6: obtain task i samples ξik,t
7: u

i
k+1 = u

i
k − α∇`(u i

k , ξ
i
k,t)

8: end for

9: c
i
t =

1
Kα

(wt − u
i
K )

10: end for

11: ct =
1
|It |

∑
i∈It c

i
t

12: wt+1 = wt − ηtct
13: end for

Reptile

uses average gradient for
adaptation

VFML [Wang et al. (2021)]

integrates STORM with
Reptile

problems

1 lacks theoretical properties

2 inferior empirical
performance
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Proposed Family of Methods

[E�cient variance reduction for meta-learning (ICML 2022)]

can be integrated with various meta-learning algorithms

Reptile → VR-Reptile (Variance-Reduced Reptile)
MAML → VR-MAML
FOMAML → VR-FOMAML
BMG → VR-BMG
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Reptile and VR-Reptile

1: for t = 0 to T − 1 do

2: sample tasks It ⊂ I
3: for i ∈ It do

4: u
i
0 = wt

5: for k = 0 to K − 1 do

6: obtain task i samples ξik,t
7: u

i
k+1 = u

i
k − α∇`(u i

k , ξ
i
k,t)

8: end for

9: c
i
t =

1
Kα

(wt − u
i
K )

10: end for

11: ct =
1
|It |

∑
i∈It c

i
t

12: wt+1 = wt − ηtct
13: end for

1: ... initialization ...
2: for t = 1 to T − 1 do

3: sample tasks It ⊂ I
4: for i ∈ It do

5: u
i
0 = wt

6: v
i
0 = wt−1

7: for k = 0 to K − 1 do

8: obtain task i samples ξik,t
9: u

i
k+1 = u

i
k − α∇`(u i

k ; ξ
i
k,t)

10: v
i
k+1 = v

i
k − α∇`(v i

k ; ξ
i
k,t)

11: end for

12: d̃
i
t−1 = 1

Kα
(wt−1 − v

i
K )

13: c̃
i
t =

1
Kα

(wt − u
i
K )

14: end for

15: d̃t−1 = 1
|It |

∑
i∈It d̃

i
t−1

16: c̃t =
1
|It |

∑
i∈It c̃

i
t+(1− γt)(c̃t−1 − d̃t−1)

17: wt+1 = wt − ηt c̃t
18: end for
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Remarks

1: ... initialization ...
2: for t = 1 to T − 1 do

3: sample tasks It ⊂ I
4: for i ∈ It do

5: u
i
0 = wt

6: v
i
0 = wt−1

7: for k = 0 to K − 1 do

8: obtain task i samples ξik,t
9: u

i
k+1 = u

i
k − α∇`(u i

k ; ξ
i
k,t)

10: v
i
k+1 = v

i
k − α∇`(v i

k ; ξ
i
k,t)

11: end for

12: d̃
i
t−1 = 1

Kα
(wt−1 − v

i
K )

13: c̃
i
t =

1
Kα

(wt − u
i
K )

14: end for

15: d̃t−1 = 1
|It |

∑
i∈It d̃

i
t−1

16: c̃t =
1
|It |

∑
i∈It c̃

i
t + (1−

γt)(c̃t−1 − d̃t−1)
17: wt+1 = wt − ηt c̃t
18: end for

all γt 's = 1 → VR-Reptile
reduces to Reptile

K = 1 → VR-Reptile
reduces to STORM

space-e�cient: does NOT
need to store task-speci�c
u i
K/v

i
K and c̃ it/d̃

i
t−1

cf. direct application of
bilevel variance reduction
methods → requires
storing all task-speci�c
parameters
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Convergence

Reptile

1
T E
[∑T−1

t=0 ‖∇L̃(wt)‖2
]
≤
√
2G1/η0√

T
+
√
2G1/η0
T

VR-Reptile

1
T E
[∑T−1

t=0 ‖∇L̃(wt)‖2
]
≤ 4M̃G2

T 2/3 + 65
7 · M̃G2

T

faster convergence rate
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Experiments: Convergence

5-shot 5-way on Meta-Dataset (Bird, Texture, Aircraft, Fungi)
accuracy with number of outer-loop iterations

VR-Reptile (red) has faster convergence
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Reduce Stochastic Variance

variance of weight update c̃t
relative to squared norm

E‖c̃t − E[c̃t ]‖2/‖E[c̃t ]‖2

variance ↓
Reptile has larger variance → variance reduction also has
larger improvements on Reptile
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Few-Shot Classi�cation on mini-ImageNet

architecture

Conv4 backbone + Prototype classi�er

meta-learning baselines

standard methods:
MAML/FOMAML/Reptile/BMG/DRS/ProtoNet

straightforward STORM variants: replace stochastic gradients
by variance-reduced counterparts by STORM

VFML (Reptile+STORM)

ANIL and variants with bilevel optimization variance reduction
methods (SUSTAIN/MRBO/VRBO)
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Accuracy on mini-ImageNet

var reduction single/bilevel 1-shot 5-way 5-shot 5-way

MAML × single 48.7±1.8 63.1±0.9
FOMAML × single 48.1±1.8 63.2±0.9
Reptile × single 50.0±0.3 66.0±0.6
BMG × single 50.7±0.5 65.6±0.6
DRS × single 24.5±0.8 30.4±0.6

ProtoNet × single 49.4±0.8 68.2±0.7

MAML+STORM
√

single 47.9±1.4 61.6±1.2
FOMAML+STORM

√
single 48.0±1.6 63.4±1.1

Reptile+STORM
√

single 49.9±0.3 66.2±0.3
BMG+STORM

√
single 46.7±0.6 60.9±0.8

DRS+STORM
√

single 24.7±1.1 30.3±0.7

VR-MAML
√

single 49.2±1.4 63.6±0.8
VR-FOMAML

√
single 48.3±1.2 63.4±0.6

VR-Reptile
√

single 50.4±0.4 67.6±0.8
VR-BMG

√
single 51.4±0.3 68.4±0.6

VFML
√

single 49.6±0.5 66.2±0.8

ANIL × bilevel 46.9±0.4 61.4±0.2
ANIL+SUSTAIN

√
bilevel 47.0±0.4 61.8±0.3

ANIL+MRBO
√

bilevel 47.2±0.5 62.0±0.2
ANIL+VRBO

√
bilevel 47.2±0.4 61.9±0.2

integrating with any of the variance reduction methods leads
to better performance
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5-shot 5-way Classi�cation Accuracy on Meta-Dataset

var reduction single/bilevel Bird Texture Aircraft Fungi

MAML × single 74.56 45.68 69.06 53.68
FOMAML × single 73.64 42.82 66.38 52.18
Reptile × single 74.60 43.26 66.46 52.88
BMG × single 74.52 43.74 66.64 53.02
DRS × single 53.34 33.28 41.06 37.64

ProtoNet × single 74.22 49.86 71.38 53.94

MAML+STORM
√

single 74.86 45.26 68.48 53.72
FOMAML+STORM

√
single 73.72 42.78 66.22 52.28

Reptile+STORM
√

single 75.24 44.60 67.48 52.54
BMG+STORM

√
single 73.16 42.32 66.46 51.74

DRS+STORM
√

single 53.48 33.42 41.12 37.72

VR-MAML
√

single 75.06 46.18 68.36 53.86
VR-FOMAML

√
single 74.28 43.28 66.98 52.16

VR-Reptile
√

single 76.48 46.94 71.62 54.24
VR-BMG

√
single 76.56 47.28 71.48 54.38

VFML
√

single 74.38 44.48 65.64 52.76

ANIL × bilevel 73.68 41.96 68.74 52.84
ANIL+SUSTAIN

√
bilevel 73.74 42.12 68.82 52.78

ANIL+MRBO
√

bilevel 73.78 42.18 68.78 52.86
ANIL+VRBO

√
bilevel 73.88 42.22 68.74 52.82
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Con�icting Gradients

(meta-learning) minw
∑m

τ=1
Lτ (wτ ) s.t. wτ = w∗τ (w)

con�icting gradients

signi�cantly in�uenced by a small subset of tasks
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Meta-Learning as Multi-Objective Optimization (MOO)

(MOO) min
w

(L1(w∗1 (w)), . . . ,Lm(w∗m(w)))

each task is an objective

gradient-based MOO solvers

e.g., MGDA, PCGard, CAGard

in each iteration, �nd a descent direction common to all
objectives

Example (MGDA (multiple-gradient descent algorithm))

direction:
∑m

τ=1 γ
∗
τ∇x fτ (x)

{γ∗τ} = arg min
{γτ}

∥∥∥∥∥
m∑
τ=1

γτ∇x fτ (x)

∥∥∥∥∥
2

s.t.
m∑
τ=1

γτ = 1, γτ ≥ 0
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Problem

{γ∗τ} = arg min
{γτ}

∥∥∥∥∥
m∑
τ=1

γτ∇x fτ (x)

∥∥∥∥∥
2

s.t.
m∑
τ=1

γτ = 1, γτ ≥ 0

requires gradients from all objectives

meta-learning: computing all task gradients can be very expensive

Example (5-way few-shot classi�cation on MiniImagenet)

total number of meta-training tasks:
(64
5

)
≈ 7× 106
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Straightforward Solution

use a mini-batch B of objectives in each iteration

min{γτ}

∥∥∥∑
τ∈B

γτ∇τ (Lτ (w
∗
τ (w))

∥∥∥2 s.t.
∑

τ∈B
γτ = 1, γτ ≥ 0

problem: does not converge to Pareto front

two tasks/objectives (mini-batch size of 1)

(batch) MGDA vs mini-batch MGDA
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Improvement Function in MOO Problem

[Enhancing meta-learning via multi-objective soft improvement functions
(ICLR 2023)]

min
x
[f1(x), . . . , fm(x)]

improvement function

H(x , x ′) = maxτ=1...,m {fτ (x)− fτ (x
′)}

x∗ = argminx H(x , x∗) for a Pareto stationary point x∗

to �nd x∗: descent on H

x s+1 = x s + βd∗

d∗ = argmin
d

H(x s + d , x s) +
λ′

2
‖d‖2

s →∞, x s is Pareto stationary
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Meta-Learning Context

min
w

(L1(w∗1 (w)), . . . ,Lm(w∗m(w)))

improvement function

H(w ,w ′) = maxτ=1...,m

{
Lτ (w∗τ (w))− Lτ (w∗τ (w ′))

}
= max

π
Eτ∼π

[
Lτ (w∗τ (w))− Lτ (w∗τ (w ′))

]
π: probability density function on τ

update

w s+1 = w s + βd∗

d∗ = argmin
d

(
max
π

Eτ∼π [Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))]
)
+
λ′

2
‖d‖2
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Soft Improvement Function

take �rst-order approximation

min
d

(
max
π

Eτ∼π [Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ′

2
‖d‖2

)
= max

π

(
min
d
Eτ∼π [Lτ (w

∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ′

2
‖d‖2

)
︸ ︷︷ ︸

closed-form solution: −1
2λ′ ‖Eτ∼π∇wLτ (w∗τ (w))|w=ws ‖2

expectation Eτ∼π
sample tasks from uniform distribution U, then weight
sampled task τ with r(τ) ≡ π(τ)/U(τ)

parameterize r as a neural network rθ with parameter θ

max
θ

K (θ) ≡ −1
2λ′

[Eτ∼U rθ(τ)∇wLτ (w
∗
τ (w))|w=w s ]2−λ

′′

2
(Eτ∼U rθ(τ)− 1)2

the last term: enforcing the constraint Eτ∼U rθ(τ) = 1
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Problem

max
θ

K (θ) ≡ −1
2λ′

[Eτ∼U rθ(τ)∇wLτ (w
∗
τ (w))|w=w s ]2− λ

′′

2
(Eτ∼U rθ(τ)−1)2

Eτ∼U : still needs to access all tasks
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Mini-Batch Again!

B : mini-batch of k tasks

−1
2λ̂′

∥∥∥∥∥ 1

|B|
∑
τ∈B

rθ(τ)∇wLτ (w
∗
τ (w))|w=w s

∥∥∥∥∥
2

− λ̂′′

2

(
1

|B|
∑
τ∈B

rθ(τ)− 1

)2

︸ ︷︷ ︸
K̃B (θ)

K (θ) can be approximated by using mini-batches

when k � m,
(
K (θ)− 1

|B|
∑

B∈B K̃B(θ)
)2
≤ G1

kλ′ +
G2
k λ
′′

in experiments: m ≥ 106, k ≈ 102 → di� ≤ 0.2

James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

Soft Improvement Multi-Objective Meta Learning (SIMOL)

update the distribution

θs+1 = θs + β′∇θK̃B(θ
s)

update the meta-model

w s+1 = w s + βd̃∗

d̃∗ = − 1

λ′|B|
∑
τ∈B
∇wLτ (w∗τ (w))|w=w s

theoretically converge to an ε-Pareto stationary point
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Experiment

two objectives (mini-batch size of 1)

MGDA vs mini-match MGDA vs SIMOL
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Few-shot Regression

synthetic data: y = aτ sin(x + bτ )

160, 000 meta-training tasks, 1, 000 meta-testing tasks

meta-learner / re-weighting network: MLP with 2 FC layers

overall worst-10%
MAML 5-shot 2-shot 5-shot 2-shot

min average loss 0.43± 0.11 1.70± 0.11 2.13± 0.21 7.75± 0.48
mini-batch MGDA 0.60± 0.02 1.73± 0.10 2.62± 0.10 7.04± 0.51
mini-batch CAGrad 1.90± 0.24 1.82± 0.44 8.18± 0.63 8.23± 2.33

SIMOL 0.34 ± 0.04 1.24 ± 0.08 1.69 ± 0.18 5.66 ± 0.33

SIMOL consistently outperforms SGD, MGDA, and CAGrad in
terms of both the overall and worst-10% MSEs

mini-batch MGDA and CAGrad are not good
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Few-Shot Image Classi�cation (miniImageNet)

accuracy

overall worst-10%
1-shot 5-shot 1-shot 5-shot

(MAML) min average loss 49.24± 0.78 62.13± 0.72 13.33± 1.07 41.71± 1.02
mini-batch MGDA 46.08± 0.78 60.15± 0.41 10.60± 1.33 39.67± 0.55
mini-batch CAGrad 44.67± 0.75 60.05± 0.67 11.33± 1.12 40.01± 0.88

SIMOL 50.62 ± 1.39 65.83 ± 0.86 14.99 ± 1.72 44.81 ± 0.58

(MAML Reptile 47.07± 0.26 62.74± 0.37 - -
variants) FOMAML 45.53± 1.58 61.02± 1.12 - -

IMAML 49.30± 1.88 59.77± 0.41 - -
Meta-MP 48.51± 0.92 64.15± 0.92 - -
TS-MAML 48.44± 0.91 65.52± 0.68 - -

MTL 49.87 ± 0.41 65.81 ± 0.33 13.64 ± 1.45 43.42 ± 0.47

SIMOL consistently outperforms all the baselines in terms of
both overall and worst-10% accuracies
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Few-Shot Image Classi�cation (tieredImageNet)

accuracy

overall worst-10%
1-shot 5-shot 1-shot 5-shot

(MAML) min average loss 50.58± 1.44 69.33± 0.74 11.60± 1.96 46.95± 1.14
mini-batch MGDA 22.92± 1.04 53.41± 0.74 7.12± 2.11 32.79± 0.88
mini-batch CAGrad 49.04± 0.93 65.43± 0.73 11.40± 1.97 42.63± 0.95

SIMOL 51.42 ± 1.50 70.13 ± 0.74 12.00 ± 1.95 47.51 ± 1.46

(MAML Reptile 49.12± 0.43 65.99± 0.42 - -
variants) FOMAML 45.53± 1.58 61.02± 1.12 - -

IMAML 38.54± 1.37 60.24± 0.76 - -
Meta-MP 50.14± 1.37 68.30± 0.91 - -
TS-MAML 48.82± 0.88 67.82± 0.72 - -

MTL 51.02 ± 0.46 66.47 ± 0.39 13.60 ± 1.59 49.45 ± 0.58

James T. Kwok MLA 2023 Meta-learning with Many Tasks



intro multi meta-models variance reduction con�icting gradients conclusion

Using Batch MGDA and CAGrad

per-epoch running time (miniImageNet)

standard MAML SIMOL batch MGDA batch CAGrad

2.0 sec 2.3 sec 6.9 days 5.6 days

SIMOL has comparable per-epoch running time as MAML

batch MGDA and CAgrad are much more computationally
expensive (around 432, 000 times slower)
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Conclusion

how to learn with a lot of tasks in meta-learning?

use multiple meta-models into meta-learning

subspace learning of task model parameters

meta-learning a prompt pool

variance reduction to accelerate convergence of meta-learning

does not need to store all task-speci�c parameters

soft improvement function in MOO to handle con�icting gradients

scalable gradient-based solver with theoretical guarantees to
Pareto-optimality

empirically, outperform existing meta-learning algorithms
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