Recent Advances in Generative Models

Zhenguo Li Huawei Noah's Ark Lab Nov 4, 2023

Generative Models: why do we care?

• A full, joint probability distribution aims to model all dependencies within high-dimensional data.

- It enables many applications
 - Compression, storage, and transmission (telecommunication/5.5G)
 - Sampling, generation, and editing (AIGC)
 - Inference, reasoning, and discovery (AI for Math/Science)
- Generative models: flows, VAE, GAN, autoregressive (GPT), diffusion

Outline

Neural Compression

• Text-to-image Generation

Neural Theorem Proving

Outline

Neural Compression

• Text-to-image Generation

Neural Theorem Proving

iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder

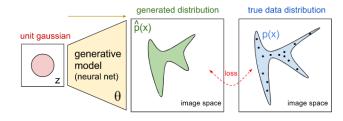
NeurIPS 2021 Spotlight, Huawei Noah Ark's Lab

AI for Lossless Compression

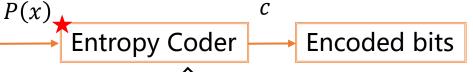
Input Probabilistic model

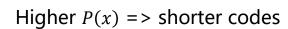
Predict P(x) with probabilistic model

- Maximize data likelihood $E_{P(x)}[\log_2 \hat{P}(x)]$
- Minimize code length $E_{P(x)}[-\log_2 \hat{P}(x)]$



	True prob	Prob with traditional	Prob with Al
Α	0.8	0.5	0.7
В	0.05	0.15	0.05
С	0.01	0.1	0.05
D	0.14	0.25	0.2
length	0.94	1.25	1.00





• Shannon Theorem (optimal codelength)

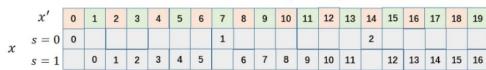
$$E_{P(x)}[-\log_2 P(x)] = H(X)$$

Expected codelength

$$E_{P(x)}\left[-\log_2 \hat{P}(x)\right] = -\sum_x P(x)\log_2 \hat{P}(x) = H(X) + KL(P||\hat{P})$$

- Better $\hat{P} =>$ higher compression ratio
- Entropy coders: AC/ANS.

Asymmetrize binary system for $p(0) = \frac{1}{7}, p(1) = \frac{6}{7}$

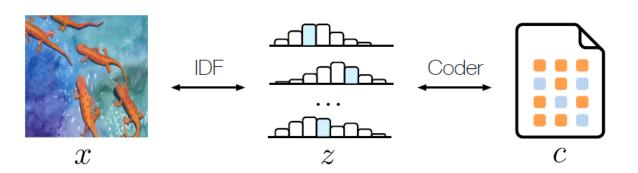


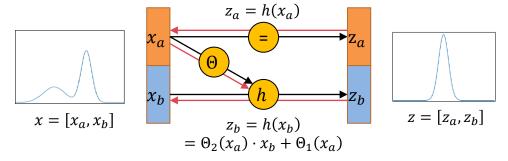
e.g.
$$x = 1 \xrightarrow{s=0} 7 \xrightarrow{s=1} 9 \xrightarrow{s=1} 11 \xrightarrow{s=1} 13 \xrightarrow{s=1} 16$$

 $x' \approx x/p(s)$. Expected codelength $\log x' - \log x = -\log p(s)$

Lossless Compression with Flow Model

- Flow model
 - Invertible neural network: $f: x \rightarrow z$; $f^{-1}: z \rightarrow x$
 - Probability mass: $p_X(x) = p_Z(z) \left| \frac{dz}{dx} \right|$
- Lossless compression with flows
 - Compression: convert x to z = f(x), compress z with $p_Z(z)$
 - Decompression: decode z with $p_Z(z)$, recover x with $x = f^{-1}(z)$



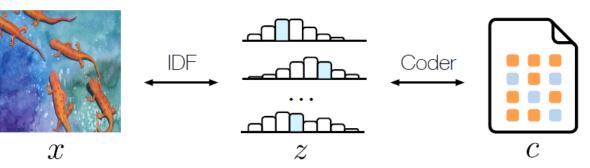


- Advantages
 - Accurate density estimation
 - High compression ratio

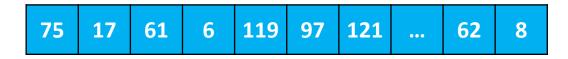
	ImageNet32	ImageNet64	CIFAR10
PNG 5	6.39	5.71	5.87
FLIF [35]	4.52	4.19	4.19
JPEG-XL [2]	6.39	5.74	5.89
L3C [29]	4.76	4.42	-
RC [30]	-	-	-
Bit-Swap [25]	4.50	-	3.82
IDF [18]	4.18	3.90	3.34
IDF++ [4]	4.12	3.81	3.26
iVPF [40]	4.03	3.75	3.20
LBB [17]	3.88	3.70	3.12
iFlow (Ours)	3.88	3.70	3.12

Lossless Compression with Flow Model

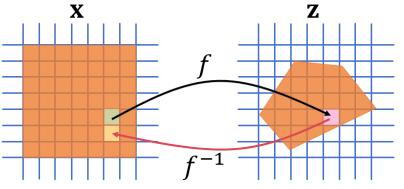
- Flow model
 - Invertible neural network: $f: x \rightarrow z$; $f^{-1}: z \rightarrow x$
 - Probability mass: $p_X(x) = p_Z(z) \left| \frac{dz}{dx} \right|$
- Lossless compression with flows
 - Compression: convert x to z = f(x), compress z with $p_Z(z)$
 - Decompression: decode z with $p_Z(z)$, recover x with $x = f^{-1}(z)$

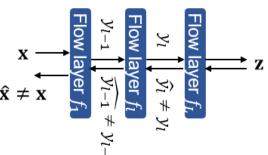


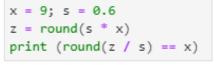
- Challenges: numerical errors
 - Data must be discrete



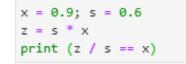
Flow models are usually not invertible due to numerical error







False



False

Lossless Compression with Flow Model

Coder

- Flow model
 - Invertible neural network: $f: x \rightarrow z$; $f^{-1}: z \rightarrow x$
 - Probability mass: $p_X(x) = p_Z(z) \left| \frac{dz}{dx} \right|$
- Lossless compression with flows
 - Compression: convert x to z = f(x), compress z with $p_Z(z)$
 - Decompression: decode z with $p_Z(z)$, recover x with $x = f^{-1}(z)$

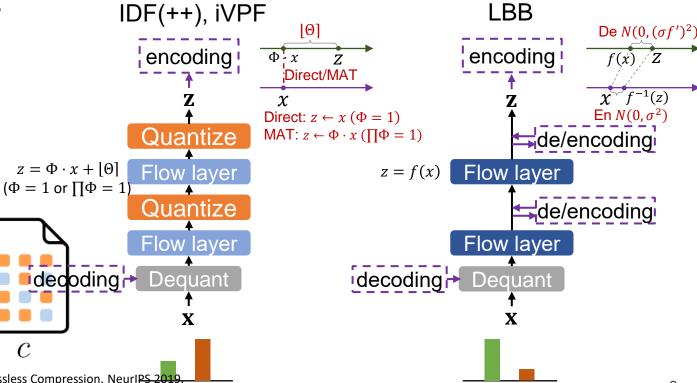
Related work

IDF(++) (NeurIPS 2019, ICLR 2021), iVPF (CVPR 2021)

- Invertible operations in integer flow model
- Inferior expressive power

LBB (NeurIPS 2019)

- Any flow models with high compression ratio
- Encoding the numerical error is slow



Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, Max Welling. Integer Discrete Flows and Lossless Compression. NeurIPS 2019 Jonathan Ho, Evan Lohn, Pieter Abbeel. Compression with Flows via Local Bits-Back Coding. NeurIPS 2019.

Dynamic Entropy Coders

- Al model captures all dependencies within data: $p(x_1, x_2) = p(x_1)p(x_2|x_1)$
- Traditional models often use the same distribution for each dimension
- Dynamic entropy coder should be introduced in AI compression
- Related work: rANS. Coding with PMF $l_{\rm s}/m$ and CDF $b_{\rm s}/m$

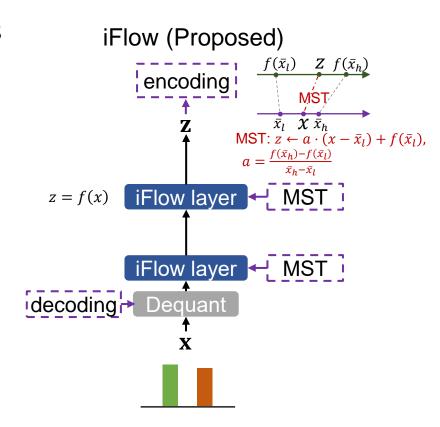
$$c'(c,s) = \lfloor c/l_s \rfloor \cdot m + (c \mod l_s) + b_s \qquad c(c',s) = \lfloor c'/m \rfloor \cdot l_s + (c' \mod m) - b_s$$

- Drawbacks: low compression bandwidth
 - Many atomic operations
 - Binary search in decoding

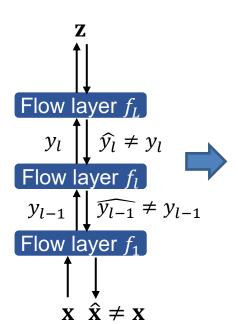
	# threads	rANS
Encoder	1 4 8 16	5.1 ± 0.3 10.8 ± 1.9 15.9 ± 1.4 21.6 ± 1.1
Decoder	1 4 8 16	0.80 ± 0.02 2.8 ± 0.1 5.5 ± 0.2 7.4 ± 0.5

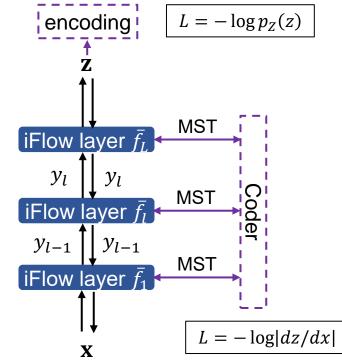
iFlow: Contributions

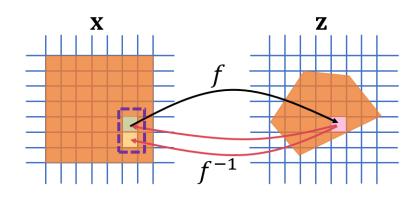
- Numerically Invertible Flows (iFLow)
 - MST: the fast and efficient numerically invertible flows with bits-back coding
- Dynamic Entropy Coders
 - UBCS: efficient dynamic entropy coder on uniform distribution for fast computation of iFlow
- Lossless compression with iFlow
 - Coding with ANY types of flows



- iFlow pipeline
 - Flow f: stacking flow layers $f = f_L \circ \cdots \circ f_1$
 - iFlow $\bar{f} = \bar{f}_L \circ \cdots \circ \bar{f}_1$: each layer is numerically invertible $y_{l-1} = \bar{f}_l^{-1} \left(\bar{f}_l(y_{l-1}) \right)$
 - Inputs/outputs of each layer is k-precision quantization: $y \leftarrow |2^k \cdot y|/2^k$
- Coder may be involved in iFlow
 - One discrete z may correspond to multiple x's
 - Code for duplicate positions
 - $-z = \bar{f}(x)$ with $-\log \bar{f}'(x)$ bits encoded







Numerically invertible linear flows

$$-z = f(x) = a \cdot x, a \rightarrow R/S$$
 MST algorithm

Codelength: $L_f(x) = \log S - \log R = -\log f'(x)$

$$y \xrightarrow{y \div S = z \bmod r_e} (z, r_e) \ (r_e < S)$$

$$z \approx R/S \cdot x \approx a \cdot x$$

$$(x, r_d) \ (r_d < R) \xrightarrow{\vdots} R \qquad y \xrightarrow{\vdots} S \qquad (z, r_e) \ (r_e < S)$$

$$Encode \ r_e \ with \ U(0, R)$$

$$Coder$$

Algorithm 1 Modular Scale Transform (MST): Numerically Invertible Scale Flow $f(x) = R/S \cdot x$.

Forward MST: $\bar{z} = f(\bar{x})$.

- 1: $\hat{x} \leftarrow 2^k \cdot \bar{x}$:
- 2: Decode r_d from U(0, R); $\hat{y} \leftarrow R \cdot \hat{x} + r_d$; 2: Decode r_e from U(0, S); $\hat{y} \leftarrow S \cdot \hat{z} + r_e$; 3: $\hat{z} \leftarrow \lfloor \hat{y}/S \rfloor$, $r_e \leftarrow \hat{y} \mod S$; 3: $\hat{x} \leftarrow \lfloor \hat{y}/R \rfloor$, $r_d \leftarrow \hat{y} \mod R$;
- 4: Encode r_e with U(0, S);
- 5: return $\bar{z} \leftarrow \hat{z}/2^k$.

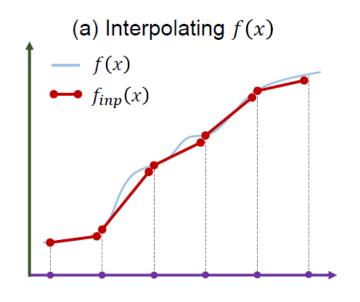
Inverse MST: $\bar{x} = \bar{f}^{-1}(\bar{z})$.

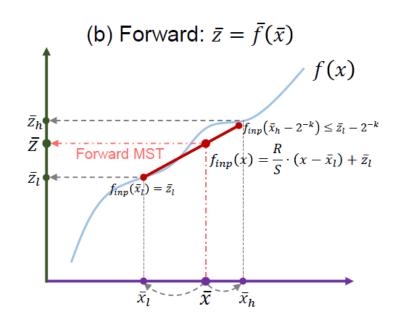
- 1: $\hat{z} \leftarrow 2^k \cdot \bar{z}$:

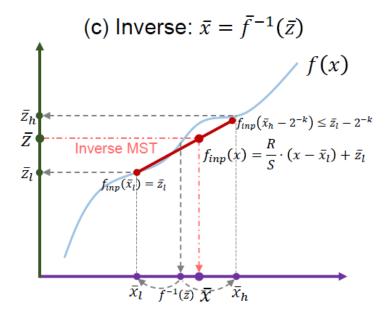
- 4: Encode r_d with U(0,R);
- 5: return $\bar{x} \leftarrow \hat{x}/2^k$.

- Numerically invertible non-linear flows
 - Interpolating f, use MST on each interval

Codelength: $L_f(x) = -\log R/S \approx -\log f'(x)$



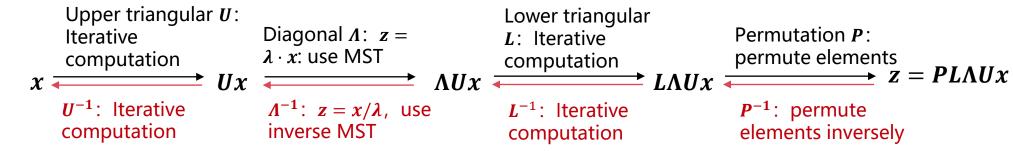




Numerically invertible coupling layer

Codelength:
$$L_f(x) = -\log f'(x_b) = -\log dz/dx$$

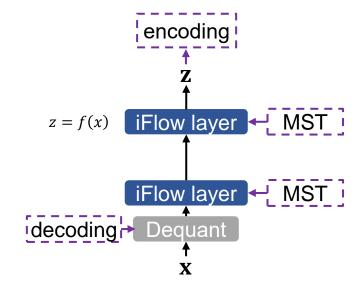
- $-z = [z_a, z_b] = [x_a, f(x_b)]$. Use non-linear iFlow layer in $z_b = f(x_b)$
- Numerically invertible 1x1 convolutional layer | Codelength: $L_f(x) = -\det \Lambda = -\log dz/dx$



Permutation P: permute elements P^{-1} : permute elements inversely

- Lossless compression with iFlow
 - Construct iFlow with iFlow layers
 - Bits-back coding with dequantization

```
Codelength: L_f(x) =
-\log p(z) - \sum_{l} L_{f_{l}}(y_{l-1}) = -\log p(x)
```



UBCS: Fast Dynamic Uniform Coder

Related work: Range-based Asymmetric Numerical System (rANS)

$$c'(c,s) = \lfloor c/l_s \rfloor \cdot m + (c \mod l_s) + b_s \qquad c(c',s) = \lfloor c'/m \rfloor \cdot l_s + (c' \mod m) - b_s$$

- Proposed: Uniform Base Conversion System (UBCS)
 - Coding with any uniform distribution: $P(s) = \frac{1}{R}$, $s \in \{0,1,...,R-1\}$

$$c' = E(c,s) = c \cdot R + s \qquad \qquad \qquad s = c' \mod R, \qquad c = D(c',s) = \lfloor \frac{c'}{R} \rfloor$$

Advantages

	rANS	UBCS
Encoding bandwidth	21.6 MB/s	2075 MB/s
Decoding bandwidth	7.4 MB/s	552 MB/s
Encoding process	One division, one mod, one multiplication, two additions	One multiplication, one addition
Decoding process	Find s with binary search, one shift operation, one or operation, two additions	One division, one mod

- Discussions
 - Coding with ANY flow: high compression ratio
 - Fast uniform coder in MST: high bandwidth

iFlow	LBB		
$z \approx R/S \cdot x \approx a \cdot x$ $(x, r_d) (r_d < P) \xrightarrow{\times R + r_d} y \xrightarrow{\div S} (z, r_e) (r_e < Q)$ Decode r_d with $U(0, R)$ $Coder$ $Coder$	Decode $\bar{\mathbf{z}} \sim \mathcal{N}(f(\bar{\mathbf{x}}), \sigma^2 \mathbf{J} \mathbf{J}^{\top}) \delta_z$ Encode $\bar{\mathbf{x}}$ using $\mathcal{N}(f^{-1}(\bar{\mathbf{z}}), \sigma^2 \mathbf{I}) \delta_x$ Encode $\bar{\mathbf{z}}$ using $p(\bar{\mathbf{z}}) \delta_z$		
Code Uniform distribution with UBCS	Code Gaussian distribution with rANS		
FAST	SLOW		

Experiments: Coding Bandwidth

- UBCS: achieving high compression bandwidth
 - 50x speedup compared with rANS, achieving 2GB/s

	# threads	rANS	UBCS
	1 4	5.1±0.3 10.8±1.9	380±5 709±56
Encoder	8 16	15.9 ± 1.4 21.6 ± 1.1	$1297{\scriptstyle\pm137}\atop2075{\scriptstyle\pm353}$
Decoder	1 4 8 16	0.80 ± 0.02 2.8 ± 0.1 5.5 ± 0.2 7.4 ± 0.5	$66.2{\scriptstyle\pm1.7}\atop248{\scriptstyle\pm8}\atop460{\scriptstyle\pm16}\atop552{\scriptstyle\pm50}$

Experiments: Lossless Compression

- iFlow achieves SoTA compression ratio and bandwidth
 - The compression ratio achieves the theoretical upper bound
 - Coding time only occupies 30% of the model inference time, which is no longer the bottleneck for lossless compression
 - Coding bandwidth is 5x faster than LBB (as the coding time is 5x compared with LBB)
 - Coding bandwidth is 30% faster than iVPF (as UBCS performs faster than MAT in iVPF)

flow arch.	compression technique	nll	bpd	aux. bits	encoding tinference	time (ms) coding	decoding tinference	time (ms) coding
Flow++	LBB [17] iFlow (Ours)	3.116	3.118 3.118	39.86 34.28	16.2±0.3	116 ± 1.0 21.0 ± 0.5	32.4±0.2	112±1.5 37.7±0.5
iVPF	iVPF 40 iFlow (Ours)	3.195	3.201 3.196	6.00 7.00	5.5±0.1	11.4±0.2 7.1 ±0.2	5.2±0.1	13.5 ± 0.3 9.7 ± 0.2

Experiments: Lossless Compression

Achieving SoTA on benchmarking image datasets

	ImageNet32	ImageNet64	CIFAR10	CLIC.mobile	CLIC.pro	DIV2K
PNG [5]	6.39	5.71	5.87	3.90	4.00	3.09
FLIF 35	4.52	4.19	4.19	2.49	2.78	2.91
JPEG-XL [2]	6.39	5.74	5.89	2.36	2.63	2.79
L3C [29]	4.76	4.42	-	2.64	2.94	3.09
RC [30]	-	-	-	2.54	2.93	3.08
Bit-Swap [25]	4.50	-	3.82	-	-	-
IDF [<u>18]</u>	4.18	3.90	3.34	-	-	-
IDF++ [4]	4.12	3.81	3.26	-	-	-
iVPF [40]	4.03	3.75	3.20	-	-	-
LBB [17]	3.88	3.70	3.12	-	-	-
iFlow (Ours)	3.88	3.70	3.12	-	-	-
HiLLoC [36] [†]	4.20	3.90	3.56	-	-	-
IDF [18] [†]	4.18	3.94	3.60	-	-	-
iVPF [†] [40]	4.03	3.79	3.49	2.47/2.39 [‡]	$2.63/2.54^{\ddagger}$	2.77/2.68 [‡]
iFlow (Ours) [†]	3.88	3.65	3.36	2.26/2.26 [‡]	2.45/2.44 [‡]	2.60/2.57 [‡]

Experiments: Lossless Compression

- Achieving good generalization performance: SoTA compression ratio on realworld high resolution images
 - Train flow with Imagenet32/64 dataset
 - Crop the image to 32x32/64x64 patches

	ImageNet32	ImageNet64	CIFAR10	CLIC.mobile	CLIC.pro	DIV2K
PNG [5]	6.39	5.71	5.87	3.90	4.00	3.09
FLIF [35]	4.52	4.19	4.19	2.49	2.78	2.91
JPEG-XL [2]	6.39	5.74	5.89	2.36	2.63	2.79
L3C [29]	4.76	4.42	-	2.64	2.94	3.09
RC [30]	-	-	-	2.54	2.93	3.08
Bit-Swap [25]	4.50	-	3.82	-	-	-
IDF [18]	4.18	3.90	3.34	-	-	-
IDF++ [4]	4.12	3.81	3.26	-	-	-
iVPF [40]	4.03	3.75	3.20	-	-	-
LBB [17]	3.88	3.70	3.12	-	-	-
iFlow (Ours)	3.88	3.70	3.12	-	-	-
HiLLoC [36] [†]	4.20	3.90	3.56	_	-	-
IDF [18] [†]	4.18	3.94	3.60	-	-	-
iVPF [†] [40]	4.03	3.79	3.49	2.47/2.39 [‡]	2.63/2.54 [‡]	2.77/2.68 [‡]
iFlow (Ours) [†]	3.88	3.65	3.36	2.26/2.26 [‡]	2.45/2.44 [‡]	2.60/2.57 [‡]

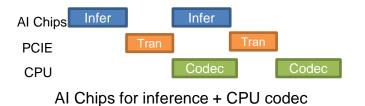
PILC: Practical Image Lossless Compression with an End-to-end GPU Oriented Neural Framework

CVPR 2022, Huawei Noah's Ark Lab

PILC: >100 MB/s AI Lossless Compression

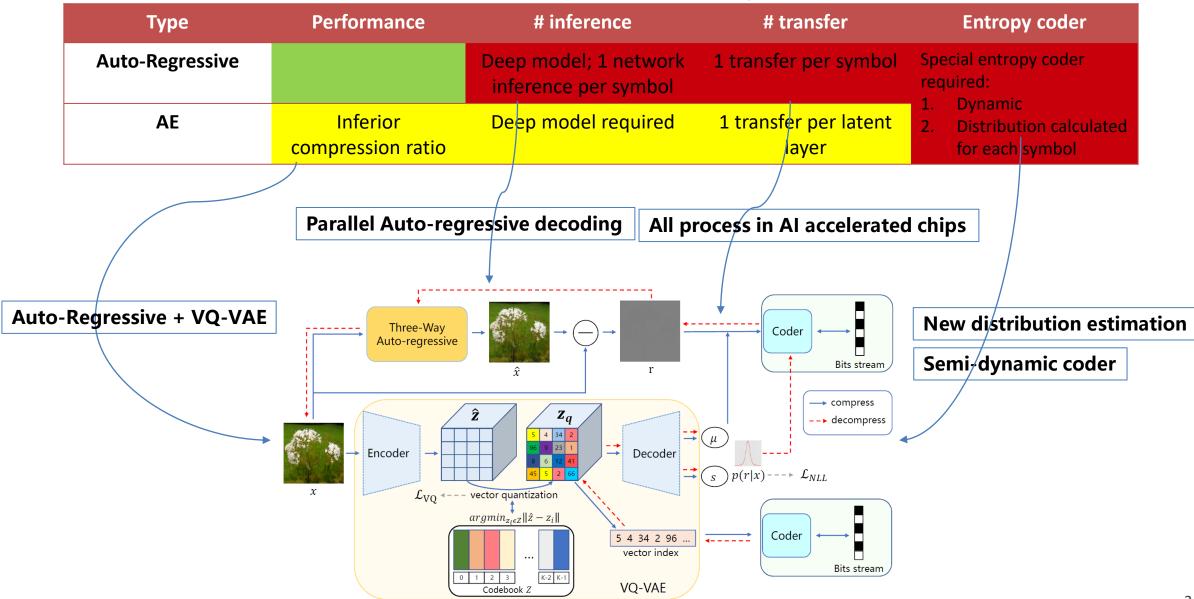
Туре	Performance	# inference	# transfer	Entropy coder
Auto-Regressive		Deep model; 1 network inference per symbol	1 transfer per symbol	required:
AE	Inferior compression ratio	Deep model required	1 transfer per latent layer	 Dynamic Distribution calculated for each symbol

- Principles for building real-time AI lossless codecs
 - Inference time of AI model should be small
 - Auto-regressive models achieve better compression ratio with smaller parameters
 - AE models is faster and able to model global information
 - Al codecs should not suffer from bandwidth issues
 - PCIE transfer between AI chips and CPU should be reduced



Al Chips for inference & codec

PILC: >100 MB/s AI Lossless Compression



PILC: Result

- 30% better CR than PNG
- ~200 MB/s with single NVIDIA Tesla V100 chip
 - 15x faster than L3C, comparable CR

BPD	CIFAR10	ImageNet32	ImageNet64	DIV2K	CLIC.pro	CLIC.mobile	Through Compress	put (MB/s) Decompress
PNG [2] (fastest)	6.44	6.78	6.09	4.64	4.23	4.39	55.9	118.2
PNG [2] (best)	5.91	6.41	5.77	4.23	3.90	3.80	3.0	83.5
WebP [31] (-z 0)	4.77	5.44	4.92	3.43	3.22	3.03	29.8	99.1
FLIF [23] (-effort 0)	4.27	5.06	4.70	3.24	3.03	2.82	6.2	4.2
JPEG2000 [24]	6.75	7.50	6.08	4.11	3.79	3.94	7.6	9.1
L3C [17]	4.55	5.19	4.57	3.13	2.96	2.65	12.3	6.3
PILC (Ours)	4.23	5.10	4.76	3.41	3.23	3.00	180.3	217.2

BPD result on different datasets. The lower BPD value, the better

	Threads	Throughput rANS (MB/s)	Throughput ANS-AI (MB/s)
	1	5.1	81.7
Farada	4	10.8	239.0
Encode	8	15.9	433.9
	16	21.6	598.8
	1	0.8	122.0
Decode	4	2.8	467.9
	8	5.5	925.9
	16	7.4	1190.0

Bandwidth for dynamic entropy coder

	Phase	Throughput (MB/s)	Time (μs)
	$RAM \to GPU$	9246	0.33
	Model Inference	276	11.11
Compress	Coder Encode	675	4.55
	$GPU \rightarrow RAM$	2985	1.03
	Total	180	17.02
	$RAM \rightarrow GPU$	11101	0.28
	Coder Decode	11091	0.28
	VQ-VAE Decode	721	4.26
Decompress	Code Decode	672	4.57
	AR Decode	869	3.53
	$GPU \to RAM$	2521	1.20
	Total	217	14.12

Speed composition for each process

Further References

- High AI compression bandwidth
 - iFlow (NeurIPS 21 Spotlight): High-efficiency AI entropy codec with SoTA flows
 - PILC (CVPR 22): 200MB/s bandwidth on single V100 GPU, 10-100x faster than previous AI compression model. 30% compression ratio improvement over PNG
 - SHVC (CVPR 22): near SoTA compression ratio with 1/10 model size
- Other works
 - DAMix (AAAI 23): Combining AI models for SoTA compression ratio on generalized data
 - iVPF (CVPR 21): Achieving 5-15x speedup compared with LBB
 - OSOA (NeurIPS 21): Dynamic AI model while compression, 47% compression ratio improvement on generation dataset
 - NelLoc (NeurIPS 21): Theoretical generation ability analysis, 37% compression ratio improvement with 1/7 model size

Outline

- Neural Compression
- Text-to-image Generation
- Neural Theorem Proving

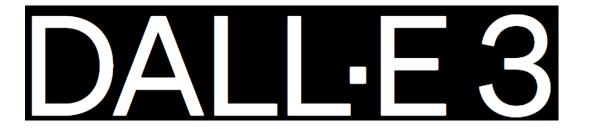
PixArt-α: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis

https://arxiv.org/abs/2310.00426

Huawei Noah's Ark Lab

Background

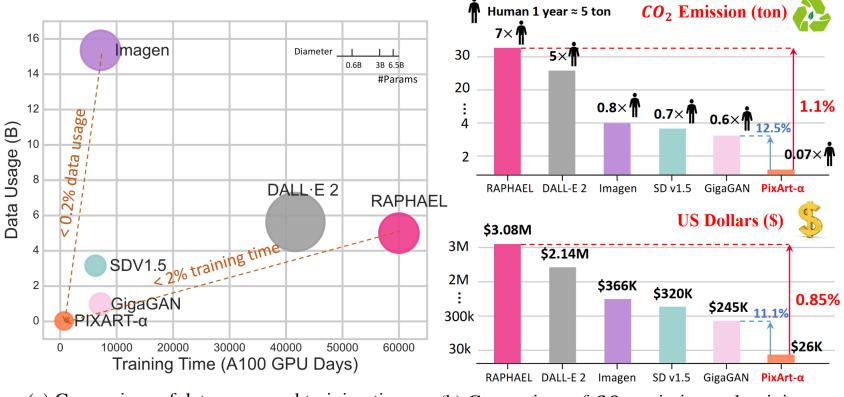
- SoTA text-to-image (T2I) generative models: DALL·E 3, Imagen, Stable Diffusion
- AIGC Applications: image editing, video generation, 3D assets creation, and many more.



Stable Diffusion XL

Background

- Challenges in advanced T2I models: enormous training costs/millions of GPU hours/CO2 emissions
- Can we develop a high-quality image generator with affordable resource consumption?



(a) Comparison of data usage and training time

(b) Comparison of CO_2 emission and training cost

PixArt- α - Low training cost, Powerful Synthesis Models

- PIXART- α 's training speed markedly surpasses existing large-scale T2I models, far more affordable.
- PIXART- α only takes 10.8% of Stable Diffusion v1.5's training time (~675 vs. ~6,250 A100 GPU days), saving nearly \$300,000 (\$26,000 vs. \$320,000) and reducing 90% CO2 emissions.

beautiful scene with mountains and rivers in a small villa

a small cactus with a happy face in the Sahara desert cosmic maelstrom nebula

towering church, an evil statue with a skeleton in his hand

product photography, world sitting at a table, portrait, of warcraft orc warrior, white background kodak portray

little airl with red hair paper artwork, layered a traveler navigating via a paper, colorful dragon surrounded by clouds Chinese ink painting

Chinese boat in countless mountains,

a Emu, focused yet playful, ready for a competitive matchup, photorealistic quality with cartoon vibes

Oppenheimer sits on the beach on a chair, watching a nuclear exposition with a huge mushroom cloud, 120mm

Problems with current popular generative training datasets

- Text-image misalignment
- Deficient description
- Infrequent vocabulary
- Low image quality

Table 1: Statistics of noun concepts for different datasets. **VN**: valid distinct nouns (appearing more than 10 times); **DN**: total distinct nouns; **Average**: average noun count per image.

Low density

Dataset	VN/DN	Total Noun	Average
LAION	210K/2461K = 8.5%	72.0M	6.4/Img
LAION-LLaVA	85K/646K = 13.3%	233.9M	20.9/Img
SAM-LLaVA	23K/124K = 18.6%	327.9M	29.3/Img
Internal	152K/582K = 26.1%	136.6M	12.2/Img

High density

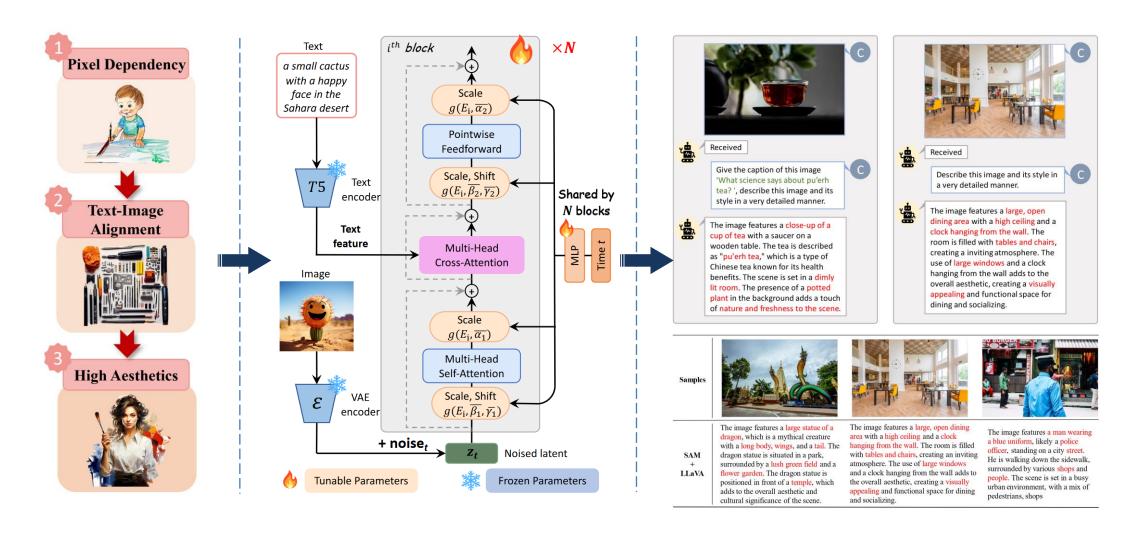
Problems	Text-image misalignment	Deficient descriptions	Infrequent vocabulary
Samples			
Raw caption	What science says about pu'erh tea?	AH1370/1950 Saudi Arabia Gold One Guinea MS-63 NGC	2018 Kawasaki Jet Ski Ultra 310LX in Unionville, Virginia
LLaVA refined caption	The image features a close-up of a cup of tea with a saucer on a wooden table. The tea is described as "pu'erh tea," which is a type of Chinese tea known for its health benefits. The scene is set in a dimly lit room. The presence of a potted plant in the background adds a touch of nature and freshness to the scene.	The image shows a man working on scuba diving equipment at Blue Water Divers. The man is sitting at a table, working on a piece of equipment, possibly fixing or adjusting it. The scene is set in a workshop or a store, with various tools and equipment visible in the background.	The image features a man riding a jet ski on a body of water. The jet ski is green and white, and it is being used for recreational purposes. The man is smiling, indicating that he is enjoying his time on the water. The scene is set in a beach area.

PixArt- α : three core designs

Training strategy decomposition

Efficient T2I Transformer

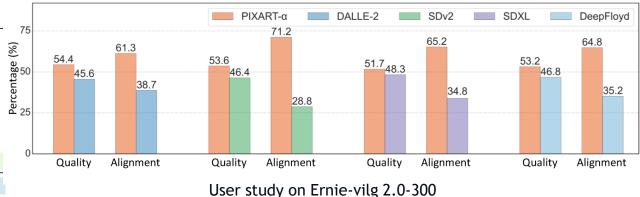
High-informative data



State-of-the-art Results

- Our method has the following two advantages:
- 1. Better quality and alignment: PIXART- α excels in both higher fidelity and superior alignment.
- 2. Better controllability: PIXART-α demonstrated exceptional performance in attribute binding, object relationships, and complex compositions, achieving superior compositional generation ability.

Model	Attribute Binding		Object Relationship		Complex ↑	
Model	Color ↑	Shape [†]	Texture ↑	Spatial [†]	Non-Spatial↑	Complex
Stable v1.4	0.3765	0.3576	0.4156	0.1246	0.3079	0.3080
Stable v2	0.5065	0.4221	0.4922	0.1342	0.3096	0.3386
Composable v2	0.4063	0.3299	0.3645	0.0800	0.2980	0.2898
Structured v2	0.4990	0.4218	0.4900	0.1386	0.3111	0.3355
Attn-Exct v2	0.6400	0.4517	0.5963	0.1455	0.3109	0.3401
GORS	0.6603	0.4785	0.6287	0.1815	0.3193	0.3328
Dalle-2	0.5750	0.5464	0.6374	0.1283	0.3043	0.3696
SDXL	0.6369	0.5408	0.5637	0.2032	0.3110	0.4091
PIXART- α	0.6886	0.5582	0.7044	0.2082	0.3179	0.4117



T2ICompBench

OpenAI also uses T2ICompBench to evaluate DALLE. 3!

Compare with Midjourney

Art collection style and fashion shoot, in the style of made of glass, dark blue and light pink, paul rand, solarpunk, camille vivier, beth didonato hair, barbiecore, hyper-realistic.

Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.

the woman and her attire.

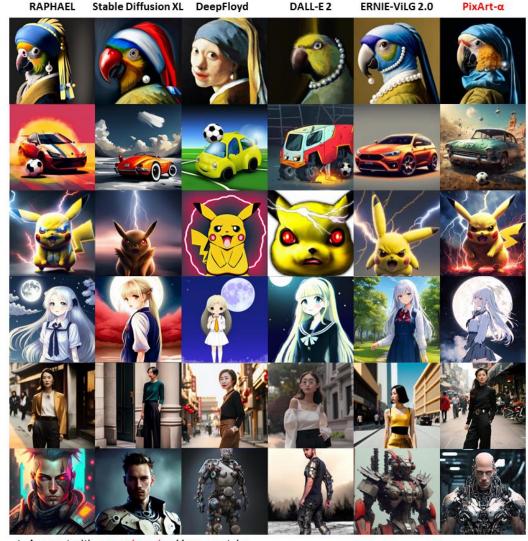
poster of a mechanical cat, technical Schematics viewed from front and side view on light white blueprint paper, illustration drafting style, illustration, typography, conceptual art, dark fantasy steampunk, cinematic, dark fantasy.

A small cactus with a happy face in the Sahara desert

The image features a woman wearing a red shirt with an icon. She appears to be posing for the camera, and her outfit includes a pair of jeans. The woman seems to be in a good mood, as she is smiling. The background of the image is blurry, focusing more on

Beautiful scene

Compare with Other Methods



- 1. A parrot with a *pearl earring*, Vermeer style.
- 2. A car playing soccer, digital art.
- 3. A Pikachu with an angry expression and red eyes, with lightning around it, hyper realistic style.
- 4. Moonlight Maiden, cute girl in school uniform, long *white hair*, standing under the *moon*, celluloid style, *Japanese manga style*.
- 5. Street shot of a fashionable *Chinese lady* in Shanghai, wearing *black* high-waisted *trousers*.
- 6. Half human, half robot, repaired human, human flesh warrior, mech display, man in mech, cyberpunk.

Compare with Midjourney

Art collection style and fashion shoot, in the style of made of glass, dark blue and light pink, paul rand, solarpunk, camille vivier, beth didonato hair, barbiecore, hyper-realistic.

Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJave, intricate detail.

poster of a mechanical cat, technical Schematics viewed from front and side view on light white blueprint paper, illustration drafting style, illustration, typography, conceptual art, dark fantasy steampunk, cinematic, dark fantasy.

The image features a woman wearing a red shirt with an icon. She appears to be posing for the camera, and

her outfit includes a pair of jeans. The woman seems

PixArt-α

to be in a good mood, as she is smiling. The background of the image is blurry, focusing more on

the woman and her attire.

A dog that has been meditating all the time

Beautiful scene

Compare with Other Methods

- 1. A cute little matte low poly isometric cherry blossom forest island, waterfalls, lighting, soft shadows, trending on Artstation, 3d render, monument valley, fez video game.
- 2. A shanty version of Tokyo, new rustic style, bold colors with all colors palette, video game, genshin, tribe, fantasy, overwatch.
- 3. Cartoon characters, mini characters, figures, illustrations, flower fairy, green dress, brown hair, curly long hair, elf-like wings, many flowers and leaves, natural scenery, golden eyes, detailed light and shadow, a high degree of detail.
- 4. Cartoon characters, mini characters, hand-made, illustrations, robot kids, color expressions, boy, short brown hair, curly hair, blue eyes, technological age, cyberpunk, big eyes, cute, mini, detailed light and shadow, high detail.

More Samples

A female painter with a brush in hand, white background, painting, looking very powerful.

A baby painter trying to draw very simple

A snowy mountain

A worker that looks like a mixture of cow and horse is working hard to type code

knolling of a drawing tools and books,

real beautiful woman, Chinese

I want to supplement vitamin c, please help me paint related food.

An alien octopus floats through a portal reading a newspaper

Style control with text

the black hole in the space

a teacup on the desk

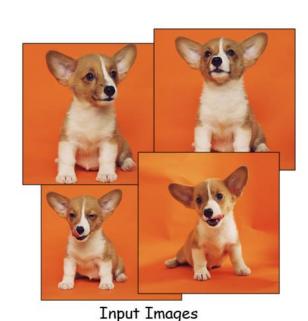
a table top with a vase of flowers on it

Chinese painting of grapes

a birthday cake

a beautiful flower

Application 1: PixArt- α + DreamBooth



Text prompt: A photo of [V] dog

Text prompt: [V] dog is running

Text prompt: [V] dog in a doghouse

Text prompt: Text prompt: [V] dog in a bucket [V] dog is swimming

Input Images: 问界M5

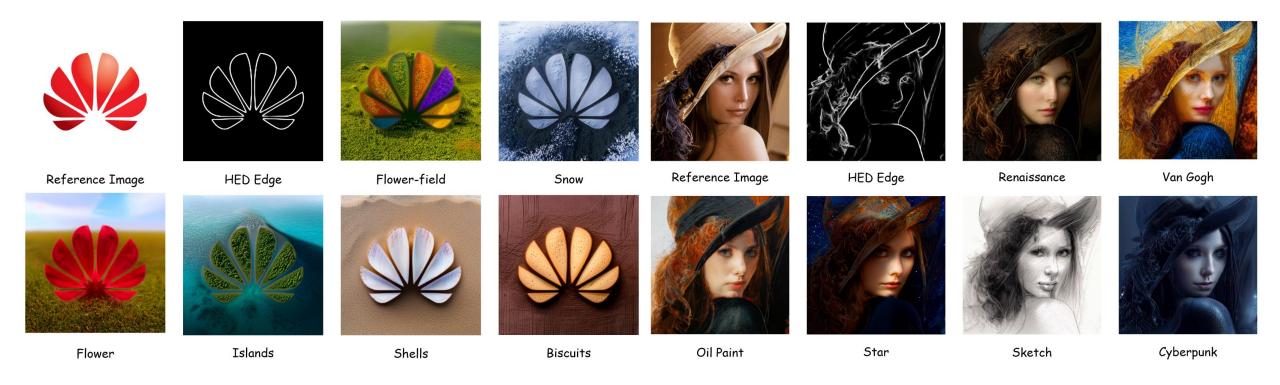
Text prompt: [green] [V] car in garage

Text prompt: [white] [V] car over water

Text prompt:
[yellow][V] car in street

Text prompt: [black] [V] car on highway

Application 2: PixArt- α + ControlNet



Further References

2D Generation

- DiffFit: Unlocking Transferability of Large Diffusion Models via Simple Parameter-efficient Fine-Tuning, ICCV 2023 Oral
- Complexity Matters: Rethinking the Latent Space for Generative Modeling, NeurIPS 2023 Spotlight
- SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models, NeurIPS 2023
- Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models,
 NeurIPS 2023

3D Generation

- DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation, NeurIPS 2023
- DiffComplete: Diffusion-based Generative 3D Shape Completion, NeurIPS 2023

Generation Evaluation Benchmark

 T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation, NeurIPS 2023 Datasets and Benchmarks Track

Outline

- Neural Compression
- Text-to-image Generation
- Neural Theorem Proving

LEGO-Prover: Neural Theorem Proving with Growing Libraries

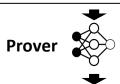
https://arxiv.org/abs/2310.00656

Huawei Noah's Ark Lab

Automated Theorem Proving

Problem statement

prove that $\sqrt{2}$ is irrational lemma "sqrt 2 \notin \mathbb{Q} "



Proof

Assuming $\sqrt{2} \in \mathbb{Q}$, we have $\sqrt{2}=a/b$, and a, b is coprime. then have $2=a^2/b^2$ and $2\times b^2=a^2$. thus, we know a is even, a=2c. substitute a into previous equation, we have $b^2=(2*c)^2$. Thus, we know b is also even, and a, b is not coprime. This is contradiction to the origin assumption.

```
proof
  assume "sgrt 2 € 0"
  then obtain a b::int where "sgrt 2 = a/b"
    "coprime a b" "b ≠ 0" sledgehammer
  then have c: "2 = a^2 / b^2"
    sledgehammer
  then have "b^2 ≠ 0" sledgehammer
  then have *: "2*b^2 = a^2"
    sledgehammer
  then have "even a"
    sledgehammer
  then obtain c::int where "a=2*c"
    sledgehammer
  with * have b^2 = 2*c^2
    sledgehammer
  then have "even b"
    sledgehammer
  with (coprime a b) (even a) (even b)
    show False sledgehammer
qed
```

Formal system salvelle

LM + Search (**gpt-f** OpenAl 2021, **Thor** Cambridge 2021, **DT-Solver** Ours 2023):

- Language model suggests action given current state.
- Formal system executes action and updates state.
- Search algorithm finds correct action path.

```
lemma "sqrt 2 ∉ 0"
    goals: 1. sqrt 2 \notin \mathbb{Q}
proof
\bigotimes goals: 1. sqrt 2 \in \mathbb{Q} \Longrightarrow \mathsf{False}
 \mathfrak{A} premise: sqrt 2 \in \mathbb{Q}
    goals: 1. sqrt 2 \in \mathbb{Q} \Longrightarrow \mathsf{False}
then obtain a b::int where "sqrt 2 = a/b"
        "coprime a b" "b ≠ 0" sledgehammer
    premise: sqrt 2 = real of int a / real of int b
      coprime a b
      b ≠ 0
     goals: 1. sqrt 2 \in \mathbb{Q} \Longrightarrow \mathsf{False}
then have c: "2 = a^2 / b^2"
       sledgehammer
```

\$...

Automated theorem proving:

LLM with ICL (**DSP** Cambridge 2022, **Subgoal-based** HKU 2023):

- ChatGPT generates entire proof in one go.
- Use in-context learning to prompt the LLM
- **Formal system** verifies the proof

```
lemma "sgrt 2 ∉ 0"
       proof
         assume "sgrt 2 € 0"
         then obtain a b::int where "sqrt 2 = a/b"
           "coprime a b" "b ≠ 0" sledgehammer
         then have c: "2 = a^2 / b^2"
           sledgehammer
         then have b^2 \neq 0 sledgehammer
         then have *: "2*b^2 = a^2"
           sledgehammer
         then have "even a"
           sledgehammer
         then obtain c::int where "a=2*c"
           sledgehammer
         with * have b^2 = 2*c^2
           sledgehammer
         then have "even b"
           sledgehammer
         with (coprime a b) (even a) (even b)
           show False sledgehammer
       ged
```


No goals!

Error: xxx

- Verifiable
- Longer reasoning chain
- Data scarcity

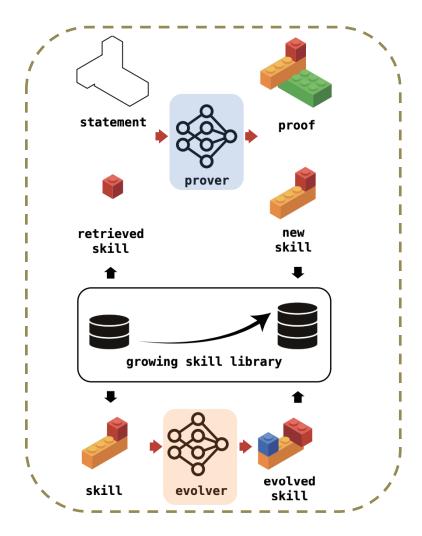
Motivation

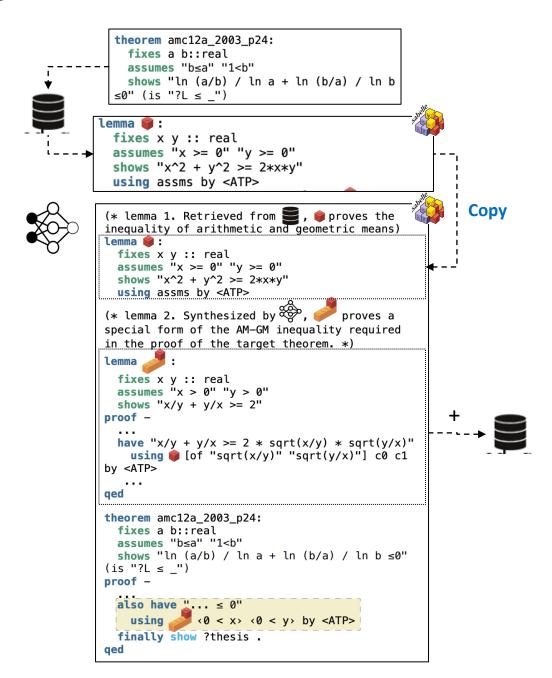
- Problems with existing provers:
 - Each theorem is proved independently.
 - Proven conjectures are **not shared** among problems.
 - LLM struggles to generate correct long-chain proof (hallucination).
- Ideal provers:
 - Extract & reuse useful lemmas during each theorem proving, to reduce reasoning length
 - Maintain & grow a library of proven theorems/lemmas (online & offline)
 - Leverage the power of LLM (prover)
 - Leverage the verification capability of formal systems (Lean, Isabelle)
 - Imitate or surpass human proving process

LEGO-Prover: prove theorem like building LEGO

Prove in a block-by-block manner

- Prove sub-goal lemmas
- Prove theorem using sub-goal lemmas.
- Sub-goal Lemmas: retrieved from skill library, or constructed online

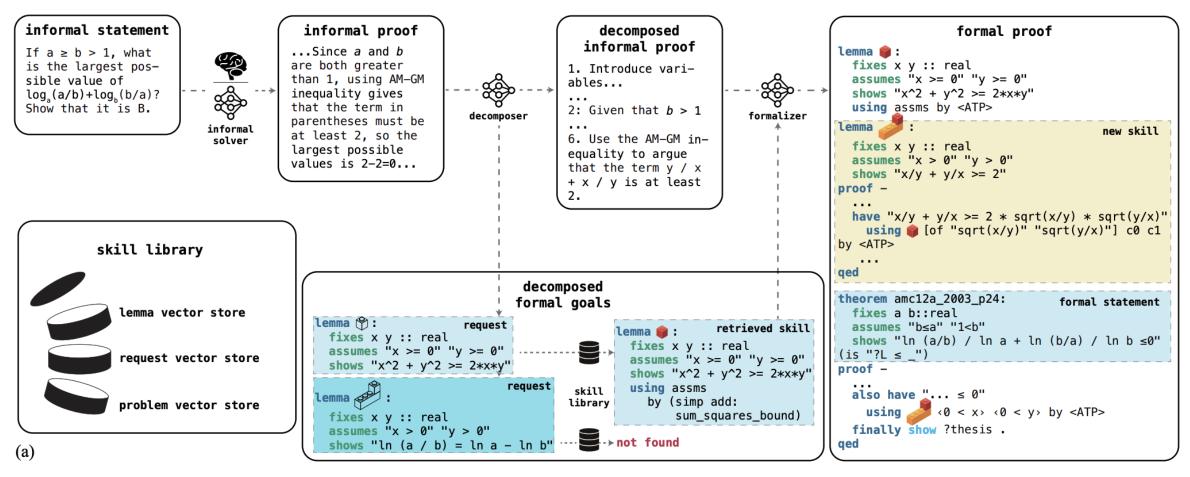




LEGO-Prover: prover

Three proof steps

- **Informal solver:** produce an informal proof
- **Decomposer:** produce step-by-step informal proof and sub-goals lemma statements, which are used to retrieve useful lemma from the skill library.
- Formalizer: prove theorem with step-by-step informal proof and retrieved lemmas block-by-block.



LEGO-Prover: prover

How to prompt LLM to generate lemmas

System instructions

Prompt text

- You are **strongly encouraged** to create or use **useful and reusable lemmas** to solve the problem.
- The lemmas should be as general as possible (**generalizable**), and be able to cover a large step in proofs (**non-trivial**). Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Special block-by-block structure in in-context learning examples

```
Informal proof:
step1. introduce variables...
...

Formal statement:
theorem amc12a_2003_p24:
  fixes a b :: real
...

Formal proof:
lemma am_gm: fixes x y :: real ...
lemma am_gm_extenstion: fixes x y :: real ...
theorem amc12a_2003_p24:
  fixes a b :: real
```

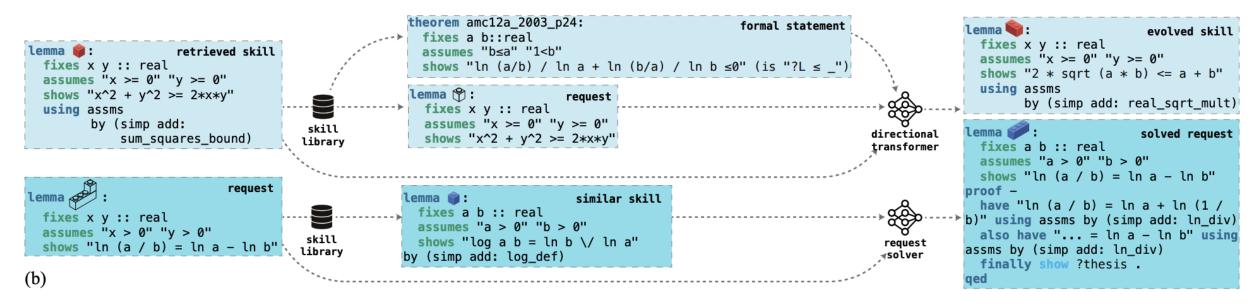
LEGO-Prover: evolver

Transforms existing skills into a more general and reusable form, or directly solves requested subgoals proposed by the prover.

- Directional transformer evolves skill using four type of specific direction
- **Request solver** directly solves the request proposed by the decomposer.

Different types of directional transformer

Evolve type	Description
Identify key concepts	Determine the essential ideas, methods, or
	theorems that are crucial to solving the initial problem.
Parameterize	If the problem involves specific numbers, generalize
	it by replacing these with variables.
Scale complexity	Try both simpler and more complicated versions of the
	problem to see how the approach adapts.
Extend dimensions	If the problem is defined in a specific number of dimensions,
	consider if it holds in more or fewer dimensions.



Experiments

- Thor (Cambridge, NeurIPS 2022): LM + Search. LM trained on single step state-action pairs. Find proof with best first search.
- Thor + expert iteration (Google + Cambridge, NeurIPS 2022): LM + Search. Extend Thor with extensive data by Codex.
- DSP (Cambridge, ICLR 2023): LLM with ICL, use informal proof to guide Codex to generate formal sketch.
- Subgoal-Learning (HKU + Cambridge, NeurIPS 2023): LLM with ICL, extends DSP with step-by-step informal proof.

Success rate	LLM	miniF2F-valid	miniF2F-test	
Baselines				
Thor (Jiang et al., 2022a)	-	28.3%	29.9%	
Thor + expert iteration (Wu et al., 2022)	Codex	37.3%	35.2%	
Draft, sketch, and Prove (Jiang et al., 2022b)	Codex	42.6%	39.3%	
Subgoal-Learning (Zhao et al., 2023)	ChatGPT	48.0%	45.5%	
Ours (100 attempts)				
LEGO-Prover (model informal proof)	ChatGPT	52.4%	45.5%	
LEGO-Prover (human informal proof)	ChatGPT	55.3%	50.0 %	
LEGO-Prover*	ChatGPT	57.0 %	50.0 %	
Ablations (50 attempts)				
LEGO-Prover	ChatGPT	50.4%	-	
- Skill Library	ChatGPT	47.1%	-	

Experiments: case study

retrieved skill lemma am_gm: fixes x :: real assumes "x > 0" shows "x + $1/(2*x) \ge sqrt 2$ " have "(sqrt x - sqrt (1/(2*x)))^2 \geq 0" by simp then have "x + $1/(2*x) - 2 * sqrt x * sqrt (1/(2*x)) \ge 0$ " by (smt (verit) add_le_imp_le_diff assms divide_nonneg_nonneg less_eq_real def real sgrt pow2 sum squares bound) then have "x + 1/(2*x) - sqrt 2 \ge 0" by (metis add_divide_distrib assms div_by_1 divide_divide_eq_right divide_self less_numeral_extra(3) mult_2 one_add_one real_div_sqrt real_sqrt_divide real_sqrt_eq_1_iff real_sqrt_gt_0_iff real_sqrt_one times_divide eq right zero le numeral) then have "x + $1/(2*x) \ge sqrt 2$ " by simp then show ?thesis by simp

```
synthesized proof
lemma am_gm:
 fixes x :: real
 assumes "x > 0"
 shows "x + 1/(2*x) \ge sqrt 2"
 have "(\operatorname{sqrt} x - \operatorname{sqrt} (1/(2*x)))^2 \ge 0" by simp
 then have "x + 1/(2*x) - 2 * sgrt x * sgrt (1/(2*x)) \ge 0"
   by (smt (verit) add_le_imp_le_diff assms divide_nonneg_nonneg less_eq_-
real def real sort pow2 sum squares bound)
 then have "x + 1/(2*x) - sqrt 2 \ge 0"
   by (metis add_divide_distrib assms div_by_1 divide_divide_eq_right di-
vide self less numeral extra(3) mult 2 one add one real div sqrt re-
al_sqrt_divide real_sqrt_eq_1_iff real_sqrt_gt_0_iff real_sqrt_one times_di-
vide_eq_right zero_le_numeral)
 then have "x + 1/(2*x) \ge sqrt 2" by simp
 then show ?thesis by simp
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x:
 "(x \cdot (x \cdot 0)) \implies 2 - \text{sqrt } 2 \ge 2 - x - 1/(2 * x)"
 fixes x :: real
 assumes h0: "x>0"
 (*Step 1: We want to show that x + \frac{1}{2x} \neq \sqrt{2} is true.*)
 (* Step 2: Apply the AM-GM inequality to $x$ and $\frac{1}{2x}$ to get $x
+ \frac{1}{2x} \geq 2\sqrt{\frac{x}{2x}}$. *)
 (* Step 3: Simplify $2\sqrt{\frac{x}{2x}}$ to $\sqrt{2}$. *)
 (* Step 4: Conclude that $x + \frac{1}{2x} \geq \sqrt{2}$ is true. *)
have c1: "f (500 * (6/5)) = f 500 / (6/5)"
 have "x + 1/(2*x) \ge sqrt 2" using am_gm[0F h0] by simp
 (* Step 5: Since 2 - \sqrt{2}   2 - x - \frac{1}{2x} is equivalent to
x + \frac{1}{2x}   \quad \sqrt{2}$, we can conclude that 2 - \frac{2}{2} 
-x - \frac{1}{2x} is true. *)
 then show "2 - sqrt 2 \ge 2 - x - 1/(2 * x)" by simp
qed
```

Retrieved skill:

lemma am gm: For a real number x, x > 0, prove that x + 1 $\frac{1}{2x} \ge \sqrt{2}$.

Proof. We have $\left(\sqrt{x} + \sqrt{\frac{1}{2x}}\right)^2 \ge 0$. Expanding the inequality, we obtain $x + \frac{1}{2x} - 2 * \sqrt{x} * \sqrt{\frac{1}{2x}} \ge 0$. From which we have $x + \sqrt{\frac{1}{2x}} = 0$. $\frac{1}{2x} - \sqrt{2} \ge 0$, and thus $x + \frac{1}{2x} \ge \sqrt{2}$.

copy paste by LLM

Synthesized proof:

lemma am gm: For a real number x, x > 0, prove that x + 1 $\frac{1}{2x} \ge \sqrt{2}$.

Proof. We have $\left(\sqrt{x} + \sqrt{\frac{1}{2x}}\right)^2 \ge 0$. Expanding the inequality, we obtain $x + \frac{1}{2x} - 2 * \sqrt{x} * \sqrt{\frac{1}{2x}} \ge 0$. From which we have $x + \sqrt{\frac{1}{2x}} = 0$. $\frac{1}{2x} - \sqrt{2} \ge 0$, and thus $x + \frac{1}{2x} \ge \sqrt{2}$.

theorem algrebra amgm faxinrrp: Given a real number x, prove that the expression $2 - \sqrt{2} \ge 2 - x - \frac{1}{2x}$ holds true for all x > 0.

Proof. Using the proven lemma am gm, we can show that x + y = 0 $\frac{1}{2r} \ge \sqrt{2}$. Multiplying both sides with -1 and add 2, we obtain $2 - \sqrt{2} \ge 2 - x - \frac{1}{2x}$.

Case directly use:

- A verified lemma am gm is retrieved from skill libraries (with proof).
- Formalizer synthesized final proof using retrieved skill directly.
 - 1) Copy pasted the lemma am gm in the proof code directly.
 - 2) Prove main theorem using the proven am_gm lemma.

(a) Directly Use 50

Experiments: case study

Case **propose lemma by imitation**:

- A verified lemma prod_1n_4n is retrieved from skill libraries (proof).
- Formalizer synthesized final proof by solving the lemma imitating the retrieved skill.
 - 1) Imitate the lemma prod_1n_4n. The formalizer uses induction to prove prod_frac_common_factor.
 - 2) Prove main theorem using the proven **prod_frac_common_factor** lemma.

Retrieved skill:

lemma prod_1n_4n: for a natural number n, prove that $\prod_{1}^{n} 4 * k = 4^{n} * n!$

Proof. Let's prove by induction on n. For the base case we have $\prod_{1}^{1} 4 * k = 4^{1} * 1!$, we have 4 = 4. For induction step, assuming $\prod_{1}^{j} 4 * k = 4^{j} * j!$, we prove that $\prod_{1}^{j+1} 4 * k = 4^{j+1} * (j+1)!$. Since $\prod_{1}^{j+1} 4 * k = 4^{j} * j! * (4 * (j+1))$, thus $\prod_{1}^{j+1} 4 * k = 4^{j+1} * (j+1)!$.

Propose lemma by imitation

Synthesized proof:

lemma prod_frac_common_factor: for a natural number n and a real number a, prove that $\prod_{1}^{n} \frac{ak+a}{ak} = n+1$

Proof. Let's prove by induction on n. For the base case we have $\prod_{1}^{1} \frac{ak+a}{ak} = \frac{a*1+a}{a*1} = 1+1.$ For induction step, we have $\prod_{1}^{n+1} \frac{ak+a}{ak} = \frac{a*(n+1)+a}{a*(n+1)} * \prod_{1}^{n} \frac{ak+a}{ak} = \frac{a*(n+1)+a}{a*(n+1)} * n+1 = n+1+1$

theorem amc12a_2008_p4: Prove that $\prod_{1}^{501} \frac{4k+4}{4k} = 502$.

Proof. Using the proven lemma **prod_frac_common_factor**, we can show that $\prod_{1}^{501} \frac{4k+4}{4k} = 501 + 1 = 502$.

```
retrieved skill

lemma prod_in_4n:
    fixes n :: nat
    shows "(||k = 1..n. (4 * k)) = 4^n * fact n"

proof(induct n)
    case 0
    then show ?case by simp

next
    case (Suc n)
    then show ?case by (simp add: algebra_simps)

qed
```

```
synthesized proof
lemma prod_frac_common_factor:
   fixes n:: nat and a::real
   assumes "a ≠ 0"
  shows "(\lceil k = 1..n. (a * k + a) / (a * k)) = n + 1"
proof(induct n)
   case 0
    then show ?case by simp
next
   case (Suc n)
  have "( | k = 1... \text{Suc n.} (a * k + a) / (a * k)) = ((a * \text{Suc n} + a) / (a * \text{Suc n} +
n)) * ([k = 1..n. (a * k + a) / (a * k))"
   also have "... = ((a * Suc n + a) / (a * Suc n)) * (n + 1)"
        using Suc by simp
   also have "... = Suc n + 1"
        using assms by (smt (verit) add.commute add_divide_distrib divisors_zero
nonzero_mult_div_cancel_left nonzero_mult_divide_mult_cancel_right of_nat_1
of nat add of nat neg 0 plus 1 eq Suc right inverse eq times divide eq left)
  finally show ?case by simp
theorem amc12a 2008 p4:
  "(\lceil k::nat=1..501. "(4::real) * k + 4) / (4 * k)) = 502"
  (* Step 1: Rewrite the given product as $\frac {8}{4}\cdot\frac {12}{8}\c-
dot\frac {16}{12}\cdots\frac {4n + 4}{4n}\cdots\frac {2008}{2004}$. *)
  have "(\lceil k::nat=1..501. ((4::real) * k + 4) / (4 * k)) = (\lceil k::nat=1..501.
(4 * (k + 1)) / (4 * k))"
       by eval
  (* Step 2: Simplify the product by canceling out common factors. Notice
that each term in the numerator cancels with the corresponding term in the
denominator, leaving only the last term $\frac {2008}{4}$. *)
  also have "... = (\lceil k :: nat = 1...501, (k + 1) / k)"
       by eval
    (* Use lemma 1 to simplify the product *)
    also have "... = 501 + 1"
        using prod_frac_common_factor[of "1::real" "501"] by eval
   (* Step 3: Calculate the value of $\frac {2008}{4}$ to find that it is
equal to $502$. *)
  also have "... = 502"
       by simp
   (* Step 4: Conclude that the given product is equal to $502$. *)
   finally show ?thesis by simp
```

Takeaway

- Generative models are a powerful and rewarding way to model data that enables various applications.
- Al is reshaping many fields: data compression, information communication, art generation, mathematical reasoning, science discovery, ...
 - Data is growing rapidly. Time to rethink how to store and transmit data.
 - AIGC is on the way.
 - Math is becoming a new area for Al.
- Fundamental challenges in generative Al
 - How to guide the generation towards desired objectives
 - How to verify the generated contents
 - Learning theory for generative Al