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Machine Learning
• Machine Learning has achieved great success in recent years.

automatic drivingAlphaGo Games

recommendationimage recognition search engine voice assistant

large language modelmedical diagnosis
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Machine Learning

training data learning algorithm model

• The theoretical foundation for ML to work well: I.I.D. assumption
 (Independent and Identically Distributed) 

model 
deployment

training data testing data
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Machine Learning

• The theoretical foundation for ML to work well:

training data learning algorithm model

I.I.D. assumption
 (Independent and Identically Distributed) 

model 
deployment testing data in practical scenariotraining data 
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Open-environment Machine Learning
• Distribution shift: data are usually collected in open environments

species monitoring
summer

winter

urban computing route planning

• In many applications, data are coming in an online fashion, like a “stream”

continuous
distribution 

shift

provably robust methods for 
non-stationary online learning 
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Community Discussions

Zhi-Hua Zhou
Nanjing University
IJCAI President
Fellow of AAAI/ACM/IEEE

“机器学习：发展与未来”

2016年中国计算机大会 特邀报告
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Community Discussions

“Deep Learning for AI”
Communication of ACM 
July, 2021. Vol 64. No 7.

2018 Turing Award Recipients
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Online Learning
• View online learning as a game between learner and environment.

An instance, feature �� ∈ ℝ�

Predict a label by ��
T��

Receive the true label ��

Regular vs Spam ?
Spam Filtering

A loss function
 �� � =max  1 − ���T��, 0 
Suffer �� ��  and update ��

Online Convex Optimization
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Online Learning
• View online learning as a game between learner and environment.

An instance, feature �� ∈ ℝ�

Predict a label by ��
T��

Receive the true label ��

Regular vs Spam ?
Spam Filtering

A loss function
 �� � =max  1 − ���T��, 0 
Suffer �� ��  and update ��

Online Convex Optimization

full information

horse racing

partial information

multi-armed bandits
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Performance Measure
Regret: online prediction as good as the best offline model

cumulative loss of the 
best offline model

Dynamic Regret optimal model changes 
in non-stationary 

environments

allow changing comparators 
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Fundamental Challenge

Key difficulty: the uncertainty due to unknown environmental changes.

Zhi-Hua Zhou. Ensemble Methods: 
Foundations and Algorithms. 

Chapman & Hall/CRC, Jun. 2012. 

• Protocol: combine multiple base 
learners to achieve robustness 

• Advantage: achieve more robust 
results under uncertain or even 
changing environments

Basic idea: Ensemble Methods



16Peng Zhao (Nanjing University)

Online Ensemble (在线集成)
Basic Components

(1)  base learner: an online learner to cope with a certain amount of non-stationarity

(2)  schedule: a set of parameters for initiating base learners that encourage diversity

(3)  meta learner: an expert-tracking learner that can combine base learners’ decisions

schedule meta learnerbase learner

step size specification

correctionsurrogate

covering

…
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Deploying Online Ensemble 
We will showcase that properly deploying online ensemble can 
effectively resolve several important online learning problems.

• Dynamic Regret of Bandit Convex Optimization

• Problem-dependent Dynamic Regret
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Bandit Convex Optimization (BCO)
• BCO with one-point feedback

[Flaxman et al., SODA 2005; Bubeck et al., STOC 2017]

• BCO with two-point feedback

[Agarwal et al., COLT 2010; Shamir, JMLR 2017]

online recommendation
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A Gentle Start
Online Gradient Descent (OGD)

https://www.nature.com/articles/s41534-017-0043-1

FKM estimator [Flaxman et al., SODA’05]

Challenge: with only bandit feedback, 
the learner cannot evaluate the gradient

[proved by Stokes equation]
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A Gentle Start
Online Gradient Descent (OGD)

https://www.nature.com/articles/s41534-017-0043-1

Challenge: with only bandit feedback, 
the learner cannot evaluate the gradient

Consider the 1-dim case (� = �).

FKM estimator [Flaxman et al., SODA’05]



22Peng Zhao (Nanjing University)

Bandit Gradient Descent (BGD)

Base Algorithm : BGD
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Base Algorithm: Dynamic Regret

Optimal parameter setting is
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Base Algorithm: Dynamic Regret

Optimal parameter setting is
Comparators                can be arbitrary, 
we cannot know non-stationarity      in 
advance, so how to tune the step size ?
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Online Ensemble for BCO
Deploying a proper online ensemble to deal with the issue of 
unknown non-stationarity, so that we can optimally tune step size.

► Multiple candidates: to cover uncertainty
diversity consideration: cover all the possible range 
using as fewer as possible discretization items

increase weight on base-learners with better performance 

► Base learners: each updated using

► Meta algorithm: provide the weight 
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multiple base learners



27Peng Zhao (Nanjing University)

Multiple base learners in BCO
• A closer look at dynamic regret analysis

(approximation error due to the perturbation operation)
not involve the unknown non-stationarity measure  crucial term, related to 

 non-stationarity measure  

rescaled comparator
smoothed function
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Multiple base learners in BCO
• Key idea: surrogate optimization

• Construct the surrogate loss

Feed this surrogate loss to online ensemble to maintain multiple base learners!
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Surrogate Loss

• Property (i) implies that it suffices to optimize dynamic regret of surrogate loss.

• Property (ii) implies that it is feasible to deploy multiple base learners to perform 
BGD over the surrogate loss.
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Online Ensemble for BCO
Deploying a proper online ensemble to deal with the issue of 
unknown non-stationarity, so that we can optimally tune step size.

► Multiple candidates: to cover uncertainty
diversity consideration: cover all the possible range 
using as fewer as possible discretization items

increase weight on base-learners with better performance 

► Base learners: each updated using

► Meta algorithm: provide the weight 
surrogate loss 

makes online ensemble 
possible in bandit!
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Dynamic Regret

Our algorithm is minimax optimal for two-point BCO model; 
while it remains open how to close the gap in one-point BCO. 
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Online Ensemble for BCO
Deploying a proper online ensemble to deal with the issue of 
unknown non-stationarity, so that we can optimally tune step size.

► Multiple candidates: to cover uncertainty
diversity consideration: cover all the possible range 
using as fewer as possible discretization items

increase weight on base-learners with better performance 

► Base learners: each updated using

► Meta algorithm: provide the weight 

Proper surrogate loss is essential for deploying 
online ensemble to bandit online problems.
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Deploying Online Ensemble 
We will showcase that properly deploying online ensemble can 
effectively resolve several important online learning problem.

• Dynamic Regret of Bandit Convex Optimization

• Problem-dependent Dynamic Regret
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Beyond the worst-case analysis

• More ambitious: achieving problem-dependent guarantees
► become tighter than worst-case results for benign problems

► safeguard the same minimax rate in the worst case

0

400

800

800400

• Previously, we have achieved minimax results like                        .  

gradient variation

It is also essential due to  profound connections with many other 
areas such as online games, stochastic optimization, etc.
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Exploiting historical information
• How to exploit the niceness of the environments?

focusing on the gradient feedback for simplicity

Optimistic Online Gradient Descent [Rakhlin and Sridharan, 2013]
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Base Algorithm Analysis
• Optimistic OGD can serve as the base learner for problem-dependent dynamic 

regret minimization.

crucial for gradient variation

adaptivity negative term non-stationarity
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Online Ensemble for Adaptive Bounds
• An online ensemble to balance between non-stationarity and adaptivity.

► Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range 
using as fewer as possible discretization items

► Base learners: each updated using

also include the “hint” in the performance evaluation

► Meta algorithm: provide the weight 
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Gradient-Variation Dynamic Regret
• From adaptive bound to gradient-variation regret bound

only “data-dependent”

gradient variation problem-dependent
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Stability Analysis
• Stability of the meta-base online ensemble

• Decompose the overall dynamic regret into the meta-base two levels:

negative term for self-cancellation

only for a particular base learner, 
not sufficient for cancellation

meta stability weighted combine of base stability
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Stability Analysis
• Stability of the meta-base online ensemble

correction:penalizing 
instable base learners

meta stability weighted combine of base stability
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Collaborative Online Ensemble
• Dynamic regret of the modified algorithm (with corrections):

these two terms are 
due to correction



44Peng Zhao (Nanjing University)

Collaborative Online Ensemble
• Dynamic regret of the modified algorithm (with corrections):

with suitable parameter configurations

these two terms are 
due to correction

Collaborations between meta and base learners:
simultaneously exploiting 
  negative terms in the regret analysis 
  correction terms in the algorithm design
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Collaborative Online Ensemble
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with suitable parameter configurations

these two terms are 
due to correction

Collaborations between meta and base learners:
simultaneously exploiting 
  negative terms in the regret analysis 
  correction terms in the algorithm design
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Online Ensemble for Gradient Variation
• An online ensemble to balance between non-stationarity and adaptivity.

► Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range 
using as fewer as possible discretization items

► Base-learners: each updated using

► Meta-algorithm: provide the weight 
correction terms 

enable collaborations 
between meta and 

base levels
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Summary of Our Results
• Full-information online learning

gradient information is available to the learner
[Zhang et al., NeurIPS’18; Zhao et al., NeurIPS’20;  Zhao et al., NeurIPS’22; Zhao et al., JMLR’23]

• Partial-information online learning
gradient information cannot be observed, only function value is available

• Decision-dependent online learning
current decision will affect the future (incl. gradient & function value)

[Zhao et al., JMLR’21; Luo et al., COLT’22; Yan et al., JMLR’23]

[Zhao et al., ICML’22; Zhao et al., AISTAST’23; Li et al., NeurIPS’23]
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Conclusion
• Online Ensemble: an effective theoretical framework (base learners; 

meta learners; schedule) to handle uncertainty in online environments

• Non-stationary online learning: online ensemble for dynamic regret
• bandit convex optimization: surrogate loss is essential to exploit limited feedback
• problem-dependent guarantee: incorporating hint prediction, enable collaboration 

between meta and base layers (via negative terms and corrections)
• other results: online MDPs, game theory, online weakly supervised learning, etc.

• Many todo: efficiency/real-time response? non-convexity? continuous learning? …

• Beyond non-stationarity: universal online learning (agnostic to curvatures) 

Thanks!
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