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Machine Learning LaVDA

Learning And Mining from DatA

* Machine Learning has achieved great success in recent years.

r \\\
O [
¢ % K|y
e ( %e ﬁ
M i D e i
= ’ $
image recognition search engine voice assistant recommendation

. ChatGPT

Hi, can you introduce yourself to us?

@ I'm ChatGPT, an Al language model developed by OpenAl. How can |
help you?

AlphaGo Games automatic driving medical diagnosis large language model

Peng Zhao (Nanjing University) 4



Machine Learning LAVIDA
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training data learning algorithm

* The theoretical foundation for ML to work well: L.I.D. assumption
(Independent and Identically Distributed)

model
deployment

testing data

Peng Zhao (Nanjing University) 5



Machine Learning LaVpa

Learning And Mining from DatA

training data learning algorithm

* The theoretical foundation for ML to work well: I.I.D. assumption
(Independent and Identically Distributed)

model

deployment testing data in practical scenario
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Open-environment Machine Learning LANbA

Learning And Mining from DatA

* Distribution shift: data are usually collected in open environments

 In many applications, data are coming in an online fashion, like a “stream”

continuous
distribution

shift

Peng Zhao (Nanjing University) 7

provably robust methods for
non-stationary online learning
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Community Discussions

Learning And Mining from DatA

turing lecture

DOI:10.1145/3448250

“Deep Learning for AI”

How can neural networks learn the rich
internal representations required

for difficult tasks such as recognizing
objects or understanding language?

Communication of ACM
July, 2021. Vol 64. No 7.

| BY YOSHUA BENGIO, YANN LECUN, AND GEOFFREY HINTON

Deep
Learning
for Al

TURING LECTURE

Yoshua Bengio, Yann LeCun, and Geaffrey Hintan are recipients
of the 2018 ACM A .M. Turing Award for breakthroughs that have
made deep neural networks a critical component of computing.

RESEARCH ON ARTIFICIAL E]\'IITIII networks was
motivated by the observation that human intelligence
emerges from highly parallel networks of relatively
simple, non-linear neurons that learn by adjusting
the strengths of their connections. This observation
leads to a central computational question: How is it
Yoshua Bengio Geoffrey Hinton Yann LeCun possible for networks of this general kind to learn
the complicated internal representations that are
required for difficult tasks such as recognizing
5B COMMUNICATIONS OF THE ACM | JULY 2023 | ¥OL B4 | HO.7

abjects or understanding language?
Deep learning seeks to answer this
question by using many layers of activ-
ity vectors as representations and
leaming the connection strengths that
give rise to these vectors by following
the stochastic gradient of an objective
function that measures how well the
newwork is performing. It is very sur-
prising that such a conceptually simple
approach has proved to be so effective
when applied to large training sets us-
ing huge amounts of computation and
it appears that a key ingredient is
depth: shallow networks simply do not
work as well.

We reviewed the basic concepts
and some of the breakthrough
achievements of deep learning several
years ago.” Here we briefly describe
the origins of deep leaming, describe
a few of the more recent advances, and
discuss some of the future challenges.
These challenges include learning with
little or no external supervision, coping
with test examples that come from a
different distribution than the training
examples, and using the deep learning
approach for tasks that humans solve
by using a deliberate sequence of steps
which we attend to consciously—tasks
that Kahneman™ calls system 2 tasks as
opposed to system 1 tasks like object
recognition or immediate natural lan-
guage understanding, which generally
feel effortless.

From Hand-Coded Symbolic
Expressions to Learned Distributed
Representations

There are two quite different para-
digms for AL Put simply, the logic-in-
spired paradigm views sequential rea-
soning as the essence of intelligence
and aims to implement reasoning in
computers using hand-designed rules
of inference that operate on hand-de-
signed symbolic expressions that for-
malize knowledge. The brain-inspired
paradigm views learning representa-
tions from data as the essence of in-
telligence and aims to implement
learning by hand-designing or evolv-
ing rules for modifying the connec-

What needs to be improved. From
the early days, theoreticians of ma-
chine learning have focused on the iid
assumption, which states that the test
cases are expected to come from the
same distribution as the training ex-
amples. Unfortunately, this is not a re-
alistic assumption in the real world:

just consider the non-stationarities
due to actions of various agents chang-
ing the world, or the gradually expand-
ing mental horizon of a learning agent
which always has more to learn and
discover. As a practical consequence,
the performance of today’s best AI sys-
tems tends to take a hit when they go
from the lab to the field.

Our desire to achieve greater robust-
ness when confronted with changes in
distribution (called out-of-distribution
generalization) is a special case of the

2018 Turing Award Recipients

Peng Zhao (Nanjing University)

more general objective of reducing
sample complexity (the number of ex-
amples needed to generalize well) when
faced with a new task—as in transfer
learning and lifelong learning®—or
simply with a change in distribution or




Outline LAVpA

Learning And Mining from DatA

* Problem Setup

Peng Zhao (Nanjing University) 10



Online Learning LAVIDA

Learning And Mining from DatA

* View online learning as a game between learner and environment.

-~ + d
o w; ER
A classifier +/t

1. learner first pI‘OVideS a model w, € W, An instance, feature

Predict a label by T k g

Receive the true label

Online Convex Optimization

Ateachroundt=1,2---,T

2. and simutaneously the environment picks
a convex pnline function f; : W+ [0, 1]

| A loss function
3. the learner then suffers loss f;(w;) and =max 1- T .0

observes some information of f;. Suffer and update
Example: online function f; : W — R is composition of .. %
(1) loss:Y x Y+ R, and %3
(ii) data item: (x;, yt) eEX x ). = S pam Flltermg
?
:> ft = E W X¢, yt) — Regtﬂar VS Spam ¢

Peng Zhao (Nanjing University) 11



Online Learning LAVIDA

Learning And Mining from DatA

* View online learning as a game between learner and environment.

-~ + d
o w; ER
A classifier +/t

1. learner first pI‘OVideS a model w, € W, An instance, feature

Predict a label by T k g

Receive the true label

Online Convex Optimization

Ateachroundt=1,2---,T

2. and simutaneously the environment picks
a convex online function f; : W — [0, 1];

| A loss function
3. the learner then suffers loss f;(w;) and =max 1- T .0

observes some information of f;. Suffer and update

o
& i %3 S Filtors
ve0 0060 %’ pam 1 erlng

= = Regular vs Spam ?

partial information

full information

" horse":raciﬁké multi-armed bandits —

Peng Zhao (Nanjing University) 12



Performance Measure LANbA

Learning And Mining from DatA

Regret: online prediction as good as the best offline model

T : T :
| |
Reoret.. & w,:) —!min w ) 1cumulative loss of the
STebT ; fr(we) wEW ; fr(w) | best offline model
| o e e e e e e e — l
. optimal model change
Dynamic Regret in non-stationary
- - environments
D-Regret(uy,--- ,ur) = Z fr(wy) — Z fr(uy)
t=1 t=1
allow changing comparators
The comparators uy, . . ., ur essentially depict the underlying (unknown) distributions of all rounds.

: : : T
* stationary environments: u; = w, € argmingcyy > _;_q (W)
* piecewise-stationary environments: u; = wZ* for a stationary interval ¢ € Z;

Peng Zhao (Nanjing University) 13



Outline LAVpA

Learning And Mining from DatA

 Online Ensemble

Peng Zhao (Nanjing University) 14



Fundamental Challenge LAVIDA

Learning And Mining from DatA

T T
D-Regret(uy, -+, ur) = »  fi(wy) — Y  fi(u)
t=1 t=1

Key difficulty: the uncertainty due to unknown environmental changes.

ble Methods

Basic idea: Ensemble Methods

Ensemble Metl

* Protocol: combine multiple base [ pase-tearner1 el

learners to achieve robustness \ ‘

base-learner 2 \

* Advantage: achieve more robust | combiner {—- output

results under uncertain or even ' / |

. . Zhi-Hua Zhou. Ensemble Methods:
Changmg environments base-learner N Foundations and Algorithms.

Chapman & Hall/CRC, Jun. 2012.

Peng Zhao (Nanjing University) 15



Online Ensemble ({£25ERE) LAIVIDA

Learning And Mining from DatA

Basic Components

(1) base learner: an online learner to cope with a certain amount of non-stationarity
(2) schedule: a set of parameters for initiating base learners that encourage diversity

(3) meta learner: an expert-tracking learner that can combine base learners’ decisions

4 surrogate correction\
v — v — T
e B - Qi@
v — v — =T =
v — v — =+ =
\_ step size covering specification /
schedule meta learner

Peng Zhao (Nanjing University) 16



Deploying Online Ensemble LAIViDA

Learning And Mining from DatA

We will showcase that properly deploying online ensemble can
effectively resolve several important online learning problems.

* Dynamic Regret of Bandit Convex Optimization

* Problem-dependent Dynamic Regret

Peng Zhao (Nanjing University) 17



Deploying Online Ensemble LAIViDA

Learning And Mining from DatA

We will showcase that properly deploying online ensemble can
effectively resolve several important online learning problems.

* Dynamic Regret of Bandit Convex Optimization

Peng Zhao (Nanjing University) 18



Bandit Convex Optimization (BCO) LAViDA

Learning And Mining from DatA

* BCO with one-point feedback

the learner sends a single point w, € W, and
then receives the function value f,(w,) only

[Flaxman et al., SODA 2005; Bubeck et al., STOC 2017]

Try Amazon Prime today and get unlimited fast, FREE shipping see mere

* BCO with two-point feedback

the learner sends two points w;, w7 € W,
and then receives their function values, namely,
fi(w) and f,(w}), only online recommendation

[Agarwal et al., COLT 2010; Shamir, JMLR 2017]

Peng Zhao (Nanjing University) 19



A Gentle Start

Online Gradient Descent (OGD)

fort =1to 7T do

LAVipA

Learning And Mining from DatA

Challenge: with only bandit feedback,
the learner cannot evaluate the gradient

Play model w; and suffer loss f;(w)

Update the model

Wiy = Hw[w — nV fi(wy)]

end for

https://www.nature.com/articles/s41534-017-0043-1

FKM estimator [Flaxman et al., SODA’05]

construct w; using the perturbation technique

s; is random vector sampled

é ~
Wi = Wy + 08y fromball B = {v | ||v| <1}

d -
E> I [gft(wt) ' St] = V fi(wy)
[proved by Stokes equation]

A

with ft(w) = Eyep|fi (W + dv)]| being smoothed function.

|:> define g, = % fi(wW, + ds;) - s; as gradient estimator

Peng Zhao (Nanjing University)
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A Gentle Start

Online Gradient Descent (OGD)

fort =1to 7T do

LAVipA

Learning And Mining from DatA

Challenge: with only bandit feedback,
the learner cannot evaluate the gradient

Play model w; and suffer loss f;(w)

Update the model

Wiy = Hw[w — nV fi(wy)]

end for

https://www.nature.com/articles/s41534-017-0043-1

FKM estimator [Flaxman et al., SODA’05]

construct w; using the perturbation technique

s; is random vector sampled
fromballB = {v | |v] <1}

\

AN
Wi = Wy -|—5St

Consider the 1-dim case ( = ).

Escs [gft(Vv + Js) - s]

1 - 1 ~
= %ft(w +0) — %ft(w — )

Peng Zhao (Nanjing University)
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Base Algorithm : BGD LAIVIDA

Learning And Mining from DatA

e Gradient estimator: g; = % fe(Wy 4 0st) - s8¢

e Perform Online Gradient Descent using this gradient estimator.

Bandit Gradient Descent (BGD)
fort=1to 1 do

Select a unit vector s; uniformly at random
Submit W = \Aﬂ}t + 5St
Receive f;(w;) as the feedback
Construct the gradient estimator by g, = % fr(We + 0s¢) - sy .
~ ~ Elg:| = Vfi(wy)
Witp1 = H(l—a)W[Wt — N8t
end for fr(w) £ Eyes[fe(w + 0v)]

Peng Zhao (Nanjing University) 22



Base Algorithm: Dynamic Regret LAIViDA

Learning And Mining from DatA

Theorem 1. Under certain standard assumptions, for any perturbation parameter
o > 0, step size n > 0, and shrinkage parameter a = ¢/r, the expected dynamic
regret of BGD(T), 9, o, ) for the one-point feedback model satisfies

2 P d*C*T L
E [D-Regret(uy,...,ur)] < h jl_nR L 2; + (?)L + _R) o1

r

1

—o (B 1 7)),
U, 02

T : .
where Pr = ) ;. |[u; — u;_1|| measures the non-stationarity level.

Optimal parameter setting is

- step size 1, = (7R2}RPT> ! > (’)(T3/4(1 4 PT)1/4)

- perturbation parameter 0, = 7;

Wl

Peng Zhao (Nanjing University) 23



Base Algorithm: Dynamic Regret LAIViDA

Learning And Mining from DatA

Theorem 1. Under certain standard assumptions, for any perturbation parameter
o > 0, step size n > 0, and shrinkage parameter a = ¢/r, the expected dynamic
regret of BGD(T), 9, o, ) for the one-point feedback model satisfies

2 P d*C*T L
E [D-Regret(uy,...,ur)] < rh jl_nR L4l 2; + (?)L + _R) o1

/'a
14Pr T
:(9( T 0 +5T),

n 02

T : .
where Pr = ) ;. |[u; — u;_1|| measures the non-stationarity level.

Optimal parameter setting is

. Comparators ui, ..., ur can be arbitrary,
-~ we cannot know non-stationarity Pr in
advance, so how to tune the step size ?

3
. 2 4
- step size 7. = (7R LI T)

1
- perturbation parameter 0, = 7

Peng Zhao (Nanjing University) 24



Online Ensemble for BCO LAVIDA

Learning And Mining from DatA

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N
Wil — Zpt+1,iwt+1,i
i=1
» Multiple candidates: to cover uncertainty » Base learners: each updated using 7; € H

diversity consideration: cover all the possible range

N L — R
using as fewer as possible discretization items BGD(;): Wet1,i = a—ayw[Wei — mig"]

Wit1s = Wep1; + 08¢

m m2 "3 nN
VR » Meta algorithm: provide the weight P11 € AN
i—1 :
H= {77’&' — dCT3/4 [i=1,...,N } increase weight on base-learners with better performance
with N = [log,(1 + 27/7)] + 1 = O(log T). Hedge: pi+1,i o pr,i exp(—€fe(We,i))

Peng Zhao (Nanjing University) 25



Online Ensemble for BCO LAVIDA

Learning And Mining from DatA

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N
Wil — E Pt+1,iWtit15
=1
» Multiple candidates: to cover uncertainty » Base learners: each updated using 7; € H
diversity consideration: cover all the possible range o~ B ~
using as fewer as possible discretization items BGD(:): Wet1,i = Ha—ayw[Wei — 77

Wit1s = Wep1; + 08¢

Mmoot s bandit feedback . , , A
V7R makes it hard to initiate thm: provide the weight Py € AN
1—1
H= {77@ dCT3/4 i =1, multiple base learners eight on base-learners with better performance

Hedge: piy1,: < pri eXp(—)

Peng Zhao (Nanjing University) 26

with N = [log,(1+2T/7)] +1 = O(logT).



Multiple base learners in BCO LAVIDA

Learning And Mining from DatA

* A closer look at dynamic regret analysis

Wit = Ha_ayw[W: — 18, Elgd = VFi(#,).

T T smoothed function f,(w) = Eyep[fi(w + 6v)]
Z fe(wy) — Z fe(uy) rescaled comparator  v; = (1 — a)uy
T T T T T
=> Fi(W) = > Feva) D felwe) = > fi(Wo)|HD fe(ve) = D flug
321 t=1 t=1 t=1 =1 =
term (a) term (b) term (c)
depends on Pr < 2L8T < (L0 + LaR)T
crucial term, related to not involve the unknown non-stationarity measure Pr
non-stationarity measure Pr (approximation error due to the perturbation operation)

Peng Zhao (Nanjing University) 27



Multiple base learners in BCO LAIViDA

Learning And Mining from DatA

* Key idea: surrogate optimization

Proposition 1. For any ¢ € [T'], the following holds true:

E[fe(W:) — fe(ve)] < Ellge, Wy — Vi),

where g; = % ft(Wy + 9sy) - s¢ is the one-point gradient estimator.

» Construct the surrogate loss £+(w) 2 (g1, W)

which is a linearized loss parametrized by the gradient estimator g;.

Feed this surrogate loss to online ensemble to maintain multiple base learners!

Peng Zhao (Nanjing University) 28



Surrogate Loss LAIViDA

Learning And Mining from DatA

e Construct the surrogate loss £;(w) = (g;, w) and feed it to online ensemble.

Theorem 2. The constructed surrogate loss satities the following properties:

@) E[fi(W:) — fi(v)] < E[l:(W;) — £;(v)] holds for any v € W.

(ii)) V{4 (w) = g; holds for any w € W.

* Property (i) implies that it sutfices to optimize dynamic regret of surrogate loss.

* Property (ii) implies that it is feasible to deploy multiple base learners to perform
BGD over the surrogate loss.

All the gradients V/;(w}) = V{;(w?) = -+ = V{;(wW}') = g;, so they can be
obtained by querying the function value of f; only once.

Peng Zhao (Nanjing University) 29



Online Ensemble for BCO LAVIDA

Learning And Mining from DatA

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N
Wil — E Pt+1,iWtit15
=1
» Multiple candidates: to cover uncertainty » Base learners: each updated using 7; € H
diversity consideration: cover all the possible range o~ B ~
using as fewer as possible discretization items BGD(:): Wet1,i = Ha—ayw[Wei — 77

Wit1s = Wep1; + 08¢

oz s bandit feedback . , , A
V7R makes it hard to initiate thm: provide the weight Py € AN
1—1
H= {77@ dCT3/4 i =1, multiple base learners eight on base-learners with better performance

Hedge: piy1,: < pri eXp(—)

Peng Zhao (Nanjing University) 30

with N = [log,(1+2T/7)] +1 = O(logT).



Online Ensemble for BCO LAVIDA

Learning And Mining from DatA

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N ~
gt = %ft(wt + 0s¢) - 8¢
Wil — Zpt+1,iwt+1,i
i=1 b(w) = (g, W)
» Multiple candidates: to cover uncertainty » Base learners: each updated using 7; € H
diversity consideration: cover all the possible range o~ o ~
using as fewer as possible discretization items BGD(U?’)' Witle = H(l_a)W[Wt’z

Wit1s = Wep1; + 08¢

R surrogate loss , , _
SR makes online ensemble thm: provide the weight P41 € AN
1—1
H = {77@ dCT3/4 [i=1, possible in bandit! eight on base-learners with better performance

Hedge: Pt+1,i X Dti exp(—

Peng Zhao (Nanjing University) 31

with N = [log,(1+2T/7)] +1 = O(logT).



Dynamic Regret LAVIDA

Learning And Mining from DatA

Theorem 3. Under certain standard assumptions, with a proper setting of the pool of candi-

date step sizes H and the learning rate e for the meta-algorithm, our PBGD algorithm enjoys
the following expected dynamic regret guarantees.

o For the one-point feedback model, E|D-Regret.(uy, ..

IN[oV)
N

ur)| < O(T
o For the two-point feedback model, E|D-Regret.(uy,...,ur)] < O(T

(14 Pr)2).

).

We further establish the lower bound to demonstrate the hardness of the problem:
an Q(\/T Pr) regret is unavoidable for bandit feedback models.

N~
N

(1+ Pr)

:> Our algorithm is minimax optimal for two-point BCO model;
while it remains open how to close the gap in one-point BCO.

Peng Zhao (Nanjing University) 32



Online Ensemble for BCO

LAVipA

Learning And Mining from DatA

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N

Wil = E Pt+1,iWt+1,5
i=1

Proper surrogate loss is essential for deploying
online ensemble to bandit online problems.

» Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range
using as fewer as possible discretization items

m 12 3 o NN

’Hz{szl VTR |i:1,...,N}

dCT3/4
with N = [log,(1+2T/7)] +1 = O(logT).

Peng Zhao (Nanjing University)

» Base learners: each updated using 7; € H

BGD(n;): Wiy1, = H(l—a)W[VA{’t’i N 77

Wit1s = Wep1; + 08¢

» Meta algorithm: provide the weight P11 € AN

increase weight on base-learners with better performance

Hedge: piy1, < psi exp(—

33



Deploying Online Ensemble LAIViDA

Learning And Mining from DatA

We will showcase that properly deploying online ensemble can
effectively resolve several important online learning problem.

* Problem-dependent Dynamic Regret

Peng Zhao (Nanjing University) 34



Beyond the worst-case analysis LAVIDA

Learning And Mining from DatA

» Previously, we have achieved minimax results like O(,/T(1 + Pr)).

* More ambitious: achieving problem-dependent guarantees

» become tighter than worst-case results for benign problems

» safeguard the same minimax rate in the worst case

radient variation 804 ]
5 i o(T) |
2 i il
Vp = Z sup [V fe1(w) = Vfi(w)]5 400
WEW i O(VT) |
It is also essential due to profound connections with many other 0 4'00 | sloo
areas such as online games, stochastic optimization, etc. T

Peng Zhao (Nanjing University) 35



Exploiting historical information  LAVipA

Learning And Mining from DatA

* How to exploit the niceness of the environments?
focusing on the gradient feedback for simplicity

Optimistic Online Gradient Descent [Rakhlin and Sridharan, 2013]

Wil = Iy (W — nV fi (wWy))]
w1 = 1y [VAVt+1 — 77Mt+1] :

where {M;, Ms, ..., Mt} is the hint sequence encoding prior knowledge of future.

e If the environment is benign, which means it is “predictable”, and thus we can
provide the {M,}{_, sequence by exploiting historical information.

* A two-step update fashion, and it will degenerate as the standard OGD when
there is no external hint (simply setting M; = 0).

Peng Zhao (Nanjing University) 36



Base Algorithm Analysis LAIVIDA

Learning And Mining from DatA

* Optimistic OGD can serve as the base learner for problem-dependent dynamic
regret minimization.
Wi = Uy [wWe —nV fi (wy)]
Wit = Iy [Wepr — M),

Theorem 4. Under certain standard assumptions, the dynamic regret of optimistic OGD
over compamtor sequence uy,...,ur € Wis bounded as

T T
1 1
th(wt th u;) < GD + o—(D* + 2DPr) +"Z IV fo(we) — My ||| - 52 lwe — wi_1||?

t=1 non-stationarity adaptivity t=2 negative ferm

_0 (1 + Pr . AT) 7 crucial for gradient variation

where Pr = 2322 |uy — uy—1 || measures non-stationarity and Ar = Z;F:Q |V fe(wy) — My ||? reflects adaptivity.

Peng Zhao (Nanjing University) 37



Online Ensemble for Adaptive BoundsLANbA

Learning And Mining from DatA

* An online ensemble to balance between non-stationarity and adaptivity.

N

Wit1 = E Pt+1,iWt+1,4
i=1

» Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range
using as fewer as possible discretization items

m 12 UE e NN

. D
H:{mzzz—l— |7j:1,...,N}

2GT

with N = [log,(GT/(8D?L?))| +1 = O(logT).

Peng Zhao (Nanjing University)

» Base learners: each updated using 7; € H

Wit = Iy [Wei — 0V fi(wy)]
Wit = Iy [Wepr s — i Miyq].

» Meta algorithm: provide the weight p;+1 € AN
also include the “hint” in the performance evaluation

Hedge: Pi+1,5 X €XP (_5<Lt,i + mt+1ﬂ-)) , Vi € [N]
t t

Lt,i = ng(ws,i) — Z<vfs(ws)aws,i>a mt—l—l,i é <Mt—|—1) Wt,i>-

38



Online Ensemble for Adaptive BoundsLANbA

Learning And Mining from DatA

* An online ensemble to balance between non-stationarity and adaptivity.

N

T T |4 Py
Wit = Zpt+1,iwt+1,i th(wt) — th(ut) <O ( = 77AT> =0 (\/AT(l + PT))
t=1 t=1

1=1

n

» Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range
using as fewer as possible discretization items

m 12 UE e NN

, D
H:{TIZ'ZQZ_lQG—T |Z:1,,N}

with N = [log,(GT/(8D?L?))| +1 = O(logT).

Peng Zhao (Nanjing University)

» Base learners: each updated using 7; € H

Wit = Iy [Wei — 0V fi(wy)]
Wit = Iy [Wepr s — i Miyq].

» Meta algorithm: provide the weight p;+1 € AN
also include the “hint” in the performance evaluation

Hedge: Pi+1,5 X €XP (_5<Lt,i + mt+1ﬂ-)) , Vi € [N]
t t

Lt,i = ng(ws,i) — Z<vfs(ws)aws,i>a mt—l—l,i é <Mt—|—1) Wt,i>-
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* From adaptive bound to gradient-variation regret bound

non-stationarity Pr = 23;2 |y —u—q||

(uy) <O (\/AT 1+PT))

IIMH

T
Z fe(we) —
t=1

adaptivity Ar = 3,_, |V fi(we) — M2

T
gradient variation Vo & Z sup ||V fi_1(w) — Vft(w)H; problem-dependent

t=2 WEW

|:> setting M1 = V fi(w;) as the last-round gradient

T T
Z fr(wy) — Z fr(uy) <O (J (14 Pr) - Z |V fe(wy) — Vftl(wt1)2) only “data-dependent”

t=2

need to analyze ||w; — w;_1]||* (stability of the dynamics)

Peng Zhao (Nanjing University) 40
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» Stability of the meta-base online ensemble

N N
2
Wil = E Pt+1,iWi41, :> ||Wt — Wt—1||§ < 2D? Hpt — pt—1H1 + 2 g Dt.i ||Wt,i - Wt—l,i”;
i=1 i=1

meta stability weighted combine of base stability

* Decompose the overall dynamic regret into the meta-base two levels:

D fewe) = > felw) = folwa) = Y fewea)+ > fewea) = > fi(w)

Ve Ve

meta-regret base-regret
T T
2> 1+Pr 1 2 . .
e meta-regret <O (eVT +e Z Wi —wi1|l5 + P Z Pt — Pt ) negative term for self-cancellation
t=2 T ot=2

T T
1 1 :
e base-regret < O | nVr +mn; Z lwe — we |2+ — — — Z Wi — Wt_1,7;H§ only for a pgrt:cular base leqrner,
s ni N not sufficient for cancellation
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Stability Analysis LAIViDA

* Stability of the meta-base online ensemble

N
2
Wiyl = E Dt41,iWi1i |:> Wy — Wt—1||§ <2D? Hpt — pt—1H1 + 2 E :pt,z' Wi — Wt—l,i”;
i=1 i=1

meta stability weighted combine of base stability

e Stablization: meta algorithm p;41 ; o< exp (—e(Ly; + my414)) with

e surrogate loss £; € RY with 4 ; = (Vf; (W) , W) + A we; — Wt—l,z’H;} correction:penalizing

: .. N 2 instable base learners
e hint predlctlon my cR with Mi41,4 = <Mt_|_1, Wt—|—1,z'> + A HWH-Li — Wt,i”g'

77 772 77N—1 771\1
Wil t,2 Wi N—1 Wi N

> Wi = E PriWei

Peng Zhao (Nanjing University) 42
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* Dynamic regret of the modified algorithm (with corrections):

1+ Pr
€

T 1 T
+5VT+5Z||Wt—Wt—1H§ - ;ZHpt—
T t=2

t=2
TN1
Z;Z_ltz

e meta-regret < C’)(

+ — Z Hwtz Wi 12 — W¢_14

th

2 | these two terms are
due to correction

T T
1 1
e base-regret < O(niVT —- 0 +n; E Wy — Wt—1\|§ T g (Wi — Wi 2)
v t=2 b t=2
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N

2 2 2

[we — w3 < 2D? Hpt - pt—lHl + zzpt,i Wi — w15
i=1

* Dynamic regret of the )1S):

meta stability weighted combine of base stability

1+ Pr

e meta-regret < (’)( - + eV + 52 w15 — ?\1%\1
t=2
T — ZHWtz Wi 12 Zz_ptz Wii— Wi—1,

77@752 t2z1

T T
1 1
e base-regret < O(niVT + 77— + mwg — ?7— g (Wi — Wit 2>
v t=2 ¢ =2

Q)

2 | these two terms are
due to correction

Collaborations between meta and base learners:
with suitable parameter configurations simultaneously exploiting
D-Regret < O ( \/VT 1+ PT)) * negative terms in the regret analysis
¥ correction terms in the algorithm design

Peng Zhao (Nanjing University) 44
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2 2 2
lwe — w13 < 2D? ||p, — py_4 ||| +2 Zpt,i Wi —wi1:ll5

. i=1 .
* Dynamlc regret Of the meta stability weighted combine of base stability )I’lS).
T
1+ P 1 2
e meta-regret < (’)( 5 L +eVr —|—6Z | W3 Wt—1||§ - j?d\ﬂ ~t—1 z
t=2 ¥ =2

T
1 2 |\ these two terms are
b i=2 t=2 i= 1
1 d 1
2 2
e base-regret < O n;Vr + — +n; — Wil — M 5
1i - U —

Collaborations between meta and base learners:
with suitable parameter configurations simultaneously exploiting

D-Regret, < O ( \/VT(l i PT)) * negative terms in the regret analysis
¥ correction terms in the algorithm design

Peng Zhao (Nanjing University) 45
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* An online ensemble to balance between non-stationarity and adaptivity.

N

T T
Wit1 = Zpt—l—l,iwt+1,i Z fe(we) — Z fi(u) <O (\/VT(l + PT))
t=1

» Multiple candidates: to cover uncertainty » Base-learners: each updated using 7; € H

diversity consideration: cover all the possible range Wit1,: = Ly (Wi — 0V fe(wy)]

using as fewer as possible discretization items ~
& P Wit = Ihy (W1, — iV fe(wy)].

» Meta-algorithm: provide the weight p;1 € AN

correction terms

enable collaborations
between meta and

base levels

Hedge: piy1,: x exp(—e(Li; +mit14)), Vi € [N].

o surrogate loss ¢, ; = (V fi (W¢) , W)

e hint prediction m41; = (Myjp1, Wiy1,:) 4

Peng Zhao (Nanjing University) 46
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* Full-information online learning

gradient information is available to the learner
[Zhang et al., NeurIPS’18; Zhao et al., NeurIPS'20; Zhao et al., NeurIPS’22; Zhao et al., JMLR’23]

* Partial-information online learning

gradient information cannot be observed, only function value is available
[Zhao et al., JMLR’21; Luo et al., COLT’22; Yan et al., JMLR’23]

* Decision-dependent online learning

current decision will atfect the future (incl. gradient & function value)
[Zhao et al., ICML'22; Zhao et al., AISTAST’23; Li et al., NeurIPS5'23]
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 Conclusion
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Conclusion LAVIDA
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* Online Ensemble: an effective theoretical framework (base learners;
meta learners; schedule) to handle uncertainty in online environments

* Non-stationary online learning: online ensemble for dynamic regret
* bandit convex optimization: surrogate loss is essential to exploit limited feedback

* problem-dependent guarantee: incorporating hint prediction, enable collaboration
between meta and base layers (via negative terms and corrections)

* other results: online MDPs, game theory, online weakly supervised learning, etc.
* Beyond non-stationarity: universal online learning (agnostic to curvatures)

* Many todo: efficiency/real-time response? non-convexity? continuous learning? ...

Thanks!
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