Introduction to Machine Learning

Thomas G. Dietterich tgd@eecs.oregonstate.edu

Outline

\square What is Machine Learning?
\square Introduction to Supervised Learning: Linear Methods
\square Overfitting, Regularization, and the BiasVariance Tradeoff
\square Review and Summary

Machine Learning: The Original Motivation

Traditional Software Process

\square Interview the experts
\square Create an algorithm that automates their process

Machine Learning
Process
\square Collect input-output examples from the experts
\square Learn a function to map from the input to the output

Supervised Learning

\square Given: Training examples $\left(x_{i}, f\left(x_{i}\right)\right)$ for some unknown function f.
\square Find: A good approximation to f.
\square Example Applications

- Handwriting recognition
$\square x$: data from pen motion
$\square f(x)$: letter of the alphabet
- Disease Diagnosis
$\square x$: properties of patient (symptoms, lab tests)
$\square f(x)$: disease (or maybe, recommended therapy)
- Face Recognition
$\square x$: bitmap picture of person's face
$\square f(x)$: name of person
- Spam Detection
$\square x$: email message
$\square f(x)$: spam or not spam

Formal

$P(x, y) \longrightarrow$ test point
 Setting
training points
\square Training examples are drawn independently at random according to unknown probability distribution $P(\boldsymbol{x}, y)$
\square The learning algorithm analyzes the examples and produces a classifier f
\square Given a new data point (x, y) drawn from P, the classifier is given x and predicts $\hat{y}=f(x)$
\square The loss $\mathcal{L}(\hat{y}, y)$ is then measured
\square Goal of the learning algorithm: Find the f that minimizes the expected loss

Formal Version of Spam Detection

$\square P(\boldsymbol{x}, y)$: distribution of email messages \mathbf{x} and their true labels y ("spam" or "not spam")
\square training sample: a set of email messages that have been labeled by the user
\square learning algorithm: what we study in MLSS!
$\square f$: the classifier output by the learning algorithm
\square test point: A new email message x (with its true, but hidden, label y)
\square loss function $\mathcal{L}(\hat{y}, y)$:

predicted label \hat{y}	true label y	
	spam	not spam
spam	0	10
not spam	1	0

Three Main Approaches to Machine Learning

\square Learn a classifier: a function f.
\square Learn a conditional distribution: a conditional distribution $P(y \mid \boldsymbol{x})$
\square Learn the joint probability distribution: $P(x, y)$
\square We will study one example of each method:

- Learn a classifier: The Perceptron algorithm
- Learn a conditional distribution: Logistic regression
- Learn the joint distribution: Linear discriminant analysis

Linear Threshold Units

$$
h(x)=\left\{\begin{array}{cc}
+1 & \text { if } w_{1} x_{1}+\cdots+w_{n} x_{n} \geq w_{0} \\
-1 & \text { otherwise }
\end{array}\right.
$$

\square We assume that each feature x_{j} and each weight w_{j} is a real
\square We will study three different algorithms for learning linear threshold units:

- Perceptron: function
- Logistic Regression: conditional distribution
- Linear Discriminant Analysis: joint distribution

A canonical representation

\square Given a training example of the form

$$
\left(\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle, y\right)
$$

\square transform it to

$$
\left(\left(-1, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle, y\right)
$$

\square The parameter vector will then be $\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$
\square We will call the unthresholded hypothesis $u(\boldsymbol{x}, \boldsymbol{w})$ $u(x, w)=w \cdot x=w^{\top} \boldsymbol{x}$
\square Each hypothesis can be written $h(x)=\operatorname{sgn}(u(x, w))$
\square Our goal is to find \boldsymbol{w}

Geometrical View

\square Consider three training examples:

$$
\begin{aligned}
& (\langle 1.0,1.0\rangle,+1) \\
& (\langle 0.5,3.0\rangle,+1) \\
& (\langle 2.0,2.0\rangle,-1)
\end{aligned}
$$

\square We want a classifier that looks like the following:

The Unthresholded Discriminant Function is a Hyperplane

\square The equation
$u(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}$ is a plane

$$
\hat{y}=\left\{\begin{array}{lc}
+1 & \text { if } u(x) \geq 0 \\
-1 & \text { otherwise }
\end{array}\right.
$$

Machine Learning == Optimization

\square Given:

- A set of N training examples $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{N}, y N\right)\right\}$
- A loss function \mathcal{L}
$\square F i n d:$
- The weight vector w that minimizes the expected loss on the training data

$$
J(\boldsymbol{w})=\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(\operatorname{sgn}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right), y_{i}\right)
$$

Problem: Step-wise Constant Loss Function

Approximating the expected loss by a smooth function

\square Simplify the optimization problem by replacing the original objective function by a surrogate loss function. For example, consider the hinge loss:

$$
\tilde{J}(\boldsymbol{w})=\frac{1}{N} \sum_{i=1}^{N} \max \left(0,1-y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}\right)
$$

When $y=1$:

Minimizing J by Gradient Descent Search

\square Start with weight vector w^{0}
\square Compute gradient $\quad \nabla \tilde{J}\left(w^{0}\right)=\left(\frac{\partial \tilde{J}\left(w^{0}\right)}{\partial w_{0}}, \frac{\partial \tilde{J}\left(w^{0}\right)}{\partial w_{1}}, \ldots, \frac{\partial \tilde{J}\left(w^{0}\right)}{\partial w_{n}}\right)$
\square Compute $\boldsymbol{w}^{1}=\boldsymbol{w}^{0}-\eta \nabla \tilde{J}\left(\boldsymbol{w}^{0}\right)$ where η is a "step size" parameter
\square Repeat until convergence

Gradient of the Hinge Loss

$$
\text { Let } \tilde{J}_{i}(\boldsymbol{w})=\max \left(0,-y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}\right)
$$

$$
\frac{\partial \tilde{J}(\boldsymbol{w})}{\partial w_{k}}=\frac{\partial}{\partial w_{k}}\left(\frac{1}{N} \sum_{i=1}^{N} \tilde{J}_{i}(\boldsymbol{w})\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_{k}} \tilde{j}_{i}(\boldsymbol{w})
$$

$$
\sum_{i=1}^{N} \frac{\partial}{\partial w_{k}} \tilde{f}_{i}(\boldsymbol{w})=\frac{\partial}{\partial w_{k}} \max \left(0,-y_{i} \sum_{j} w_{j} x_{i j}\right)
$$

$$
=\left\{\begin{array}{cc}
0 & \text { if } y_{i} \boldsymbol{w}^{\top} \boldsymbol{x} \geq 0 \\
-y_{i} x_{i k} & \text { otherwise }
\end{array}\right.
$$

Batch Perceptron Algorithm

Input: training examples $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
$\boldsymbol{w}=(0, \ldots, 0) \quad / /$ initial weight vector
Repeat until convergence

$$
\begin{aligned}
& \boldsymbol{g}=(0, \ldots, 0) / / \text { initial gradient vector } \\
& \text { For } i=1 \text { to } N \text { do } \\
& \quad \text { if }\left(y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{\boldsymbol{i}}<\mathbf{0}\right) / / \boldsymbol{x}_{i} \text { is misclassified } \\
& \qquad \begin{array}{c}
\text { For } j=1 \text { to } n \text { do } \\
\quad g_{j}=g_{j}-y_{i} x_{i j} \\
\boldsymbol{g}:=\boldsymbol{g} / N / / \text { average gradient } \\
\boldsymbol{w}:=\boldsymbol{w}-\eta \boldsymbol{g} / / \text { take a gradient step }
\end{array}
\end{aligned}
$$

Online Perceptron Algorithm

$\boldsymbol{w}=(0, \ldots, 0)$ be the initial weight vector
$\boldsymbol{g}=(0, \ldots, 0)$ be the initial gradient vector
Repeat forever
Accept training example $\left(x_{i}, y_{i}\right)$
if $\left(y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{\boldsymbol{i}}<\mathbf{0}\right) / / \boldsymbol{x}_{i}$ is misclassified

$$
\text { For } j=1 \text { to } n \text { do } g_{j}=-y_{i} x_{i j}
$$

$\boldsymbol{w}:=\boldsymbol{w}-\eta \boldsymbol{g} / /$ take a gradient step

This is called stochastic gradient descent because the overall gradient is approximated by the gradient from each individual example

Learning Rates and Convergence

\square The learning rate η must decrease to zero in order to guarantee convergence. The online case is known as the Robbins-Munro algorithm. It is guaranteed to converge under the following assumptions:
\square The learning rate is also called the step size. Some algorithms (e.g., Newton's method, conjugate gradient) choose the stepsize automatically and converge faster
\square There is only one "basin" for linear threshold units, so a local minimum is the global minimum. Choosing a good starting point can make the algorithm converge faster

Decision Boundaries

\square A classifier can be viewed as partitioning the input space or feature space X into decision regions

\square A linear threshold unit always produces a linear decision boundary. A set of points that can be separated by a linear decision boundary is said to be linearly separable.

Exclusive-OR is Not Linearly Separable

Review

\square We adopted the discriminant function approach (no probabilistic model)
\square We adopted the hinge loss as a surrogate for the 0/1 loss
\square We formulated the optimization problem of minimizing the average hinge loss on the training data
\square We solved this problem using gradient descent \rightarrow Perceptron algorithm

Logistic Regression

\square Learn the conditional probability $P(y \mid x)$
\square Let $p_{y}(\boldsymbol{x} ; \boldsymbol{w})$ be our estimate of $P(y \mid \boldsymbol{x})$, where \boldsymbol{w} is a vector of adjustable parameters. Assume only two classes $y=0$ and $y=1$, and

$$
\begin{aligned}
& p_{1}(\boldsymbol{x} \mid \boldsymbol{w})=\frac{\exp \boldsymbol{w}^{\top} \boldsymbol{x}}{1+\exp \boldsymbol{w}^{\top} \boldsymbol{x}} \\
& p_{0}(\boldsymbol{x} \mid \boldsymbol{w})=1-p_{1}(\boldsymbol{x} \mid \boldsymbol{w})
\end{aligned}
$$

\square It is easy to show that this is equivalent to

$$
\log \frac{p_{1}(\boldsymbol{x} ; \boldsymbol{w})}{p_{0}(\boldsymbol{x} ; \boldsymbol{w})}=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

\square In other words, the log odds of class 1 is a linear function of x.

Why the exp function?

\square One reason: A linear function has a range from $-\infty$ to $+\infty$ and we need to force it to be positive and sum to 1 in order to be a probability:

Deriving a Learning Algorithm: Choosing the Loss Function

\square For probabilistic models, we use the log loss:

$$
\mathcal{L}(\hat{P}(y \mid x), y)= \begin{cases}-\log \hat{P}\left(y=1 \mid x_{i}\right) & \text { if } y_{i}=1 \\ -\log \hat{P}\left(y=0 \mid x_{i}\right) & \text { if } y_{i}=0\end{cases}
$$

Comparison with 0/1 Loss

\square For probabilistic models, we use the log loss:

$$
\mathcal{L}(\hat{P}(y \mid x), y)= \begin{cases}-\log \hat{P}\left(y=1 \mid x_{i}\right) & \text { if } y_{i}=1 \\ -\log \hat{P}\left(y=0 \mid x_{i}\right) & \text { if } y_{i}=0\end{cases}
$$

Maximum Likelihood Fitting

\square To minimize the log loss, we should maximize $\log \widehat{P}\left(y_{i} \mid x_{i}\right)$
\square The likelihood of the data is:

$$
\prod_{i} \hat{P}\left(y_{i} \mid x_{i}\right)
$$

\square It is easier to work with the log likelihood:

$$
\sum_{i} \log \hat{P}\left(y_{i} \mid x_{i}\right)
$$

Maximizing the log likelihood via gradient ascent

\square Rewrite the log likelihood in terms of $p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)$:

$$
\ell(\boldsymbol{w})=\sum_{i} y_{i} \log p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)+\left(1-y_{i}\right) \log \left(1-p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)\right)
$$

Differentiate with respect to w_{j} :

$$
\frac{\partial \ell\left(y_{i} ; \boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=\frac{y_{i}}{p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)} \frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}+\frac{1-y_{i}}{1-p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}\left(-\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}\right)
$$

Gather terms

$$
\frac{\partial \ell\left(y_{i} ; \boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=\left[\frac{y_{i}}{p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}-\frac{1-y_{i}}{1-p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}\right]\left(\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}\right)
$$

Maximizing the log likelihood via gradient ascent (2)

\square Collect over common denominator:
$\frac{\partial \ell\left(y_{i} ; \boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=\left[\frac{y_{i}\left(1-p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\right)-\left(1-y_{i}\right) p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\left(1-p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}\right)$
\square Simplify:

$$
\frac{\partial \ell\left(y_{i} ; \boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=\left[\frac{y_{i}-p_{1}\left(x_{i}, w\right)}{p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\left(1-p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}\right)
$$

\square Now we just need to compute

$$
\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}
$$

Computing $\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{}$
 ∂w_{j}

$\square p_{1}$ can be written as

$$
p_{1}\left(x_{i} ; w\right)=\frac{1}{1+\exp \left(w^{\top} x\right)}
$$

\square From this, we obtain:

$$
\begin{aligned}
\frac{\partial p_{1}\left(x_{i}, w\right)}{\partial w_{j}} & =\frac{1}{\left(1+\exp \left(-w^{\top} x_{i}\right)\right)^{2}} \frac{\partial\left(1+\exp \left(-w^{\top} x_{i}\right)\right)}{\partial w_{j}} \\
& =-\frac{1}{\left(1+\exp \left(-w^{\top} x_{i}\right)\right)^{2}} \exp \left(-w^{\top} x_{i}\right) \frac{\partial}{\partial w_{j}}\left(-w^{\top} x_{i}\right) \\
& =-\frac{1}{\left(1+\exp \left(-w^{\top} x_{i}\right)\right)^{2}} \exp \left(-w^{\top} x_{i}\right)\left(-x_{i j}\right) \\
& =p_{1}\left(x_{i} ; w\right)\left(1-p_{1}\left(x_{i} ; w\right)\right) x_{i j}
\end{aligned}
$$

Putting it together we have

$$
\begin{gathered}
\frac{\partial \ell\left(y_{i} ; \boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=\left[\frac{y_{i}-p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)}{p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\left(1-p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)}{\partial w_{j}}\right) \\
\frac{\partial p_{1}\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)\left(1-p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)\right) x_{i j} \\
\frac{\partial \ell\left(y_{i} ; \boldsymbol{x}_{i}, \boldsymbol{w}\right)}{\partial w_{j}}=\left[y_{i}-p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)\right] x_{i j}
\end{gathered}
$$

\square The overall gradient is therefore

$$
\frac{\partial \ell(\boldsymbol{w})}{\partial w_{j}}=\sum_{i}\left(y_{i}-p_{1}\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)\right) x_{i j}
$$

\square Note that the first term is the error on the probability scale

Batch Gradient Ascent for Logistic Regression

Input: training examples $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
$\boldsymbol{w}=(0, \ldots, 0)$ be the initial weight vector
Repeat until convergence
$\boldsymbol{g}=(0, \ldots, 0)$ be the initial gradient vector
For $i=1$ to N do
$p_{i}=1 /\left(1+\exp \left(-\boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)\right)$
error $_{i}:=y_{i}-p_{i}$
For $j=1$ to n do

$$
g_{j}=g_{j}+\operatorname{error}_{i} \cdot x_{i j}
$$

$\boldsymbol{g}:=\boldsymbol{g} / N \quad / /$ average gradient
$\boldsymbol{w}:=\boldsymbol{w}+\eta \boldsymbol{g} \quad / /$ take a gradient step
\square An online gradient ascent algorithm can be constructed, of course
\square Most statistical packages use a second-order (Newton-Raphson) algorithm for faster convergence

Logistic Regression Implements a Linear Discriminant Function
\square In the 2-class $0 / 1$ loss function case, we should predict $\hat{y}=1$ if $\hat{P}(y=1 \mid x ; w)>0.5$

$$
\frac{P(y=1 \mid x ; w)}{P(y=0 \mid x ; w)}>1
$$

\square Take log of both sides

$$
\log \frac{P(y=1 \mid x ; w)}{P(y=0 \mid x ; w)}>0
$$

\square or

$$
w^{\top} x>0
$$

Review

\square We adopted the conditional probability approach: $P(y \mid x)$
\square We adopted the log loss as a surrogate for $0 / 1$ loss
\square We formulated the optimization problem of maximizing the average log likelihood on the training data
\square We solved this problem using gradient ascent

The Joint Probability Approach: Linear Discriminant Analysis

\square Learn $P(x, y)$. This is called the generative approach, because we can think of $P(x, y)$ as a model of how the data is generated.

- For example, if we factor the joint distribution into the form

$$
P(\mathbf{x}, y)=P(y) P(\mathbf{x} \mid y)
$$

- Generative "story"
\square draw $y \sim P(y)$ choose a class
\square draw $x \sim P(x \mid y)$ generate the features for \boldsymbol{x}
- This can be represented as a probabilistic graphical model

Linear Discriminant Analysis (2)

$\square \mathrm{P}(y)$ is a discrete multinomial distribution

- example: $\mathrm{P}(y=0)=0.31, \mathrm{P}(y=1)=0.69$ will generate 31% negative examples and 69\% positive examples
\square For LDA, we assume that $P(x \mid y)$ is a multivariate normal distribution with mean μ_{k} and covariance matrix Σ

$$
P(x \mid y=k)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[x-\boldsymbol{\mu}_{k}\right]^{\top} \Sigma^{-1}\left[x-\boldsymbol{\mu}_{k}\right]\right)
$$

Multivariate Normal Distributions: A tutorial

\square Recall that the univariate normal (Gaussian) distribution has the formula

$$
p(x)=\frac{1}{(2 \pi)^{\frac{1}{2}} \sigma} \exp \left[-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right]
$$

\square where μ is the mean and σ^{2} is the variance
\square Graphically, it looks like this:

The Multivariate Gaussian

\square A 2-dimensional Gaussian is defined by a mean vector $\mu=\left(\mu_{1}, \mu_{2}\right)$ and a covariance matrix

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{1,1}^{2} & \sigma_{1,2}^{2} \\
\sigma_{2,1}^{2} & \sigma_{2,2}^{2}
\end{array}\right]
$$

\square where $\sigma_{i, j}^{2}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$ is the variance (if $i=j$) or co-variance (if $i \neq j$).
Σ is symmetric and positive-definite

The Multivariate Gaussian (2)

\square If Σ is the identity matrix $\Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\mu=(0,0)$, we get the 2-D standard normal distribution:

The Multivariate Gaussian (3)

\square If Σ is a diagonal matrix, then x_{1}, and x_{2} are independent random variables, and lines of equal probability are ellipses parallel to the coordinate axes. For example, when

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \text { and } \\
\boldsymbol{\mu} & =(2,3) \text { we obtain }
\end{aligned}
$$

The Multivariate Gaussian (4)

\square Finally, if Σ is an arbitrary matrix, then x_{1} and x_{2} are dependent, and lines of equal probability are ellipses tilted relative to the coordinate axes. For example, when

$$
\begin{aligned}
& \Sigma=\left[\begin{array}{cc}
2 & 0.5 \\
0.5 & 1
\end{array}\right] \text { and } \\
& \boldsymbol{\mu}=(2,3) \quad \text { we obtain }
\end{aligned}
$$

Estimating a Multivariate Gaussian

\square Given a set of N data points x_{1}, \ldots, x_{N}, we can compute the maximum likelihood estimate for the multivariate Gaussian distribution as follows:

$$
\widehat{\boldsymbol{\mu}}=\frac{1}{N} \sum_{i} x_{i} \quad \widehat{\Sigma}=\frac{1}{N} \sum_{i}\left(x_{i}-\widehat{\mu}\right)\left(x_{i}-\widehat{\boldsymbol{\mu}}\right)^{\top}
$$

\square Note that the dot product in the second equation is an outer product. The outer product of two vectors is a matrix:

$$
\boldsymbol{x} \boldsymbol{y}^{\top}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

\square For comparison, the usual dot product is written as $\boldsymbol{x}^{\top} \boldsymbol{y}$

The LDA Model

\square Linear discriminant analysis assumes that the joint distribution has the form

$$
P(x, y)=P(y) \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[\boldsymbol{x}-\boldsymbol{\mu}_{y}\right]^{\top} \boldsymbol{\Sigma}^{-1}\left[\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{y}}\right]\right)
$$

where each μ_{y} is the mean of a multivariate
Gaussian for examples belonging to class y and Σ is a single covariance matrix shared by all classes.

Fitting the LDA Model

\square It is easy to learn the LDA model in a single pass through the data:

- Let $\hat{\pi}_{k}$ be our estimate of $P(y=k)$
- Let N_{k} be the number of training examples belonging to class k.

$$
\begin{aligned}
& \hat{\pi}_{k}=\frac{N_{k}}{N} \\
& \widehat{\boldsymbol{\mu}}_{k}=\frac{1}{N_{k}} \sum_{\left\{i: y_{i}=k\right\}} \boldsymbol{x}_{i} \\
& \hat{\Sigma}=\frac{1}{N} \sum_{i}\left(\boldsymbol{x}_{i}-\hat{\boldsymbol{\mu}}_{y_{i}}\right)\left(\boldsymbol{x}_{i}-\widehat{\boldsymbol{\mu}}_{y_{i}}\right)^{\top}
\end{aligned}
$$

\square Note that each x_{i} is subtracted from its corresponding $\mu_{y_{i}} \quad$ prior to taking the outer product. This gives us the "pooled" estimate of Σ
\square This is known as the Method of Moments

LDA learns an LTU

\square Just as with Logistic Regression, we should classify x into class 1 if $\widehat{P}(y=1 \mid x)>0.5$
\square Our model contains $P(y)$ and $P(x \mid y)$, so we need to perform probabilistic inference to obtain the condition probability:

$$
P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}=\frac{\operatorname{Norm}\left(x ; \mu_{y}, \Sigma\right) \pi_{y}}{\sum_{k} \operatorname{Norm}\left(x ; \mu_{k}, \Sigma\right) \pi_{k}}
$$

\square As before, we re-express this as

$$
\frac{P(y=1 \mid x)}{P(y=0 \mid x)}>1
$$

\square The denominators cancel, and we have

$$
\frac{\operatorname{Norm}\left(\boldsymbol{x} ; \boldsymbol{\mu}_{1}, \Sigma\right) \pi_{1}}{\operatorname{Norm}\left(\boldsymbol{x} ; \boldsymbol{\mu}_{0}, \Sigma\right) \pi_{0}}>1
$$

LDA Learns an LTU (2)

\square Substitute the formula for Normal:

$$
\frac{\pi_{1} \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[x-\boldsymbol{\mu}_{1}\right]^{\top} \Sigma^{-1}\left[x-\mu_{1}\right]\right)}{\pi_{0} \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[x-\mu_{0}\right]^{\top} \Sigma^{-1}\left[x-\mu_{0}\right]\right)}>1
$$

\square Cancel terms, take logs

$$
\log \frac{\pi_{1}}{\pi_{0}}+\left[x-\mu_{1}\right]^{\top} \Sigma^{-1}\left[x-\mu_{1}\right]-\left[x-\mu_{0}\right]^{\top} \Sigma^{-1}\left[x-\mu_{0}\right]>0
$$

\square With a bit more work

$$
\log \frac{\pi_{1}}{\pi_{0}}+2 x^{\top} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)+\mu_{1}^{\top} \Sigma^{-1} \mu_{1}-\mu_{0}^{\top} \Sigma^{-1} \mu_{0}>0
$$

LDA Learns an LTU (3)

$$
\log \frac{\pi_{1}}{\pi_{0}}+2 x^{\top} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)+\mu_{1}^{\top} \Sigma^{-1} \mu_{1}-\mu_{0}^{\top} \Sigma^{-1} \mu_{0}>0
$$

\square Define

$$
\begin{gathered}
w=2 \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right) \\
c=\log \frac{\pi_{1}}{\pi_{0}}+\mu_{1}^{\top} \Sigma^{-1} \mu_{1}-\mu_{0}^{\top} \Sigma^{-1} \mu_{0}
\end{gathered}
$$

\square Then LDA will classify into $\hat{y}=1$ iff

$$
\boldsymbol{x}^{\top} \boldsymbol{w}>-c
$$

\square which is a linear threshold unit

Two Geometric Views of LDA View 1: Mahalanobis Distance

\square The quantity $D_{M}(\boldsymbol{x}, \boldsymbol{u})^{2}=[\boldsymbol{x}-\boldsymbol{u}]^{\top} \boldsymbol{\Sigma}^{-1}[\boldsymbol{x}-\boldsymbol{u}]$ is known as the (squared) Mahalanobis distance between x and u. We can think of the matrix Σ^{-1} as a linear distortion/rotation of the coordinate system that converts the standard Euclidean distance into the Mahalanobis distance
\square Note that

$$
\begin{gathered}
\log P(y=k \mid x) \propto \log \pi_{k}-\frac{1}{2}\left[x-\boldsymbol{\mu}_{k}\right]^{\top} \boldsymbol{\Sigma}^{-1}\left[x-\boldsymbol{\mu}_{k}\right] \\
\log P(y=k \mid x) \propto \log \pi_{k}-\frac{1}{2} D_{M}(x, u)^{2}
\end{gathered}
$$

\square Therefore, we can view LDA as computing $D_{M}\left(\boldsymbol{x}, \boldsymbol{\mu}_{0}\right)^{2}$ and $D_{M}\left(\boldsymbol{x}, \boldsymbol{\mu}_{1}\right)^{2}$ and then classifying x according to which mean μ_{0} or μ_{1} is closer in Mahalanobis distance (corrected by $\log \pi_{k}$)

View 2: Most Informative LowDimensional Projection

\square LDA can also be viewed as finding a hyperplane of dimension $K-1$ such that x and the $\left\{\mu_{k}\right\}$ are projected down into this hyperplane and then x is classified to the nearest μ_{k} using Euclidean distance inside this hyperplane

Generalizations of LDA

\square General Gaussian Classifier

- Instead of assuming that all classes share the same Σ, we can allow each class k to have its own Σ_{k}. In this case, the resulting classifier will be a quadratic threshold unit (instead of an LTU)
\square Naïve Gaussian Classifier
- Allow each class to have its own Σ_{k}, but require that each Σ_{k} be diagonal. This means that within each class, any pair of features $\mathrm{x}_{\mathrm{j} 1}$ and $\mathrm{x}_{\mathrm{j} 2}$ will be assumed to be statistically independent. The resulting classifier is still a quadratic threshold unit (but with a restricted form)

Review

Linear Discriminant Analysis

\square We adopted the joint probability approach: $P(x, y)$
\square We adopted the log loss as a surrogate for $0 / 1$ loss
\square We fit the model directly, via the method of moments

Comparing Perceptron, Logistic Regression, and LDA

\square How should we choose among these three algorithms?
\square There are several trade-offs
\square There is a big debate in the machine learning community!

Issues in the Debate

\square Statistical Efficiency. If the generative model $P(\boldsymbol{x}, y)$ is correct, then LDA usually gives the highest accuracy, particularly when the amount of training data is small. If the model is correct, LDA requires 30\% less data than Logistic Regression in theory
\square Computational Efficiency. Generative models typically are the easiest to learn. In our example, the LDA parameters can be computed directly from the data without using gradient descent.

Issues in the Debate

\square Robustness to changing loss functions. Both generative and conditional probability models allow the loss function to be changed at run time without re-learning. Perceptron requires re-training the classifier when the loss function changes.

- Probabilistic modelling separates model learning from making predictions or decisions
- Suppose the cost of a false positive SPAM prediction is 10 whereas a false negative is 1
- The cost of classifying x as $y=1$ is $P(y=0 \mid x) \times 10$
- The cost of classifying x as $y=0$ is $P(y=1 \mid x) \times 1$
- So we can choose the value of y that minimizes the expected cost

Issues in the Debate

\square Vapnik's Principle

- If your goal is to minimize 0/1 loss, then you should do that directly, rather than first solving a harder problem (probability estimation)
- This is what Perceptron does
- Other algorithms that follow this principle
\square Support Vector Machines
\square Decision Trees
\square Neural Networks

Issues in the Debate

\square Robustness to model assumptions. The generative model usually performs poorly when the assumptions are violated. For example, if $P(x \mid y)$ is very non-Gaussian, then LDA won't work well. Logistic Regression is more robust to model assumptions, and Perceptron is even more robust.

Consequently, making the generative approach work often requires more detailed modeling of $P(\boldsymbol{x} \mid y)$.
\square Robustness to missing values and noise. In many applications, some of the features $x_{i j}$ may be missing or corrupted in some of the training examples. Generative models typically provide better ways of handling this than non-generative models.

Questions?

Some Questions to Think About

\square Machine learning has many powerful non-linear classifiers, why didn't you discuss those?

- Linear methods are surprisingly powerful, especially in computer vision and natural language processing where the number of features is very large
\square You have showed how to fit these models to training data, but that doesn't guarantee that they will make good predictions on new data points
- Excellent question! That is the subject of Part 2

Break

Introduction to Machine Learning Part 2

Thomas G. Dietterich tgd@eecs.oregonstate.edu

Outline

\square What is Machine Learning?
\square Introduction to Supervised Learning: Linear Methods
\square Overfitting, Regularization, and the BiasVariance Tradeoff
\square Review and Summary

Formal

 $P(x, y) \longrightarrow$ test pointtraining points Setting

\square Training examples are drawn independently at random according to unknown probability distribution $P(\boldsymbol{x}, y)$
\square The learning algorithm analyzes the examples and produces a classifier f
\square Given a new data point (\boldsymbol{x}, y) drawn from P, the classifier is given \boldsymbol{x} and predicts $\hat{\boldsymbol{y}}=f(\boldsymbol{x})$
\square The loss $\mathcal{L}(\hat{y}, y)$ is then measured
\square Goal of the learning algorithm: Find the f that minimizes the expected loss on new points

The Problem of Overfitting

\square Model: Neural Network
\square Epoch: One batch gradient descent step
\square After about 180 epochs, error on the test data starts to increase even though the model continues to become more accurate on the training data

Lesson:

It is not enough to minimize the loss on the training data
if our goal is to optimize accuracy on new data points

Another Example

\square True function:

$$
y=f\left(x_{1}\right)=-\left(x_{1}-6\right)^{2}+5
$$

\square Training data:

$$
\begin{aligned}
& x_{1} \sim \operatorname{unif}(1,6) \\
& x_{2} \sim \operatorname{unif}(-6,6) \\
& y=f\left(x_{1}\right)+\operatorname{norm}(0,10)
\end{aligned}
$$

\square Two models:

Model 1: $y=w_{0}+w_{1} x_{1}+w_{2} x_{2}$
Model 2: $y=w_{0}+w_{1} x_{1}+w_{12} x_{1}^{2}+w_{2} x_{2}+w_{22} x_{2}^{2}$

Small, Noisy Training Set

$\square 3$ training examples
\square Linear model is much more accurate even though
\square It cannot represent the true model
\square The quadratic model can represent the true model

The Three-Way Tradeoff

\square There is a tradeoff between

- amount of data
- complexity of the model fit to the data
- accuracy of the model on new data points

Three-way Tradeoff

What is Model Complexity?

\square Parametric models: Complexity = number of weights

- Linear model is less complex than a quadratic model
- Extra features $\boldsymbol{\rightarrow}$ extra complexity
\square More subtle:
- Weights that are zero don't contribute to complexity
- Small weights contribute less complexity that large weights

Controlling Model Complexity Via Regularization

\square Regularization: Penalize the magnitude of the weights in the model
\square Example: "square" penalty

$$
J(\boldsymbol{w})=\frac{1}{N} \sum_{i} \mathcal{L}\left(f\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right), y_{i}\right)+\lambda \sum_{j} w_{j}^{2}
$$

The severity of the penalty is controlled by $\lambda>0$ Adds a term of $2 \lambda \sum_{j} w_{j}$ to the gradient descent In neural networks, this is called "weight decay"

How to choose λ ?

\square Simple Holdout Method
\square Subdivide training data S into two subsets: $S_{\text {train }}$ and $S_{\text {holdout }}$.
\square Choose a set of candidate λ values = $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{R}$
\square Minimize the penalized loss on $S_{\text {train }}$, measure the prediction loss on $S_{\text {holdout }}$
\square Choose the λ value that gives the smallest prediction loss

Simple Holdout Example

Logistic regression with regularization penalty

Overfitting was not too severe in this problem

k-fold Cross-Validation to determine λ

\square To evaluate a value for λ
Randomly divide S into k equalsized subsets
\square Run learning algorithm k times, each time use one subset for $S_{\text {eval }}$ and the rest for $S_{\text {train }}$
\square Compute the average loss on $S_{\text {eval }}$

S 1	S 2	S 3	S 4	S 5

\square Choose the λ value with minimum loss

A Bayesian Perspective

\square A fully-generative Bayesian story:
\square Generate the weights: $\boldsymbol{w} \sim P(w)$
\square For each data point i
Generate the class label: $y_{i} \sim P\left(y_{i}\right)$
Generate the features: $\boldsymbol{x}_{i} \sim P\left(\boldsymbol{x}_{i} \mid y_{i}, \boldsymbol{w}\right)$
Assemble the data set: $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

Inferring the most likely w

$\widehat{\boldsymbol{w}}=\arg \max _{\boldsymbol{w}} P(\boldsymbol{w} \mid S)$
$P(w \mid S)=P(\boldsymbol{w}) \prod_{i} P\left(y_{i}\right) P\left(\boldsymbol{x}_{i} \mid y_{i}, \boldsymbol{w}\right)$
$\log P(\boldsymbol{w} \mid S)=\log P(\boldsymbol{w})+\sum_{i} \log P\left(y_{i}\right)+\log P\left(\boldsymbol{x}_{i} \mid y_{i}, \boldsymbol{w}\right)$
$\widehat{\boldsymbol{w}}=\arg \max _{\boldsymbol{w}} \ell(S, \boldsymbol{w})+\log P(\boldsymbol{w})$
The regularization penalty is the same as the log prior on the weights
This provides a way of incorporating different penalties on different weights in a model, based on prior knowledge

Controlling Complexity by Early Stopping

\square Incrementally add complexity

- monitor performance on $S_{\text {eval }}$
- stop when performance drops
\square Examples:
- incrementally adding variables in regression
- growing a decision tree
- early stopping in stochastic gradient descent

Early Stopping

\square Subdivide S into $S_{\text {train }}$ and $S_{\text {eval }}$
\square Initialize weights to 0
\square Perform gradient descent on $S_{\text {train }}$, which gradually causes the weights to grow (in magnitude)
\square Measure the loss on $S_{\text {eval }}$ after each gradient step
\square Stop when the loss starts to increase

Other Methods for Controlling Complexity

\square Model pruning

- over-fit a model, then prune/shrink
\square Adding noise
- to the inputs or to intermediate quantities
- makes it harder to overfit
\square Ensembles (see below)

Bias-Variance Analysis

\square An alternative view of over-fitting and complexity control
\square Bias: Systematic error in the model

- typically caused by an inability to express the full complexity of the data
\square Variance: Variability in the fitted model
- typically caused by having a model that is too complex for the amount of data
\square The total error of the model can be partitioned into the sum of a bias term and a variance term
\square As we increase λ we increase bias but reduce variance

Bias-Variance Analysis of Regression

\square True function: $y=f(x)+\epsilon$

- where $\epsilon \sim \operatorname{Norm}\left(0, \sigma^{2}\right)$
\square We are given a set $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
\square We fit a model $h(x)$ to minimize the square loss

$$
\begin{gathered}
\mathcal{L}(\hat{y}, y)=(\hat{y}-y)^{2} \\
J(h)=\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}
\end{gathered}
$$

Example: $N=20$ points

 $y=x+2 \sin (1.5 x)+\operatorname{Norm}(0,0.2)$

Bias-Variance Analysis

\square Given a new data point $\left(x^{*}, y^{*}\right)$ (with predicted value $h\left(x^{*}\right)$), we would like to decompose our error

$$
\left(y^{*}-h\left(x^{*}\right)\right)^{2}
$$

Classical Statistical Analysis

\square Imagine that our particular training sample S is drawn from some population of possible training samples according to $P(S)$.
\square We fit h to S (h is a random quantity)
\square Compute $\mathbb{E}_{P}\left[\left(y^{*}-h\left(x^{*}\right)\right)^{2}\right]$
\square Decompose this into "bias", "variance", and "noise"

50 fits (20 examples each)

Bias

\square The difference between the average predicted value $\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]$ and the value of the true function $f\left(x^{*}\right): \mathbb{E}_{P}\left[h\left(x^{*}\right)\right]-f\left(x^{*}\right)$

Variance

\square The variance of $h\left(x^{*}\right)$ around its average value $\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]: \quad \mathbb{E}_{P}\left[\left(h\left(x^{*}\right)-\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]\right)^{2}\right]$

Noise

\square The variation of y^{*} around its true average value $f\left(x^{*}\right):\left(y^{*}-f\left(x^{*}\right)\right)^{2}$

The Bias-Variance Decomposition

$$
\begin{aligned}
& \mathbb{E}_{h}\left[\left(y^{*}-h\left(x^{*}\right)\right)^{2}\right] \\
& \quad=\mathbb{E}_{h}\left[\left(h\left(x^{*}\right)-\mathbb{E}_{h}\left[h\left(x^{*}\right)\right]\right)^{2}\right] \\
& \quad+\left(\mathbb{E}_{h}\left[h\left(x^{*}\right)\right]-f\left(x^{*}\right)\right)^{2} \\
& \quad+\left(y^{*}-f\left(x^{*}\right)\right)^{2}
\end{aligned}
$$

variance squared bias noise

50 fits (20 examples each)

Distribution of predictions at $\mathrm{x}=2.0$

50 fits (20 examples each)

Distribution of predictions at $\mathrm{x}=5.0$

Derivation

Let Z be a random variable with distribution $P(Z)$
Let $\bar{Z}=\mathbb{E}[Z]$ be the expected value of Z
Lemma: $\mathbb{E}\left[(Z-\bar{Z})^{2}\right]=\mathbb{E}\left[Z^{2}\right]-\bar{Z}^{2}$
Corollary: $\mathbb{E}\left[Z^{2}\right]=\mathbb{E}\left[(Z-\bar{Z})^{2}\right]+\bar{Z}^{2}$

Proof

$$
\begin{aligned}
\mathbb{E}\left[(Z-\bar{Z})^{2}\right] & =\mathbb{E}\left[Z^{2}-2 Z \bar{Z}+\bar{Z}^{2}\right] \\
= & \mathbb{E}\left[Z^{2}\right]-2 \bar{Z} \mathbb{E}[Z]+\bar{Z}^{2} \\
= & \mathbb{E}\left[Z^{2}\right]-2 \overline{Z Z}+\bar{Z}^{2} \\
= & \mathbb{E}\left[Z^{2}\right]-\bar{Z}^{2}
\end{aligned}
$$

Derivation of the Decomposition

Expand the quadratic:
$\mathbb{E}_{P}\left[\left(h\left(x^{*}\right)-y^{*}\right)^{2}\right]=\mathbb{E}_{P}\left[h\left(x^{*}\right)^{2}-2 h\left(x^{*}\right) y^{*}+y^{* 2}\right]$
Push the expectation inside
$=\mathbb{E}_{P}\left[h\left(x^{*}\right)^{2}\right]-2 \mathbb{E}_{P}\left[h\left(x^{*}\right)\right] \mathbb{E}_{P}\left[y^{*}\right]+\mathbb{E}_{P}\left[y^{* 2}\right]$
Apply the lemma twice

$$
\begin{aligned}
&=\mathbb{E}_{P}\left[\left(h\left(x^{*}\right)-\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]\right)^{2}\right]+\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]^{2}-2 \mathbb{E}_{P}\left[h\left(x^{*}\right)\right] f\left(x^{*}\right) \\
&+\mathbb{E}_{P}\left[\left(y^{*}-f\left(x^{*}\right)\right)^{2}\right]+f\left(x^{*}\right)^{2}
\end{aligned}
$$

Collapse the quadratic to get the squared bias term
$=\mathbb{E}_{P}\left[\left(h\left(x^{*}\right)-\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]\right)^{2}\right]+\left(\mathbb{E}_{P}\left[h\left(x^{*}\right)\right]-f\left(x^{*}\right)\right)^{2}$

$$
+\mathbb{E}_{P}\left[\left(y^{*}-f\left(x^{*}\right)\right)^{2}\right]
$$

Note that we are also taking expectations wrt the noise ϵ

Measuring Bias and Variance

\square In practice (unlike in theory), we have only ONE training set S.
\square We can simulate multiple training sets by bootstrap replicates $S^{\prime}=\{x \mid x$ is drawn at random with replacement from $S\}$ and $\left|S^{\prime}\right|=|S|$.

Procedure for Measuring Bias

 and Variance\square Construct B bootstrap replicates of S (e.g., $B=200): S_{1}, \ldots, S B$
\square Apply learning algorithm to each replicate S_{b} to obtain hypothesis h_{b}
\square Let $T_{b}=S \backslash S_{b}$ be the data points that do not appear in S_{b} (out of bag points)
\square Compute predicted value $h_{b}(x)$ for each x in T_{b}

Estimating Bias and Variance (continued)

\square For each data point x, we will now have the observed corresponding value y and several predictions y_{1}, \ldots, y_{K}.
\square Compute the average prediction $\bar{y}=$ $\frac{1}{K} \sum_{k} y_{k}$.
\square Estimate bias as $\bar{y}-y$
\square Estimate variance as $\frac{1}{K-1} \sum_{k}\left(y_{k}-\bar{y}\right)^{2}$
\square Assume noise is 0

Approximations in this Procedure

\square Bootstrap replicates are not real fresh data
\square We ignore the noise

- If we have multiple data points with the same x value, then we can estimate the noise
- We can also estimate noise by pooling y values from nearby x values

Applying Bias-Variance Analysis

\square By measuring the bias and variance on a problem, we can determine how to improve our model

- If bias is high, we need to allow our model to be more complex
- If variance is high, we need to reduce the complexity of the model
\square Bias-variance analysis also suggests a way to reduce variance: bagging

Ensemble Learning Methods

\square Given training sample S
\square Generate multiple hypotheses, $h_{1}, h_{2}, \ldots, h_{L}$.
\square Optionally: determining corresponding weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{L}$
\square Classify new points according to

$$
\sum_{\ell} \alpha_{\ell} h_{\ell}(x)>\theta
$$

"weighted majority vote"

Bagging: Bootstrap Aggregating

\square For $b=1, \ldots, B$ do
$S_{b}=$ bootstrap replicate of S
Apply learning algorithm to S_{b} to learn h_{b}
\square Classify new points by unweighted vote:

$$
\frac{1}{B} \sum_{b} h_{b}(x)>0
$$

Estimated Bias and Variance of

Bagging

\square If we estimate bias and variance using the same B bootstrap samples, we will have:

- Bias $=\bar{y}-y \quad$ [same as before]
- Variance $=\frac{1}{\mathrm{~K}-1} \sum_{k}(\bar{y}-\bar{y})^{2}=0$
\square Hence, according to this approximate way of estimating variance, bagging removes the variance while leaving bias unchanged.
\square In reality, bagging only reduces variance and tends to slightly increase bias

Bagging Decision Trees (Freund \& Schapire)

Bayesian Ensembles:

Bayesian Model Averaging

$\square P\left(y^{*} \mid x^{*}, S\right)=\int_{\boldsymbol{w}} P(\boldsymbol{w}) P(S \mid \boldsymbol{w}) P\left(y^{*} \mid x^{*}, \boldsymbol{w}\right) d \boldsymbol{w}$
\square where $P(S \mid w)=\prod_{i} P\left(y_{i} \mid \boldsymbol{w}\right) P\left(x_{i} \mid y_{i}, \boldsymbol{w}\right)$
\square This is rarely practical to evaluate, but suppose we could sample some good values for \boldsymbol{w} : $\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{C}\right)$
\square We could approximate the integral by a sum:

$$
P\left(y^{*} \mid x^{*}, S\right)=\sum_{c} P\left(\boldsymbol{w}_{c} \mid S\right) P\left(y^{*} \mid x^{*}, \boldsymbol{w}_{c}\right)
$$

\square This is called Bayesian Model Averaging

Review of Part 2

\square Goal: making accurate predictions on new data points

- the problem of Overfitting
- occurs when the model becomes too complex for the amount of data
\square Complexity can be controlled
- regularization penalty
- early stopping
- choosing λ by holdout or cross-validation
\square Bias-variance error decomposition
- Squared loss can be decomposed into bias^2+variance+noise
- bias and variance can be (approximately) measured using bootstrapping
- they provide a diagnostic tool for machine learning
\square Bagging is an ensemble method that applies bootstrapping to reduce variance
- Bagging a low-bias, high-variance classifier can produce excellent results
\square Bayesian analysis provides an alternative view of
- regularization penalty = log prior
- ensemble methods = integrating out the prior

Questions?

Questions to think about

\square Most machine learning methods involve complex, flexible models

- decision trees
- support vector machines
- neural networks (esp. deep ones)

Hence, complexity control (variance management) is a central challenge
"drop out" is a cool new technique in this area
\square The bias-variance analysis was done for regression. Can it be extended to classification?

- Yes, see James (2003) "Variance and bias for general loss functions" Machine Learning.

