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Outline 

What is Machine Learning? 

Introduction to Supervised Learning: Linear 
Methods 
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Machine Learning:  

The Original Motivation 

Traditional Software 

Process 

Interview the experts 

Create an algorithm that 

automates their process 

 

Machine Learning 

Process 

Collect input-output 

examples from the 

experts 

Learn a function to map 

from the input to the 

output 
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Supervised Learning 
Given: Training examples 𝒙𝑖 , 𝑓 𝒙𝑖  for some unknown 
function f. 

Find: A good approximation to f.  

 

Example Applications 
– Handwriting recognition 

𝑥: data from pen motion 

𝑓(𝑥): letter of the alphabet 

– Disease Diagnosis 
𝑥: properties of patient (symptoms, lab tests) 

𝑓(𝑥): disease (or maybe, recommended therapy) 

– Face Recognition 
𝑥: bitmap picture of person’s face 

𝑓(𝑥): name of person 

– Spam Detection 
𝑥: email message 

𝑓(𝑥): spam or not spam 
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Formal 

Setting 

Training examples are drawn 
independently at random according to 
unknown probability distribution 𝑃(𝒙, 𝑦) 

The learning algorithm analyzes the 
examples and produces a classifier 𝑓 

Given a new data point 𝒙, 𝑦  drawn from 
𝑃,  the classifier is given 𝒙 and predicts 
 𝑦 =  𝑓(𝒙) 

The loss ℒ(𝑦 , 𝑦) is then measured 

Goal of the learning algorithm: Find the 𝑓 
that minimizes the expected loss 

𝑃(𝒙, 𝑦) (𝒙, 𝑦) 

Training 

sample 𝑆 

learning 

algorithm 
𝑓 

test point 

𝒙 

loss 

function 

𝑦 

𝑦 𝑦  

training points 

ℒ(𝑦 , 𝑦) 
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Formal Version of Spam Detection 

𝑃(𝒙, 𝑦): distribution of email messages x and their 
true labels 𝑦 (“spam” or “not spam”) 

training sample: a set of email messages that have 
been labeled by the user 

learning algorithm: what we study in MLSS! 

𝑓: the classifier output by the learning algorithm 

test point: A new email message 𝒙 (with its true, but 
hidden, label 𝑦) 

loss function ℒ(𝑦 , 𝑦) :  

predicted 

label 𝑦  

true label 𝑦 

spam not 

spam 

spam 0 10 

not spam 1 0 
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Three Main Approaches to 

Machine Learning 

Learn a classifier: a function 𝑓. 

Learn a conditional distribution: a conditional 
distribution 𝑃(𝑦 | 𝒙) 

Learn the joint probability distribution: 𝑃(𝒙, 𝑦) 

We will study one example of each method: 
– Learn a classifier: The Perceptron algorithm 

– Learn a conditional distribution: Logistic regression 

– Learn the joint distribution: Linear discriminant 
analysis 
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Linear Threshold Units 

We assume that each feature 𝑥𝑗 and each 

weight 𝑤𝑗 is a real 

We will study three different algorithms for 

learning linear threshold units: 

– Perceptron: function 

– Logistic Regression: conditional distribution 

– Linear Discriminant Analysis: joint distribution 

ℎ 𝒙 =  
+1 if 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 ≥ 𝑤0

−1 otherwise
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A canonical representation 
Given a training example of the form  

𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑦   
 

transform it to  
−1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑦   

 
The parameter vector will then be 
(𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4)  
 

We will call the unthresholded hypothesis 𝑢(𝒙,𝒘) 
𝑢 𝒙,𝒘 = 𝒘 ⋅ 𝒙 = 𝒘⊤𝒙  
 

Each hypothesis can be written  
ℎ 𝒙 = 𝑠𝑔𝑛 𝑢 𝒙,𝒘   
 

Our goal is to find 𝒘 
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Geometrical View 

Consider three training examples: 

 

 

We want a classifier that looks like 
the following: 

1.0,1.0 , +1  

0.5,3.0 , +1  

2.0,2.0 , −1  
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The Unthresholded Discriminant 

Function is a Hyperplane 

The equation  

 𝑢 𝒙 = 𝒘⊤𝒙 

   is a plane 

 

 𝑦 =  
+1 if 𝑢 𝒙 ≥ 0
−1 otherwise
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Machine Learning == Optimization 

Given:  
– A set of N training examples 

{(𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑁, 𝑦𝑁)}  

– A loss function ℒ 

 

Find: 
– The weight vector 𝒘 that minimizes the 

expected loss on the training data 

 

𝐽 𝒘 =
1

𝑁
 ℒ 𝑠𝑔𝑛 𝒘⊤𝒙𝑖 , 𝑦𝑖

𝑁

𝑖=1
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Problem: Step-wise Constant 

Loss Function 
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Approximating the expected loss by 

a smooth function 
Simplify the optimization problem by replacing the 
original objective function by a surrogate loss function.  
For example, consider the hinge loss: 

𝐽 𝒘 =
1
𝑁
 max 0, 1 − 𝑦𝑖𝒘⊤𝒙

𝑁

𝑖=1

 

 

When 𝑦 =  1: 
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Minimizing  𝐽   by Gradient Descent Search 

Start with weight vector 𝒘0 

Compute gradient    𝛻𝐽 𝒘0 =
𝜕𝐽 𝒘0

𝜕𝑤0
,
𝜕𝐽 𝒘0

𝜕𝑤1
, … ,

𝜕𝐽 𝒘0

𝜕𝑤𝑛
 

Compute 𝒘1 = 𝒘0 − 𝜂𝛻𝐽 𝒘0  

     where 𝜂 is a “step size” parameter 

Repeat until convergence MLSS 2014 Beijing 



Gradient of the Hinge Loss 
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Let 𝐽 𝑖 𝒘 = max 0,−𝑦𝑖𝒘
⊤𝒙  

 

𝜕𝐽 𝒘

𝜕𝑤𝑘
=

𝜕

𝜕𝑤𝑘

1

𝑁
 𝐽 𝑖 𝒘

𝑁

𝑖=1

=
1

𝑁
 

𝜕

𝜕𝑤𝑘
𝐽 𝑖(𝒘)

𝑁

𝑖=1

 

 

 
𝜕

𝜕𝑤𝑘
𝐽 𝑖(𝒘)

𝑁

𝑖=1

=
𝜕

𝜕𝑤𝑘
max 0,−𝑦𝑖  𝑤𝑗𝑥𝑖𝑗

𝑗

 

 

                   =  
0 if 𝑦𝑖𝒘

⊤𝒙 ≥ 0
−𝑦𝑖𝑥𝑖𝑘 otherwise
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Batch Perceptron Algorithm 

Input: training examples 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁  

𝒘 = (0,… , 0)   // initial weight vector 

Repeat until convergence 

 𝒈 = (0,… , 0)   // initial gradient vector 

 For 𝑖 = 1 to 𝑁 do 

  if (𝑦𝑖𝒘
⊤𝒙𝒊 < 𝟎)  // 𝒙𝑖 is misclassified 

   For 𝑗 = 1 to 𝑛 do  

    𝑔𝑗 = 𝑔𝑗 − 𝑦𝑖𝑥𝑖𝑗 

 𝒈 ≔ 𝒈/𝑁  // average gradient 

 𝒘 ≔ 𝒘− 𝜂𝒈 // take a gradient step 

MLSS 2014 Beijing 



18 

Online Perceptron Algorithm 

This is called stochastic gradient descent because the 

overall gradient is approximated by the gradient from each 

individual example 

𝒘 = (0,… , 0) be the initial weight vector 

𝒈 = (0,… , 0) be the initial gradient vector 

Repeat forever 

 Accept training example 𝒙𝑖 , 𝑦𝑖  

 if (𝑦𝑖𝒘
⊤𝒙𝒊 < 𝟎)  // 𝒙𝑖 is misclassified 

  For 𝑗 = 1 to 𝑛 do 𝑔𝑗 = −𝑦𝑖𝑥𝑖𝑗 

 𝒘 ≔ 𝒘− 𝜂𝒈 // take a gradient step 
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Learning Rates and Convergence 
The learning rate  must decrease to zero in order to guarantee 
convergence.  The online case is known as the Robbins-Munro 
algorithm.  It is guaranteed to converge under the following 
assumptions: 

 

 

 

 

 

 

 

The learning rate is also called the step size.  Some algorithms (e.g., 
Newton’s method, conjugate gradient) choose the stepsize 
automatically and converge faster 

There is only one “basin” for linear threshold units, so a local 
minimum is the global minimum.  Choosing a good starting point can 
make the algorithm converge faster 

lim
𝑡→∞

𝜂𝑡 

 𝜂𝑡 = ∞

∞

𝑡=0

 

 𝜂𝑡
2 < ∞

∞

𝑡=0
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Decision Boundaries 

A classifier can be viewed as partitioning the input space or feature 
space X into decision regions 

 

 

 

 

 

 

 

 

 

 

 

A linear threshold unit always produces a linear decision boundary.  
A set of points that can be separated by a linear decision boundary 
is said to be linearly separable. 
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Exclusive-OR is Not Linearly 

Separable 
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Review 

We adopted the discriminant function 

approach (no probabilistic model) 

We adopted the hinge loss as a surrogate 

for the 0/1 loss 

We formulated the optimization problem of 

minimizing the average hinge loss on the 

training data 

We solved this problem using gradient 

descent  Perceptron algorithm 
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Logistic Regression 
Learn the conditional probability 𝑃(𝑦 | 𝒙) 

Let 𝑝𝑦(𝒙;  𝒘) be our estimate of 𝑃(𝑦 | 𝒙), where 𝒘 is a 
vector of adjustable parameters.  Assume only two 
classes 𝑦 =  0 and 𝑦 =  1, and 

 

 

 

 

It is easy to show that this is equivalent to  

 

 

In other words, the log odds of class 1 is a linear function 
of 𝒙. 

𝑝1 𝒙 𝒘 =
exp𝒘⊤𝒙

𝟏 + exp𝒘⊤𝒙
 

 

𝑝0 𝒙 𝒘 = 1 − 𝑝1(𝒙|𝒘) 

log
𝑝1 𝒙;𝒘

𝑝0 𝒙;𝒘
= 𝒘⊤𝒙 
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Why the exp function? 

One reason: A linear function has a range from 

−∞ to +∞ and we need to force it to be positive 

and sum to 1 in order to be a probability: 

MLSS 2014 Beijing 
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Deriving a Learning Algorithm: 

Choosing the Loss Function 
For probabilistic models, we use the log loss: 

 

 

 

ℒ 𝑃 𝑦 𝑥 , 𝑦 =  
− log𝑃 (𝑦 = 1|𝒙𝑖) if 𝑦𝑖 = 1

− log𝑃 (𝑦 = 0|𝒙𝑖) if 𝑦𝑖 = 0
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Comparison with 0/1 Loss 
For probabilistic models, we use the log loss: 

 

 

 

 

ℒ 𝑃 𝑦 𝑥 , 𝑦 =  
− log𝑃 (𝑦 = 1|𝒙𝑖) if 𝑦𝑖 = 1

− log𝑃 (𝑦 = 0|𝒙𝑖) if 𝑦𝑖 = 0
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Maximum Likelihood Fitting 

To minimize the log loss, we should 
maximize log 𝑃 𝑦𝑖 𝑥𝑖  

The likelihood of the data is: 

 𝑃 𝑦𝑖 𝑥𝑖
𝑖

 

It is easier to work with the log likelihood: 

 log𝑃 𝑦𝑖 𝑥𝑖
𝑖
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Maximizing the log likelihood via 

gradient ascent 
Rewrite the log likelihood in terms of 𝑝1 𝒙𝑖; 𝒘 : 

ℓ 𝒘 =  𝑦𝑖 log 𝑝1(𝒙𝑖; 𝒘) + 1 − 𝑦𝑖 log 1 − 𝑝1 𝒙𝑖; 𝒘

𝑖

 

Differentiate with respect to 𝑤𝑗: 
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖
𝑝1 𝒙𝑖 , 𝒘

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
+

1 − 𝑦𝑖
1 − 𝑝1 𝒙𝑖 , 𝒘

 −
𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
 

Gather terms 
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖
𝑝1 𝒙𝑖 , 𝒘

−
1 − 𝑦𝑖

1 − 𝑝1 𝒙𝑖 , 𝒘

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
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Maximizing the log likelihood via 

gradient ascent (2) 
Collect over common denominator: 
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖 1 − 𝑝1 𝒙𝑖 , 𝒘 − (1 − 𝑦𝑖)𝑝1 𝒙𝑖 , 𝒘

𝑝1 𝒙𝑖 , 𝒘 (1 − 𝑝1 𝒙𝑖 , 𝒘 )

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
 

Simplify: 
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖 − 𝑝1 𝑥𝑖 , 𝑤

𝑝1 𝒙𝑖 , 𝒘 (1 − 𝑝1 𝒙𝑖 , 𝒘 )

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
 

Now we just need to compute  
𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
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Computing 
𝜕𝑝1 𝒙𝑖,𝒘

𝜕𝑤𝑗
 

𝑝1 can be written as 

𝑝1 𝑥𝑖; 𝑤 =
1

1 + exp 𝑤⊤𝑥
 

From this, we obtain: 
𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

1

1 + exp −𝑤⊤𝑥𝑖
2

𝜕 1 + exp −𝑤⊤𝑥𝑖
𝜕𝑤𝑗

          

                           = −
1

1 + exp −𝑤⊤𝑥𝑖
2
exp −𝑤⊤𝑥𝑖

𝜕

𝜕𝑤𝑗
−𝑤⊤𝑥𝑖  

               = −
1

1 + exp −𝑤⊤𝑥𝑖
2
exp −𝑤⊤𝑥𝑖 −𝑥𝑖𝑗  

= 𝑝1 𝑥𝑖; 𝑤 1 − 𝑝1 𝑥𝑖; 𝑤 𝑥𝑖𝑗            
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Putting it together we have 

𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖 − 𝑝1 𝒙𝑖; 𝒘

𝑝1 𝒙𝑖 , 𝒘 (1 − 𝑝1 𝒙𝑖 , 𝒘 )

𝜕𝑝1 𝒙𝑖; 𝒘

𝜕𝑤𝑗
 

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
= 𝑝1 𝒙𝑖; 𝒘 1 − 𝑝1 𝒙𝑖; 𝒘 𝑥𝑖𝑗 

𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
= 𝑦𝑖 − 𝑝1 𝒙𝑖; 𝒘 𝑥𝑖𝑗 

The overall gradient is therefore 
𝜕ℓ 𝒘

𝜕𝑤𝑗
=  𝑦𝑖 − 𝑝1 𝒙𝑖; 𝒘 𝑥𝑖𝑗

𝑖

 

Note that the first term is the error on the 

probability scale 
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Batch Gradient Ascent for Logistic 

Regression 

An online gradient ascent algorithm can be constructed, of course 

Most statistical packages use a second-order (Newton-Raphson) 
algorithm for faster convergence 

Input: training examples 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁  

𝒘 = (0,… , 0) be the initial weight vector 

Repeat until convergence 

 𝒈 = (0,… , 0) be the initial gradient vector 

 For 𝑖 = 1 to 𝑁 do 

  𝑝𝑖 = 1 1 + exp −𝒘⊤𝒙𝑖  

  error𝑖 ≔ 𝑦𝑖 − 𝑝𝑖 
  For 𝑗 = 1 to 𝑛 do  

   𝑔𝑗 = 𝑔𝑗 + error𝑖 ⋅ 𝑥𝑖𝑗 

 𝒈 ≔ 𝒈/𝑁       // average gradient 

 𝒘 ≔ 𝒘+ 𝜂𝒈   // take a gradient step 
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Logistic Regression Implements a 

Linear Discriminant Function 

In the 2-class 0/1 loss function case, we should 
predict ŷ = 1 if 𝑃 𝑦 = 1 𝒙;𝒘 > 0.5 

 
𝑃 𝑦 = 1 𝒙;𝒘

𝑃 𝑦 = 0 𝒙;𝒘
> 1 

 

Take log of both sides 
 

log
𝑃 𝑦 = 1 𝒙;𝒘

𝑃 𝑦 = 0 𝒙;𝒘
> 0 

or 
𝒘⊤𝒙 > 0 
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Review 

We adopted the conditional probability 

approach: 𝑃(𝑦|𝒙) 

We adopted the log loss as a surrogate for 

0/1 loss 

We formulated the optimization problem of 

maximizing the average log likelihood on 

the training data 

We solved this problem using gradient 

ascent 
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The Joint Probability Approach: 

Linear Discriminant Analysis 
Learn 𝑃(𝒙, 𝑦).  This is called the 
generative approach, because we can 
think of 𝑃(𝒙, 𝑦) as a model of how the 
data is generated. 
– For example, if we factor the joint 

distribution into the form 
P(x,y) = P(y) P(x | y) 

– Generative “story” 
draw 𝑦~𝑃(𝑦)  choose a class  

draw 𝒙~𝑃(𝒙|𝑦) generate the features for 𝒙 

– This can be represented as a 
probabilistic graphical model 

y 

x 

MLSS 2014 Beijing 
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Linear Discriminant Analysis (2) 

P(y) is a discrete multinomial distribution 

– example: P(y = 0) = 0.31, P(y = 1) = 0.69 will 

generate 31% negative examples and 69% 

positive examples 

For LDA, we assume that 𝑃(𝒙 | 𝑦) is a 

multivariate normal distribution with 

mean 𝑘 and covariance matrix  

 

y 

x 

𝑃 𝒙 𝑦 = 𝑘 =
1

2𝜋 𝑛 2 Σ 1 2 
exp −

1

2
𝒙 − 𝝁𝑘

⊤Σ−1 𝒙 − 𝝁𝑘  

MLSS 2014 Beijing 



37 

Multivariate Normal Distributions: 

A tutorial 
Recall that the univariate normal (Gaussian) distribution has the formula 

 

 

 

where 𝜇 is the mean and 𝜎2 is the variance 

Graphically, it looks like this: 

𝑝 𝑥 =
1

2𝜋
1
2𝜎

exp −
1

2

𝑥 − 𝜇 2

𝜎2
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The Multivariate Gaussian 

A 2-dimensional Gaussian is defined by a 

mean vector  = (1,2) and a covariance 

matrix  

 

 

where 𝜎𝑖,𝑗
2 = 𝐸 𝑥𝑖 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑗  is the 

variance (if 𝑖 = 𝑗) or co-variance (if 𝑖  𝑗).  
 is symmetric and positive-definite 

Σ =
𝜎1,1
2 𝜎1,2

2

𝜎2,1
2 𝜎2,2

2  
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The Multivariate Gaussian (2) 

If  is the identity matrix                  and  

    𝜇 = (0, 0), we get the 2-D standard normal 
distribution: 

Σ =
1 0
0 1
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The Multivariate Gaussian (3) 

If  is a diagonal matrix, then 𝑥1, and 𝑥2 are independent random 
variables, and lines of equal probability are ellipses parallel to the 
coordinate axes.  For example, when  

 

                        and 

 

                         we obtain 

Σ =
2 0
0 1

 

𝝁 = (2,3) 
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The Multivariate Gaussian (4) 

Finally, if  is an arbitrary matrix, then x1 and x2 are 
dependent, and lines of equal probability are ellipses 
tilted relative to the coordinate axes.  For example, when 
 

                             and 

 

                     we obtain 

Σ =
2 0.5
0.5 1

 

𝝁 = (2,3) 
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Estimating a Multivariate Gaussian 

Given a set of 𝑁 data points 𝒙1, … , 𝒙𝑁, we can compute 
the maximum likelihood estimate for the multivariate 
Gaussian distribution as follows: 

Note that the dot product in the second equation is an 

outer product.  The outer product of two vectors is a 

matrix: 

For comparison, the usual dot product is written as 𝒙⊤𝒚 

𝝁 =
1

𝑁
 𝒙𝑖
𝑖

 Σ =
1

𝑁
 (𝒙𝑖 − 𝝁 ) 𝒙𝑖 − 𝝁 ⊤

𝑖

 

𝒙𝒚⊤ =

𝑥1
𝑥2
𝑥3

𝑦1 𝑦2 𝑦3 =

𝑥1𝑦1 𝑥1𝑦2 𝑥1𝑦3
𝑥2𝑦1 𝑥2𝑦2 𝑥2𝑦3
𝑥3𝑦1 𝑥3𝑦2 𝑥3𝑦3
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The LDA Model 

Linear discriminant analysis assumes that the 
joint distribution has the form 

   where each 𝝁𝑦 is the mean of a multivariate 
Gaussian for examples belonging to class 𝑦 and 
 is a single covariance matrix shared by all 
classes. 

𝑃 𝒙, 𝑦 = 𝑃(𝑦)
1

2𝜋 𝑛 2 𝛴 1 2 
exp −

1

2
𝒙 − 𝝁𝑦

⊤
𝚺−1 𝒙 − 𝝁𝑦  
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Fitting the LDA Model 
It is easy to learn the LDA model in a single pass 

through the data: 

– Let         be our estimate of 𝑃(𝑦 = 𝑘) 

– Let 𝑁𝑘 be the number of training examples belonging to class 𝑘. 

Note that each 𝒙𝑖 is subtracted from its corresponding 

𝝁𝑦𝑖    prior to taking the outer product.  This gives us the 

“pooled” estimate of  

This is known as the Method of Moments 

𝜋 𝑘 

𝜋 𝑘 =
𝑁𝑘

𝑁
 

𝝁 𝑘 =
1

𝑁𝑘
 𝒙𝑖

𝑖:𝑦𝑖=𝑘

 

Σ =
1

𝑁
 (𝒙𝑖 − 𝝁 𝑦𝑖) 𝒙𝑖 − 𝝁 𝒚𝒊

⊤

𝑖
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LDA learns an LTU 
Just as with Logistic Regression, we should classify 𝒙 into class 1 if 
𝑃 𝑦 = 1 𝒙 > 0.5 

Our model contains 𝑃(𝑦) and 𝑃(𝒙|𝑦), so we need to perform 
probabilistic inference  to obtain the condition probability: 

 

 

 

As before, we re-express this as 

 

 

 

The denominators cancel, and we have 

 

 

 

 𝑃 𝑦 𝒙 =
𝑃 𝒙 𝑦 𝑃 𝑦

𝑃 𝒙
=

𝑁𝑜𝑟𝑚 𝒙; 𝝁𝑦 , Σ 𝜋𝑦

 𝑁𝑜𝑟𝑚 𝒙; 𝝁𝑘 , Σ 𝜋𝑘𝑘

 

𝑃 𝑦 = 1 𝒙

𝑃 𝑦 = 0 𝒙
> 1 

𝑁𝑜𝑟𝑚 𝒙; 𝝁1, Σ 𝜋1
𝑁𝑜𝑟𝑚 𝒙; 𝝁0, Σ 𝜋0

> 1 
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LDA Learns an LTU (2) 

Substitute the formula for 𝑁𝑜𝑟𝑚𝑎𝑙: 

 

 

Cancel terms, take logs  

 

With a bit more work 
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𝜋1
1

2𝜋 𝑛 2 𝛴 1 2 exp −
1
2

𝒙 − 𝝁1
⊤𝚺−1 𝒙 − 𝝁1

𝜋0
1

2𝜋 𝑛 2 𝛴 1 2 exp −
1
2

𝒙 − 𝝁0
⊤𝚺−1 𝒙 − 𝝁0

> 1 

log
𝜋1
𝜋0

+ 𝒙 − 𝝁1
⊤𝚺−1 𝒙 − 𝝁1 − 𝒙 − 𝝁0

⊤𝚺−1 𝒙 − 𝝁0 > 0 

log
𝜋1
𝜋0

+ 2𝒙⊤Σ−1 𝝁1 − 𝝁0 + 𝝁1
⊤Σ−1𝝁1 − 𝝁0

⊤Σ−1𝝁0 > 0 
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LDA Learns an LTU (3) 

Define 
𝒘 = 2Σ−1 𝝁1 − 𝝁0  

𝑐 = log
𝜋1
𝜋0

+ 𝝁1
⊤Σ−1𝝁1 − 𝝁0

⊤Σ−1𝝁0 

Then LDA will classify into 𝑦 = 1 iff 
𝒙⊤𝒘 > −𝑐 

which is a linear threshold unit 
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log
𝜋1
𝜋0

+ 2𝒙⊤Σ−1 𝝁1 − 𝝁0 + 𝝁1
⊤Σ−1𝝁1 − 𝝁0

⊤Σ−1𝝁0 > 0 
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The quantity 𝐷𝑀 𝒙, 𝒖 2 = 𝒙 − 𝒖 ⊤𝚺−1 𝒙 − 𝒖  is known as the 

(squared) Mahalanobis distance between 𝒙 and 𝒖.  We can think of 

the matrix Σ−1 as a linear distortion/rotation of the coordinate system 

that converts the standard Euclidean distance into the Mahalanobis 

distance 

Note that 

log 𝑃 𝑦 = 𝑘 𝒙 ∝ log 𝜋𝑘 −
1

2
𝒙 − 𝝁𝑘

⊤𝚺−1 𝒙 − 𝝁𝑘  

log 𝑃 𝑦 = 𝑘 𝒙 ∝ log 𝜋𝑘 −
1

2
𝐷𝑀 𝒙, 𝒖 2 

Therefore, we can view LDA as computing 𝐷𝑀 𝒙, 𝝁0
2 𝑎𝑛𝑑𝐷𝑀 𝒙, 𝝁1

2 

and then classifying 𝒙 according to which mean 𝝁0 or 𝝁1 is closer in 

Mahalanobis distance (corrected by log 𝑘) 

Two Geometric Views of LDA 

View 1: Mahalanobis Distance 
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View 2: Most Informative Low-

Dimensional Projection 
LDA can also be viewed as finding a hyperplane of 
dimension 𝐾 –  1 such that 𝒙 and the {𝑘} are projected 
down into this hyperplane and then 𝒙 is classified to the 
nearest 𝑘 using Euclidean distance inside this 
hyperplane 
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Generalizations of LDA 

General Gaussian Classifier 
– Instead of assuming that all classes share the same 

, we can allow each class k to have its own k.  In 
this case, the resulting classifier will be a quadratic 
threshold unit (instead of an LTU) 

Naïve Gaussian Classifier 
– Allow each class to have its own k, but require that 

each k be diagonal.  This means that within each 
class, any pair of features xj1 and xj2 will be assumed 
to be statistically independent.  The resulting classifier 
is still a quadratic threshold unit (but with a restricted 
form) 
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Review 

Linear Discriminant Analysis 

We adopted the joint probability approach: 𝑃(𝒙, 𝑦) 

We adopted the log loss as a surrogate for 0/1 loss 

We fit the model directly, via the method of moments 
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Comparing Perceptron, Logistic 

Regression, and LDA 

How should we choose among these three 

algorithms? 

There are several trade-offs 

There is a big debate in the machine 

learning community! 
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Issues in the Debate 

Statistical Efficiency.  If the generative model 𝑃(𝒙, 𝑦) 
is correct, then LDA usually gives the highest 
accuracy, particularly when the amount of training 
data is small.  If the model is correct, LDA requires 
30% less data than Logistic Regression in theory 

 

Computational Efficiency.  Generative models 
typically are the easiest to learn.  In our example, the 
LDA parameters can be computed directly from the 
data without using gradient descent. 
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Issues in the Debate 

Robustness to changing loss functions.  Both 
generative and conditional probability models allow 
the loss function to be changed at run time without 
re-learning.  Perceptron requires re-training the 
classifier when the loss function changes. 
– Probabilistic modelling separates model learning from 

making predictions or decisions 
– Suppose the cost of a false positive SPAM prediction is 10 

whereas a false negative is 1 
– The cost of classifying 𝑥 as 𝑦 = 1 is 𝑃 𝑦 = 0 𝒙 × 10 
– The cost of classifying 𝑥 as 𝑦 = 0 is 𝑃 𝑦 = 1 𝒙 × 1 
– So we can choose the value of 𝑦 that minimizes the 

expected cost 
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Issues in the Debate 

Vapnik’s Principle 

– If your goal is to minimize 0/1 loss, then you 
should do that directly, rather than first solving 
a harder problem (probability estimation) 

– This is what Perceptron does 

– Other algorithms that follow this principle 
Support Vector Machines 

Decision Trees 

Neural Networks 
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Issues in the Debate 

Robustness to model assumptions.  The generative model 
usually performs poorly when the assumptions are violated.  
For example, if 𝑃(𝒙|𝑦) is very non-Gaussian, then LDA won’t 
work well.  Logistic Regression is more robust to model 
assumptions, and Perceptron is even more robust. 

 

Consequently, making the generative approach work often 
requires more detailed modeling of 𝑃(𝒙|𝑦). 
 
Robustness to missing values and noise.  In many applications, 
some of the features 𝑥𝑖𝑗 may be missing or corrupted in some 
of the training examples.  Generative models typically provide 
better ways of handling this than non-generative models. 
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Questions? 
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Some Questions to Think About 

Machine learning has many powerful non-linear 
classifiers, why didn’t you discuss those? 
– Linear methods are surprisingly powerful, especially in 

computer vision and natural language processing 
where the number of features is very large 

You have showed how to fit these models to 
training data, but that doesn’t guarantee that 
they will make good predictions on new data 
points 
– Excellent question! That is the subject of Part 2 
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Break 
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Introduction to Machine 

Learning 

Part 2 
Thomas G. Dietterich 

tgd@eecs.oregonstate.edu 
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Outline 

What is Machine Learning? 

Introduction to Supervised Learning: Linear 
Methods 

Overfitting, Regularization, and the Bias-
Variance Tradeoff 

Review and Summary 
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Formal 

Setting 

Training examples are drawn independently at 
random according to unknown probability 
distribution 𝑃(𝒙, 𝑦) 

The learning algorithm analyzes the examples 
and produces a classifier 𝑓 

Given a new data point 𝒙, 𝑦  drawn from 𝑃,  
the classifier is given 𝒙 and predicts  𝑦 = 𝑓(𝒙) 

The loss ℒ(𝑦 , 𝑦) is then measured 

Goal of the learning algorithm: Find the 𝑓 that 
minimizes the expected loss on new points 

𝑃(𝒙, 𝑦) (𝒙, 𝑦) 

Training 

sample 

learning 

algorithm 
𝑓 

test point 

𝒙 

loss 

function 

𝑦 

𝑦 𝑦  

training points 

ℒ(𝑦 , 𝑦) 



The Problem of Overfitting 

Model: Neural Network 

Epoch: One batch gradient descent step 

After about 180 epochs, error on the test data starts to increase 
even though the model continues to become more accurate on the 
training data 



Lesson:  

It is not enough to minimize the 

loss on the training data 

if our goal is to optimize accuracy 

on new data points 
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Another Example 

True function: 
𝑦 = 𝑓 𝑥1 = − 𝑥1 − 6 2 + 5 

Training data: 
𝑥1~𝑢𝑛𝑖𝑓 1,6  

𝑥2~𝑢𝑛𝑖𝑓 −6,6  

𝑦 = 𝑓 𝑥1 + 𝑛𝑜𝑟𝑚 0,10  

6 

Two models: 

Model 1: 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 

Model 2: 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤12𝑥1
2 +𝑤2𝑥2 +𝑤22𝑥2

2 



Small, Noisy Training Set 

3 training examples 

Linear model is much 

more accurate even 

though  

It cannot represent the 

true model 

The quadratic model 

can represent the true 

model 
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The Three-Way Tradeoff 

There is a tradeoff between 

– amount of data 

– complexity of the model fit to the data 

– accuracy of the model on new data points 
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Three-way Tradeoff 

9 

Increasing Model Complexity 

L
o
s
s
 o

n
 N

e
w

 P
o
in

ts
 

𝑁 = 100 

𝑁 = 1000 

𝑁 = 10000 



What is Model Complexity? 

Parametric models: Complexity = number 

of weights 

– Linear model is less complex than a quadratic 

model 

– Extra features  extra complexity 

More subtle:  

– Weights that are zero don’t contribute to 

complexity 

– Small weights contribute less complexity that 

large weights 
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Controlling Model Complexity Via 

Regularization 

Regularization: Penalize the magnitude of 

the weights in the model 

Example: “square” penalty 

𝐽 𝒘 =
1

𝑁
 ℒ(𝑓 𝒙𝑖; 𝒘 , 𝑦𝑖)

𝑖

+ 𝜆 𝑤𝑗
2

𝑗

 

The severity of the penalty is controlled by 𝜆 > 0 

Adds a term of 2𝜆 𝑤𝑗𝑗  to the gradient descent 

In neural networks, this is called “weight decay” 
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How to choose 𝜆? 

Simple Holdout Method 
Subdivide training data 𝑆 into two subsets: 
𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑆ℎ𝑜𝑙𝑑𝑜𝑢𝑡.  
Choose a set of candidate 𝜆 values = 
𝜆0, 𝜆1, … , 𝜆𝑅 
Minimize the penalized loss on 𝑆𝑡𝑟𝑎𝑖𝑛, 
measure the prediction loss on 𝑆ℎ𝑜𝑙𝑑𝑜𝑢𝑡 
Choose the 𝜆 value that gives the smallest 
prediction loss 

12 



Simple Holdout Example 

13 

Logistic regression 
with regularization  
penalty 
 
Overfitting was 
not too severe in 
this problem 



𝑘-fold Cross-Validation to 

determine 𝜆 

To evaluate a value for 𝜆 

Randomly divide 𝑆 into 𝑘 equal-
sized subsets 

Run learning algorithm 𝑘 times, 
each time use one subset for 𝑆𝑒𝑣𝑎𝑙 
and the rest for 𝑆𝑡𝑟𝑎𝑖𝑛 

Compute the average loss on 𝑆𝑒𝑣𝑎𝑙 

Choose the 𝜆 value with minimum 
loss 



A Bayesian Perspective 

A fully-generative Bayesian story: 

Generate the weights: 𝒘~𝑃 𝒘  

For each data point 𝑖 

Generate the class label: 𝑦𝑖~𝑃(𝑦𝑖)  

Generate the features: 𝒙𝑖~𝑃(𝒙𝑖|𝑦𝑖 , 𝒘) 

Assemble the data set: 𝑆 = 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁  
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Inferring the most likely 𝒘 

𝒘 = argmax
𝒘

𝑃(𝒘|𝑆) 

𝑃 𝑤 𝑆 = 𝑃 𝒘  𝑃 𝑦𝑖 𝑃 𝒙𝑖 𝑦𝑖 , 𝒘

𝑖

 

log 𝑃 𝒘 𝑆 = log𝑃 𝒘 + log𝑃 𝑦𝑖 + log 𝑃 𝒙𝑖 𝑦𝑖 , 𝒘

𝑖

 

𝒘 = argmax
𝒘

ℓ 𝑆,𝒘 + log 𝑃(𝒘) 

The regularization penalty is the same as the log prior on 
the weights 
This provides a way of incorporating different penalties 
on different weights in a model, based on prior 
knowledge 
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Controlling Complexity by Early 

Stopping 
Incrementally add complexity 

– monitor performance on 𝑆𝑒𝑣𝑎𝑙 

– stop when performance drops 

Examples: 

– incrementally adding variables in regression 

– growing a decision tree 

– early stopping in stochastic gradient descent 
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Early Stopping 

Subdivide 𝑆 into 𝑆𝑡𝑟𝑎𝑖𝑛 
and 𝑆𝑒𝑣𝑎𝑙 
Initialize weights to 0 
Perform gradient descent 
on 𝑆𝑡𝑟𝑎𝑖𝑛, which 
gradually causes the 
weights to grow (in 
magnitude) 
Measure the loss on 𝑆𝑒𝑣𝑎𝑙  
after each gradient step 
Stop when the loss starts 
to increase 



Other Methods for Controlling 

Complexity 
Model pruning 

– over-fit a model, then prune/shrink 

Adding noise 

– to the inputs or to intermediate quantities 

– makes it harder to overfit 

Ensembles (see below) 
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Bias-Variance Analysis 

An alternative view of over-fitting and complexity 
control 

Bias: Systematic error in the model 
– typically caused by an inability to express the full 

complexity of the data 

Variance: Variability in the fitted model 
– typically caused by having a model that is too complex for 

the amount of data 

The total error of the model can be partitioned into the 
sum of a bias term and a variance term 

As we increase 𝜆 we increase bias but reduce variance 
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Bias-Variance Analysis of 

Regression 
True function: 𝑦 = 𝑓 𝒙 + 𝜖 

– where 𝜖~𝑁𝑜𝑟𝑚 0, 𝜎2  

We are given a set 𝑆 = 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁  

We fit a model ℎ 𝑥  to minimize the square 

loss 

ℒ 𝑦 , 𝑦 = 𝑦 − 𝑦 2 

𝐽 ℎ = 𝑦 𝑖 − 𝑦𝑖
2

𝑖
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Example: 𝑁 = 20 points 

𝑦 = 𝑥 + 2 sin 1.5𝑥 + 𝑁𝑜𝑟𝑚 0,0.2  



Bias-Variance Analysis 

Given a new data point 𝑥∗, 𝑦∗  (with 

predicted value ℎ 𝑥∗ ), we would like to 

decompose our error 

 

𝑦∗ − ℎ 𝑥∗ 2 



Classical Statistical Analysis 

Imagine that our particular training sample 𝑆 
is drawn from some population of possible 
training samples according to 𝑃(𝑆). 

We fit ℎ to 𝑆 (ℎ is a random quantity) 

Compute 𝔼𝑃 𝑦∗ − ℎ 𝑥∗ 2  

Decompose this into “bias”, “variance”, and 
“noise” 



50 fits (20 examples each) 



Bias 
The difference between the average predicted 

value 𝔼𝑃 ℎ 𝑥∗  and the value of the true 

function 𝑓 𝑥∗ : 𝔼𝑃 ℎ 𝑥∗ − 𝑓 𝑥∗  
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Variance 
The variance of ℎ 𝑥∗  around its average value 
𝔼𝑃 ℎ 𝑥∗ :       𝔼𝑃 ℎ 𝑥∗ − 𝔼𝑃 ℎ 𝑥∗ 2  
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Noise 

The variation of 𝑦∗ around its true average value 

𝑓(𝑥∗): 𝑦∗ − 𝑓 𝑥∗ 2 
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The Bias-Variance 

Decomposition 
𝔼ℎ 𝑦∗ − ℎ 𝑥∗ 2

= 𝔼ℎ ℎ 𝑥∗ − 𝔼ℎ ℎ 𝑥∗ 2

+ 𝔼ℎ ℎ 𝑥∗ − 𝑓 𝑥∗ 2

+ 𝑦∗ − 𝑓 𝑥∗ 2 

29 

variance 
squared bias 
noise 



50 fits (20 examples each) 



Distribution of predictions at 

x=2.0 



50 fits (20 examples each) 



Distribution of predictions at 

x=5.0 



Derivation 

Let 𝑍 be a random variable with distribution 
𝑃(𝑍) 

Let 𝑍 = 𝔼[𝑍] be the expected value of 𝑍 

Lemma: 𝔼 𝑍 − 𝑍
2
= 𝔼 𝑍2 − 𝑍

2
 

Corollary: 𝔼 𝑍2 = 𝔼 𝑍 − 𝑍
2
+ 𝑍

2
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Proof 

𝔼 𝑍 − 𝑍
2
= 𝔼 𝑍2 − 2𝑍𝑍 + 𝑍

2
 

  = 𝔼 𝑍2 − 2𝑍𝔼 𝑍 + 𝑍
2
 

  = 𝔼 𝑍2 − 2𝑍𝑍 + 𝑍
2
 

  = 𝔼 𝑍2 − 𝑍
2
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Derivation of the Decomposition 

Expand the quadratic: 

𝔼𝑃 ℎ 𝑥∗ − 𝑦∗ 2 = 𝔼𝑃 ℎ 𝑥∗ 2 − 2ℎ 𝑥∗ 𝑦∗ + 𝑦∗2  

Push the expectation inside 

= 𝔼𝑃 ℎ 𝑥∗ 2 − 2𝔼𝑃 ℎ 𝑥∗ 𝔼𝑃 𝑦∗ + 𝔼𝑃 𝑦∗2  

Apply the lemma twice 

= 𝔼𝑃 ℎ 𝑥∗ − 𝔼𝑃 ℎ 𝑥∗ 2 + 𝔼𝑃 ℎ 𝑥∗ 2 − 2𝔼𝑃 ℎ 𝑥∗ 𝑓 𝑥∗

+ 𝔼𝑃 𝑦∗ − 𝑓 𝑥∗ 2 + 𝑓 𝑥∗ 2 

Collapse the quadratic to get the squared bias term 

= 𝔼𝑃 ℎ 𝑥∗ − 𝔼𝑃 ℎ 𝑥∗ 2 + 𝔼𝑃 ℎ 𝑥∗ − 𝑓 𝑥∗ 2

+ 𝔼𝑃 𝑦∗ − 𝑓 𝑥∗ 2  

Note that we are also taking expectations wrt the noise 𝜖 
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Measuring Bias and Variance 

In practice (unlike in theory), we have only 

ONE training set S. 

We can simulate multiple training sets by 

bootstrap replicates 

S’ = {x | x is drawn at random with        

             replacement from S} and |S’| = |S|. 



Procedure for Measuring Bias 

and Variance 
Construct B bootstrap replicates of 𝑆 (e.g., 
𝐵 =  200): 𝑆1, … , 𝑆𝐵 

Apply learning algorithm to each replicate 
𝑆𝑏 to obtain hypothesis ℎ𝑏 

Let 𝑇𝑏  =  𝑆 ∖ 𝑆𝑏 be the data points that do 
not appear in 𝑆𝑏   (out of bag points) 

Compute predicted value ℎ𝑏(𝑥) for each 𝑥 
in 𝑇𝑏  



Estimating Bias and Variance 

(continued) 
For each data point 𝑥, we will now have 

the observed corresponding value 𝑦 and 

several predictions 𝑦1, … , 𝑦𝐾.  

Compute the average prediction 𝑦 =
1

𝐾
 𝑦𝑘𝑘 . 

Estimate bias as 𝑦 − 𝑦 

Estimate variance as 
1

𝐾−1
 𝑦𝑘 − 𝑦 2
𝑘  

Assume noise is 0 



Approximations in this 

Procedure 
Bootstrap replicates are not real fresh data 

We ignore the noise 

– If we have multiple data points with the same 

𝑥 value, then we can estimate the noise 

– We can also estimate noise by pooling 𝑦 

values from nearby 𝑥 values 



Applying Bias-Variance Analysis 

By measuring the bias and variance on a 

problem, we can determine how to 

improve our model 

– If bias is high, we need to allow our model to 

be more complex 

– If variance is high, we need to reduce the 

complexity of the model 

Bias-variance analysis also suggests a 

way to reduce variance: bagging 
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Ensemble Learning Methods 

Given training sample 𝑆 

Generate multiple hypotheses, ℎ1, ℎ2, … , ℎ𝐿.  

Optionally: determining corresponding 

weights 𝛼1, 𝛼2, … , 𝛼𝐿 

Classify new points according to 

                       𝛼ℓℎℓ(𝑥)ℓ > 𝜃 

“weighted majority vote” 



Bagging: Bootstrap Aggregating 

For 𝑏 =  1, … , 𝐵 do 

𝑆𝑏 = bootstrap replicate of 𝑆 

Apply learning algorithm to 𝑆𝑏 to learn ℎ𝑏 

Classify new points by unweighted vote: 
1

𝐵
 ℎ𝑏(𝑥)

𝑏

> 0 

  



Estimated Bias and Variance of 

Bagging 
If we estimate bias and variance using the same 
B bootstrap samples, we will have: 
– Bias = 𝑦 − 𝑦    [same as before] 

– Variance = 
1

K−1
 𝑦 − 𝑦 2
𝑘 = 0 

Hence, according to this approximate way of 
estimating variance, bagging removes the 
variance while leaving bias unchanged. 

In reality, bagging only reduces variance and 
tends to slightly increase bias 



Bagging Decision Trees 

(Freund & Schapire) 



Bayesian Ensembles: 

Bayesian Model Averaging 

𝑃 𝑦∗ 𝑥∗, 𝑆 =  𝑃 𝒘 𝑃 𝑆 𝒘 𝑃 𝑦∗ 𝑥∗, 𝒘 𝑑𝒘
𝒘

 

where 𝑃 𝑆 𝑤 =  𝑃 𝑦𝑖 𝒘 𝑃(𝒙𝑖|𝑦𝑖 , 𝒘)𝑖  

 

This is rarely practical to evaluate, but suppose we 
could sample some good values for 𝒘: 𝒘1, … ,𝒘𝐶  

We could approximate the integral by a sum: 

𝑃 𝑦∗ 𝑥∗, 𝑆 = 𝑃 𝒘𝑐|𝑆 𝑃 𝑦∗ 𝑥∗, 𝒘𝑐

𝑐

 

This is called Bayesian Model Averaging 
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Review of Part 2 

Goal: making accurate predictions on new data points 
– the problem of Overfitting 
– occurs when the model becomes too complex for the amount of data 

Complexity can be controlled  
– regularization penalty 
– early stopping 
– choosing 𝜆 by holdout or cross-validation 

Bias-variance error decomposition 
– Squared loss can be decomposed into bias^2+variance+noise 
– bias and variance can be (approximately) measured using bootstrapping 
– they provide a diagnostic tool for machine learning 

Bagging is an ensemble method that applies bootstrapping to reduce 
variance 

– Bagging a low-bias, high-variance classifier can produce excellent results 

Bayesian analysis provides an alternative view of 
– regularization penalty = log prior 
– ensemble methods = integrating out the prior 
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Questions? 
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Questions to think about 

Most machine learning methods involve complex, 
flexible models 
– decision trees 

– support vector machines 

– neural networks (esp. deep ones) 

Hence, complexity control (variance management) is a 
central challenge 

“drop out” is a cool new technique in this area 

The bias-variance analysis was done for 
regression. Can it be extended to classification? 
– Yes, see James (2003) “Variance and bias for 

general loss functions” Machine Learning. 
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