
1

Introduction to Machine

Learning

Thomas G. Dietterich

tgd@eecs.oregonstate.edu

MLSS 2014 Beijing

2

Outline

What is Machine Learning?

Introduction to Supervised Learning: Linear
Methods

Overfitting, Regularization, and the Bias-
Variance Tradeoff

Review and Summary

MLSS 2014 Beijing

Machine Learning:

The Original Motivation

Traditional Software

Process

Interview the experts

Create an algorithm that

automates their process

Machine Learning

Process

Collect input-output

examples from the

experts

Learn a function to map

from the input to the

output

3 MLSS 2014 Beijing

4

Supervised Learning
Given: Training examples 𝒙𝑖 , 𝑓 𝒙𝑖 for some unknown
function f.

Find: A good approximation to f.

Example Applications
– Handwriting recognition

𝑥: data from pen motion

𝑓(𝑥): letter of the alphabet

– Disease Diagnosis
𝑥: properties of patient (symptoms, lab tests)

𝑓(𝑥): disease (or maybe, recommended therapy)

– Face Recognition
𝑥: bitmap picture of person’s face

𝑓(𝑥): name of person

– Spam Detection
𝑥: email message

𝑓(𝑥): spam or not spam

MLSS 2014 Beijing

5

Formal

Setting

Training examples are drawn
independently at random according to
unknown probability distribution 𝑃(𝒙, 𝑦)

The learning algorithm analyzes the
examples and produces a classifier 𝑓

Given a new data point 𝒙, 𝑦 drawn from
𝑃, the classifier is given 𝒙 and predicts
 𝑦 = 𝑓(𝒙)

The loss ℒ(𝑦 , 𝑦) is then measured

Goal of the learning algorithm: Find the 𝑓
that minimizes the expected loss

𝑃(𝒙, 𝑦) (𝒙, 𝑦)

Training

sample 𝑆

learning

algorithm
𝑓

test point

𝒙

loss

function

𝑦

𝑦 𝑦

training points

ℒ(𝑦 , 𝑦)

MLSS 2014 Beijing

6

Formal Version of Spam Detection

𝑃(𝒙, 𝑦): distribution of email messages x and their
true labels 𝑦 (“spam” or “not spam”)

training sample: a set of email messages that have
been labeled by the user

learning algorithm: what we study in MLSS!

𝑓: the classifier output by the learning algorithm

test point: A new email message 𝒙 (with its true, but
hidden, label 𝑦)

loss function ℒ(𝑦 , 𝑦) :

predicted

label 𝑦

true label 𝑦

spam not

spam

spam 0 10

not spam 1 0

MLSS 2014 Beijing

7

Three Main Approaches to

Machine Learning

Learn a classifier: a function 𝑓.

Learn a conditional distribution: a conditional
distribution 𝑃(𝑦 | 𝒙)

Learn the joint probability distribution: 𝑃(𝒙, 𝑦)

We will study one example of each method:
– Learn a classifier: The Perceptron algorithm

– Learn a conditional distribution: Logistic regression

– Learn the joint distribution: Linear discriminant
analysis

MLSS 2014 Beijing

8

Linear Threshold Units

We assume that each feature 𝑥𝑗 and each

weight 𝑤𝑗 is a real

We will study three different algorithms for

learning linear threshold units:

– Perceptron: function

– Logistic Regression: conditional distribution

– Linear Discriminant Analysis: joint distribution

ℎ 𝒙 =
+1 if 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 ≥ 𝑤0

−1 otherwise

MLSS 2014 Beijing

9

A canonical representation
Given a training example of the form

𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑦

transform it to
−1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑦

The parameter vector will then be
(𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4)

We will call the unthresholded hypothesis 𝑢(𝒙,𝒘)
𝑢 𝒙,𝒘 = 𝒘 ⋅ 𝒙 = 𝒘⊤𝒙

Each hypothesis can be written
ℎ 𝒙 = 𝑠𝑔𝑛 𝑢 𝒙,𝒘

Our goal is to find 𝒘

MLSS 2014 Beijing

10

Geometrical View

Consider three training examples:

We want a classifier that looks like
the following:

1.0,1.0 , +1

0.5,3.0 , +1

2.0,2.0 , −1

MLSS 2014 Beijing

11

The Unthresholded Discriminant

Function is a Hyperplane

The equation

 𝑢 𝒙 = 𝒘⊤𝒙

 is a plane

 𝑦 =
+1 if 𝑢 𝒙 ≥ 0
−1 otherwise

MLSS 2014 Beijing

12

Machine Learning == Optimization

Given:
– A set of N training examples

{(𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑁, 𝑦𝑁)}

– A loss function ℒ

Find:
– The weight vector 𝒘 that minimizes the

expected loss on the training data

𝐽 𝒘 =
1

𝑁
 ℒ 𝑠𝑔𝑛 𝒘⊤𝒙𝑖 , 𝑦𝑖

𝑁

𝑖=1

MLSS 2014 Beijing

Problem: Step-wise Constant

Loss Function

13

-1

0

1

2

3

4

5

6

-4 -2 0 2 4

L
o

s
s

w*x

Derivative is either 0 or ∞ MLSS 2014 Beijing

14

Approximating the expected loss by

a smooth function
Simplify the optimization problem by replacing the
original objective function by a surrogate loss function.
For example, consider the hinge loss:

𝐽 𝒘 =
1
𝑁
 max 0, 1 − 𝑦𝑖𝒘⊤𝒙

𝑁

𝑖=1

When 𝑦 = 1:

MLSS 2014 Beijing

15

Minimizing 𝐽 by Gradient Descent Search

Start with weight vector 𝒘0

Compute gradient 𝛻𝐽 𝒘0 =
𝜕𝐽 𝒘0

𝜕𝑤0
,
𝜕𝐽 𝒘0

𝜕𝑤1
, … ,

𝜕𝐽 𝒘0

𝜕𝑤𝑛

Compute 𝒘1 = 𝒘0 − 𝜂𝛻𝐽 𝒘0

 where 𝜂 is a “step size” parameter

Repeat until convergence MLSS 2014 Beijing

Gradient of the Hinge Loss

16

Let 𝐽 𝑖 𝒘 = max 0,−𝑦𝑖𝒘
⊤𝒙

𝜕𝐽 𝒘

𝜕𝑤𝑘
=

𝜕

𝜕𝑤𝑘

1

𝑁
 𝐽 𝑖 𝒘

𝑁

𝑖=1

=
1

𝑁

𝜕

𝜕𝑤𝑘
𝐽 𝑖(𝒘)

𝑁

𝑖=1

𝜕

𝜕𝑤𝑘
𝐽 𝑖(𝒘)

𝑁

𝑖=1

=
𝜕

𝜕𝑤𝑘
max 0,−𝑦𝑖 𝑤𝑗𝑥𝑖𝑗

𝑗

 =
0 if 𝑦𝑖𝒘

⊤𝒙 ≥ 0
−𝑦𝑖𝑥𝑖𝑘 otherwise

MLSS 2014 Beijing

17

Batch Perceptron Algorithm

Input: training examples 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁

𝒘 = (0,… , 0) // initial weight vector

Repeat until convergence

 𝒈 = (0,… , 0) // initial gradient vector

 For 𝑖 = 1 to 𝑁 do

 if (𝑦𝑖𝒘
⊤𝒙𝒊 < 𝟎) // 𝒙𝑖 is misclassified

 For 𝑗 = 1 to 𝑛 do

 𝑔𝑗 = 𝑔𝑗 − 𝑦𝑖𝑥𝑖𝑗

 𝒈 ≔ 𝒈/𝑁 // average gradient

 𝒘 ≔ 𝒘− 𝜂𝒈 // take a gradient step

MLSS 2014 Beijing

18

Online Perceptron Algorithm

This is called stochastic gradient descent because the

overall gradient is approximated by the gradient from each

individual example

𝒘 = (0,… , 0) be the initial weight vector

𝒈 = (0,… , 0) be the initial gradient vector

Repeat forever

 Accept training example 𝒙𝑖 , 𝑦𝑖

 if (𝑦𝑖𝒘
⊤𝒙𝒊 < 𝟎) // 𝒙𝑖 is misclassified

 For 𝑗 = 1 to 𝑛 do 𝑔𝑗 = −𝑦𝑖𝑥𝑖𝑗

 𝒘 ≔ 𝒘− 𝜂𝒈 // take a gradient step

MLSS 2014 Beijing

19

Learning Rates and Convergence
The learning rate must decrease to zero in order to guarantee
convergence. The online case is known as the Robbins-Munro
algorithm. It is guaranteed to converge under the following
assumptions:

The learning rate is also called the step size. Some algorithms (e.g.,
Newton’s method, conjugate gradient) choose the stepsize
automatically and converge faster

There is only one “basin” for linear threshold units, so a local
minimum is the global minimum. Choosing a good starting point can
make the algorithm converge faster

lim
𝑡→∞

𝜂𝑡

 𝜂𝑡 = ∞

∞

𝑡=0

 𝜂𝑡
2 < ∞

∞

𝑡=0

MLSS 2014 Beijing

20

Decision Boundaries

A classifier can be viewed as partitioning the input space or feature
space X into decision regions

A linear threshold unit always produces a linear decision boundary.
A set of points that can be separated by a linear decision boundary
is said to be linearly separable.

MLSS 2014 Beijing

21

Exclusive-OR is Not Linearly

Separable

MLSS 2014 Beijing

Review

We adopted the discriminant function

approach (no probabilistic model)

We adopted the hinge loss as a surrogate

for the 0/1 loss

We formulated the optimization problem of

minimizing the average hinge loss on the

training data

We solved this problem using gradient

descent Perceptron algorithm

22 MLSS 2014 Beijing

23

Logistic Regression
Learn the conditional probability 𝑃(𝑦 | 𝒙)

Let 𝑝𝑦(𝒙; 𝒘) be our estimate of 𝑃(𝑦 | 𝒙), where 𝒘 is a
vector of adjustable parameters. Assume only two
classes 𝑦 = 0 and 𝑦 = 1, and

It is easy to show that this is equivalent to

In other words, the log odds of class 1 is a linear function
of 𝒙.

𝑝1 𝒙 𝒘 =
exp𝒘⊤𝒙

𝟏 + exp𝒘⊤𝒙

𝑝0 𝒙 𝒘 = 1 − 𝑝1(𝒙|𝒘)

log
𝑝1 𝒙;𝒘

𝑝0 𝒙;𝒘
= 𝒘⊤𝒙

MLSS 2014 Beijing

24

Why the exp function?

One reason: A linear function has a range from

−∞ to +∞ and we need to force it to be positive

and sum to 1 in order to be a probability:

MLSS 2014 Beijing

25

Deriving a Learning Algorithm:

Choosing the Loss Function
For probabilistic models, we use the log loss:

ℒ 𝑃 𝑦 𝑥 , 𝑦 =
− log𝑃 (𝑦 = 1|𝒙𝑖) if 𝑦𝑖 = 1

− log𝑃 (𝑦 = 0|𝒙𝑖) if 𝑦𝑖 = 0

0

5

10

15

20

25

30

35

0.00 0.20 0.40 0.60 0.80 1.00

-l
o

g
P

(y
|x

)

P(y|x)MLSS 2014 Beijing

26

Comparison with 0/1 Loss
For probabilistic models, we use the log loss:

ℒ 𝑃 𝑦 𝑥 , 𝑦 =
− log𝑃 (𝑦 = 1|𝒙𝑖) if 𝑦𝑖 = 1

− log𝑃 (𝑦 = 0|𝒙𝑖) if 𝑦𝑖 = 0

MLSS 2014 Beijing

Maximum Likelihood Fitting

To minimize the log loss, we should
maximize log 𝑃 𝑦𝑖 𝑥𝑖

The likelihood of the data is:

 𝑃 𝑦𝑖 𝑥𝑖
𝑖

It is easier to work with the log likelihood:

 log𝑃 𝑦𝑖 𝑥𝑖
𝑖

27 MLSS 2014 Beijing

Maximizing the log likelihood via

gradient ascent
Rewrite the log likelihood in terms of 𝑝1 𝒙𝑖; 𝒘 :

ℓ 𝒘 = 𝑦𝑖 log 𝑝1(𝒙𝑖; 𝒘) + 1 − 𝑦𝑖 log 1 − 𝑝1 𝒙𝑖; 𝒘

𝑖

Differentiate with respect to 𝑤𝑗:
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖
𝑝1 𝒙𝑖 , 𝒘

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
+

1 − 𝑦𝑖
1 − 𝑝1 𝒙𝑖 , 𝒘

 −
𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗

Gather terms
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖
𝑝1 𝒙𝑖 , 𝒘

−
1 − 𝑦𝑖

1 − 𝑝1 𝒙𝑖 , 𝒘

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗

28 MLSS 2014 Beijing

Maximizing the log likelihood via

gradient ascent (2)
Collect over common denominator:
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖 1 − 𝑝1 𝒙𝑖 , 𝒘 − (1 − 𝑦𝑖)𝑝1 𝒙𝑖 , 𝒘

𝑝1 𝒙𝑖 , 𝒘 (1 − 𝑝1 𝒙𝑖 , 𝒘)

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗

Simplify:
𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖 − 𝑝1 𝑥𝑖 , 𝑤

𝑝1 𝒙𝑖 , 𝒘 (1 − 𝑝1 𝒙𝑖 , 𝒘)

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗

Now we just need to compute
𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗

29 MLSS 2014 Beijing

Computing
𝜕𝑝1 𝒙𝑖,𝒘

𝜕𝑤𝑗

𝑝1 can be written as

𝑝1 𝑥𝑖; 𝑤 =
1

1 + exp 𝑤⊤𝑥

From this, we obtain:
𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

1

1 + exp −𝑤⊤𝑥𝑖
2

𝜕 1 + exp −𝑤⊤𝑥𝑖
𝜕𝑤𝑗

 = −
1

1 + exp −𝑤⊤𝑥𝑖
2
exp −𝑤⊤𝑥𝑖

𝜕

𝜕𝑤𝑗
−𝑤⊤𝑥𝑖

 = −
1

1 + exp −𝑤⊤𝑥𝑖
2
exp −𝑤⊤𝑥𝑖 −𝑥𝑖𝑗

= 𝑝1 𝑥𝑖; 𝑤 1 − 𝑝1 𝑥𝑖; 𝑤 𝑥𝑖𝑗

30 MLSS 2014 Beijing

Putting it together we have

𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
=

𝑦𝑖 − 𝑝1 𝒙𝑖; 𝒘

𝑝1 𝒙𝑖 , 𝒘 (1 − 𝑝1 𝒙𝑖 , 𝒘)

𝜕𝑝1 𝒙𝑖; 𝒘

𝜕𝑤𝑗

𝜕𝑝1 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
= 𝑝1 𝒙𝑖; 𝒘 1 − 𝑝1 𝒙𝑖; 𝒘 𝑥𝑖𝑗

𝜕ℓ 𝑦𝑖; 𝒙𝑖 , 𝒘

𝜕𝑤𝑗
= 𝑦𝑖 − 𝑝1 𝒙𝑖; 𝒘 𝑥𝑖𝑗

The overall gradient is therefore
𝜕ℓ 𝒘

𝜕𝑤𝑗
= 𝑦𝑖 − 𝑝1 𝒙𝑖; 𝒘 𝑥𝑖𝑗

𝑖

Note that the first term is the error on the

probability scale

 31 MLSS 2014 Beijing

32

Batch Gradient Ascent for Logistic

Regression

An online gradient ascent algorithm can be constructed, of course

Most statistical packages use a second-order (Newton-Raphson)
algorithm for faster convergence

Input: training examples 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁

𝒘 = (0,… , 0) be the initial weight vector

Repeat until convergence

 𝒈 = (0,… , 0) be the initial gradient vector

 For 𝑖 = 1 to 𝑁 do

 𝑝𝑖 = 1 1 + exp −𝒘⊤𝒙𝑖

 error𝑖 ≔ 𝑦𝑖 − 𝑝𝑖
 For 𝑗 = 1 to 𝑛 do

 𝑔𝑗 = 𝑔𝑗 + error𝑖 ⋅ 𝑥𝑖𝑗

 𝒈 ≔ 𝒈/𝑁 // average gradient

 𝒘 ≔ 𝒘+ 𝜂𝒈 // take a gradient step

MLSS 2014 Beijing

33

Logistic Regression Implements a

Linear Discriminant Function

In the 2-class 0/1 loss function case, we should
predict ŷ = 1 if 𝑃 𝑦 = 1 𝒙;𝒘 > 0.5

𝑃 𝑦 = 1 𝒙;𝒘

𝑃 𝑦 = 0 𝒙;𝒘
> 1

Take log of both sides

log
𝑃 𝑦 = 1 𝒙;𝒘

𝑃 𝑦 = 0 𝒙;𝒘
> 0

or
𝒘⊤𝒙 > 0

MLSS 2014 Beijing

Review

We adopted the conditional probability

approach: 𝑃(𝑦|𝒙)

We adopted the log loss as a surrogate for

0/1 loss

We formulated the optimization problem of

maximizing the average log likelihood on

the training data

We solved this problem using gradient

ascent

34 MLSS 2014 Beijing

35

The Joint Probability Approach:

Linear Discriminant Analysis
Learn 𝑃(𝒙, 𝑦). This is called the
generative approach, because we can
think of 𝑃(𝒙, 𝑦) as a model of how the
data is generated.
– For example, if we factor the joint

distribution into the form
P(x,y) = P(y) P(x | y)

– Generative “story”
draw 𝑦~𝑃(𝑦) choose a class

draw 𝒙~𝑃(𝒙|𝑦) generate the features for 𝒙

– This can be represented as a
probabilistic graphical model

y

x

MLSS 2014 Beijing

36

Linear Discriminant Analysis (2)

P(y) is a discrete multinomial distribution

– example: P(y = 0) = 0.31, P(y = 1) = 0.69 will

generate 31% negative examples and 69%

positive examples

For LDA, we assume that 𝑃(𝒙 | 𝑦) is a

multivariate normal distribution with

mean 𝑘 and covariance matrix

y

x

𝑃 𝒙 𝑦 = 𝑘 =
1

2𝜋 𝑛 2 Σ 1 2
exp −

1

2
𝒙 − 𝝁𝑘

⊤Σ−1 𝒙 − 𝝁𝑘

MLSS 2014 Beijing

37

Multivariate Normal Distributions:

A tutorial
Recall that the univariate normal (Gaussian) distribution has the formula

where 𝜇 is the mean and 𝜎2 is the variance

Graphically, it looks like this:

𝑝 𝑥 =
1

2𝜋
1
2𝜎

exp −
1

2

𝑥 − 𝜇 2

𝜎2

MLSS 2014 Beijing

38

The Multivariate Gaussian

A 2-dimensional Gaussian is defined by a

mean vector = (1,2) and a covariance

matrix

where 𝜎𝑖,𝑗
2 = 𝐸 𝑥𝑖 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑗 is the

variance (if 𝑖 = 𝑗) or co-variance (if 𝑖 𝑗).
 is symmetric and positive-definite

Σ =
𝜎1,1
2 𝜎1,2

2

𝜎2,1
2 𝜎2,2

2

MLSS 2014 Beijing

39

The Multivariate Gaussian (2)

If is the identity matrix and

 𝜇 = (0, 0), we get the 2-D standard normal
distribution:

Σ =
1 0
0 1

MLSS 2014 Beijing

40

The Multivariate Gaussian (3)

If is a diagonal matrix, then 𝑥1, and 𝑥2 are independent random
variables, and lines of equal probability are ellipses parallel to the
coordinate axes. For example, when

 and

 we obtain

Σ =
2 0
0 1

𝝁 = (2,3)

MLSS 2014 Beijing

41

The Multivariate Gaussian (4)

Finally, if is an arbitrary matrix, then x1 and x2 are
dependent, and lines of equal probability are ellipses
tilted relative to the coordinate axes. For example, when

 and

 we obtain

Σ =
2 0.5
0.5 1

𝝁 = (2,3)

MLSS 2014 Beijing

42

Estimating a Multivariate Gaussian

Given a set of 𝑁 data points 𝒙1, … , 𝒙𝑁, we can compute
the maximum likelihood estimate for the multivariate
Gaussian distribution as follows:

Note that the dot product in the second equation is an

outer product. The outer product of two vectors is a

matrix:

For comparison, the usual dot product is written as 𝒙⊤𝒚

𝝁 =
1

𝑁
 𝒙𝑖
𝑖

 Σ =
1

𝑁
 (𝒙𝑖 − 𝝁) 𝒙𝑖 − 𝝁 ⊤

𝑖

𝒙𝒚⊤ =

𝑥1
𝑥2
𝑥3

𝑦1 𝑦2 𝑦3 =

𝑥1𝑦1 𝑥1𝑦2 𝑥1𝑦3
𝑥2𝑦1 𝑥2𝑦2 𝑥2𝑦3
𝑥3𝑦1 𝑥3𝑦2 𝑥3𝑦3

MLSS 2014 Beijing

43

The LDA Model

Linear discriminant analysis assumes that the
joint distribution has the form

 where each 𝝁𝑦 is the mean of a multivariate
Gaussian for examples belonging to class 𝑦 and
 is a single covariance matrix shared by all
classes.

𝑃 𝒙, 𝑦 = 𝑃(𝑦)
1

2𝜋 𝑛 2 𝛴 1 2
exp −

1

2
𝒙 − 𝝁𝑦

⊤
𝚺−1 𝒙 − 𝝁𝑦

MLSS 2014 Beijing

44

Fitting the LDA Model
It is easy to learn the LDA model in a single pass

through the data:

– Let be our estimate of 𝑃(𝑦 = 𝑘)

– Let 𝑁𝑘 be the number of training examples belonging to class 𝑘.

Note that each 𝒙𝑖 is subtracted from its corresponding

𝝁𝑦𝑖 prior to taking the outer product. This gives us the

“pooled” estimate of

This is known as the Method of Moments

𝜋 𝑘

𝜋 𝑘 =
𝑁𝑘

𝑁

𝝁 𝑘 =
1

𝑁𝑘
 𝒙𝑖

𝑖:𝑦𝑖=𝑘

Σ =
1

𝑁
 (𝒙𝑖 − 𝝁 𝑦𝑖) 𝒙𝑖 − 𝝁 𝒚𝒊

⊤

𝑖

MLSS 2014 Beijing

45

LDA learns an LTU
Just as with Logistic Regression, we should classify 𝒙 into class 1 if
𝑃 𝑦 = 1 𝒙 > 0.5

Our model contains 𝑃(𝑦) and 𝑃(𝒙|𝑦), so we need to perform
probabilistic inference to obtain the condition probability:

As before, we re-express this as

The denominators cancel, and we have

 𝑃 𝑦 𝒙 =
𝑃 𝒙 𝑦 𝑃 𝑦

𝑃 𝒙
=

𝑁𝑜𝑟𝑚 𝒙; 𝝁𝑦 , Σ 𝜋𝑦

 𝑁𝑜𝑟𝑚 𝒙; 𝝁𝑘 , Σ 𝜋𝑘𝑘

𝑃 𝑦 = 1 𝒙

𝑃 𝑦 = 0 𝒙
> 1

𝑁𝑜𝑟𝑚 𝒙; 𝝁1, Σ 𝜋1
𝑁𝑜𝑟𝑚 𝒙; 𝝁0, Σ 𝜋0

> 1

MLSS 2014 Beijing

LDA Learns an LTU (2)

Substitute the formula for 𝑁𝑜𝑟𝑚𝑎𝑙:

Cancel terms, take logs

With a bit more work

46

𝜋1
1

2𝜋 𝑛 2 𝛴 1 2 exp −
1
2

𝒙 − 𝝁1
⊤𝚺−1 𝒙 − 𝝁1

𝜋0
1

2𝜋 𝑛 2 𝛴 1 2 exp −
1
2

𝒙 − 𝝁0
⊤𝚺−1 𝒙 − 𝝁0

> 1

log
𝜋1
𝜋0

+ 𝒙 − 𝝁1
⊤𝚺−1 𝒙 − 𝝁1 − 𝒙 − 𝝁0

⊤𝚺−1 𝒙 − 𝝁0 > 0

log
𝜋1
𝜋0

+ 2𝒙⊤Σ−1 𝝁1 − 𝝁0 + 𝝁1
⊤Σ−1𝝁1 − 𝝁0

⊤Σ−1𝝁0 > 0

MLSS 2014 Beijing

LDA Learns an LTU (3)

Define
𝒘 = 2Σ−1 𝝁1 − 𝝁0

𝑐 = log
𝜋1
𝜋0

+ 𝝁1
⊤Σ−1𝝁1 − 𝝁0

⊤Σ−1𝝁0

Then LDA will classify into 𝑦 = 1 iff
𝒙⊤𝒘 > −𝑐

which is a linear threshold unit

47

log
𝜋1
𝜋0

+ 2𝒙⊤Σ−1 𝝁1 − 𝝁0 + 𝝁1
⊤Σ−1𝝁1 − 𝝁0

⊤Σ−1𝝁0 > 0

MLSS 2014 Beijing

48

The quantity 𝐷𝑀 𝒙, 𝒖 2 = 𝒙 − 𝒖 ⊤𝚺−1 𝒙 − 𝒖 is known as the

(squared) Mahalanobis distance between 𝒙 and 𝒖. We can think of

the matrix Σ−1 as a linear distortion/rotation of the coordinate system

that converts the standard Euclidean distance into the Mahalanobis

distance

Note that

log 𝑃 𝑦 = 𝑘 𝒙 ∝ log 𝜋𝑘 −
1

2
𝒙 − 𝝁𝑘

⊤𝚺−1 𝒙 − 𝝁𝑘

log 𝑃 𝑦 = 𝑘 𝒙 ∝ log 𝜋𝑘 −
1

2
𝐷𝑀 𝒙, 𝒖 2

Therefore, we can view LDA as computing 𝐷𝑀 𝒙, 𝝁0
2 𝑎𝑛𝑑𝐷𝑀 𝒙, 𝝁1

2

and then classifying 𝒙 according to which mean 𝝁0 or 𝝁1 is closer in

Mahalanobis distance (corrected by log 𝑘)

Two Geometric Views of LDA

View 1: Mahalanobis Distance

MLSS 2014 Beijing

49

View 2: Most Informative Low-

Dimensional Projection
LDA can also be viewed as finding a hyperplane of
dimension 𝐾 – 1 such that 𝒙 and the {𝑘} are projected
down into this hyperplane and then 𝒙 is classified to the
nearest 𝑘 using Euclidean distance inside this
hyperplane

MLSS 2014 Beijing

50

Generalizations of LDA

General Gaussian Classifier
– Instead of assuming that all classes share the same

, we can allow each class k to have its own k. In
this case, the resulting classifier will be a quadratic
threshold unit (instead of an LTU)

Naïve Gaussian Classifier
– Allow each class to have its own k, but require that

each k be diagonal. This means that within each
class, any pair of features xj1 and xj2 will be assumed
to be statistically independent. The resulting classifier
is still a quadratic threshold unit (but with a restricted
form)

MLSS 2014 Beijing

51

Review

Linear Discriminant Analysis

We adopted the joint probability approach: 𝑃(𝒙, 𝑦)

We adopted the log loss as a surrogate for 0/1 loss

We fit the model directly, via the method of moments

MLSS 2014 Beijing

52

Comparing Perceptron, Logistic

Regression, and LDA

How should we choose among these three

algorithms?

There are several trade-offs

There is a big debate in the machine

learning community!

MLSS 2014 Beijing

53

Issues in the Debate

Statistical Efficiency. If the generative model 𝑃(𝒙, 𝑦)
is correct, then LDA usually gives the highest
accuracy, particularly when the amount of training
data is small. If the model is correct, LDA requires
30% less data than Logistic Regression in theory

Computational Efficiency. Generative models
typically are the easiest to learn. In our example, the
LDA parameters can be computed directly from the
data without using gradient descent.

MLSS 2014 Beijing

54

Issues in the Debate

Robustness to changing loss functions. Both
generative and conditional probability models allow
the loss function to be changed at run time without
re-learning. Perceptron requires re-training the
classifier when the loss function changes.
– Probabilistic modelling separates model learning from

making predictions or decisions
– Suppose the cost of a false positive SPAM prediction is 10

whereas a false negative is 1
– The cost of classifying 𝑥 as 𝑦 = 1 is 𝑃 𝑦 = 0 𝒙 × 10
– The cost of classifying 𝑥 as 𝑦 = 0 is 𝑃 𝑦 = 1 𝒙 × 1
– So we can choose the value of 𝑦 that minimizes the

expected cost

MLSS 2014 Beijing

Issues in the Debate

Vapnik’s Principle

– If your goal is to minimize 0/1 loss, then you
should do that directly, rather than first solving
a harder problem (probability estimation)

– This is what Perceptron does

– Other algorithms that follow this principle
Support Vector Machines

Decision Trees

Neural Networks

55 MLSS 2014 Beijing

Issues in the Debate

Robustness to model assumptions. The generative model
usually performs poorly when the assumptions are violated.
For example, if 𝑃(𝒙|𝑦) is very non-Gaussian, then LDA won’t
work well. Logistic Regression is more robust to model
assumptions, and Perceptron is even more robust.

Consequently, making the generative approach work often
requires more detailed modeling of 𝑃(𝒙|𝑦).

Robustness to missing values and noise. In many applications,
some of the features 𝑥𝑖𝑗 may be missing or corrupted in some
of the training examples. Generative models typically provide
better ways of handling this than non-generative models.

56 MLSS 2014 Beijing

Questions?

57 MLSS 2014 Beijing

Some Questions to Think About

Machine learning has many powerful non-linear
classifiers, why didn’t you discuss those?
– Linear methods are surprisingly powerful, especially in

computer vision and natural language processing
where the number of features is very large

You have showed how to fit these models to
training data, but that doesn’t guarantee that
they will make good predictions on new data
points
– Excellent question! That is the subject of Part 2

58 MLSS 2014 Beijing

Break

59 MLSS 2014 Beijing

1

Introduction to Machine

Learning

Part 2
Thomas G. Dietterich

tgd@eecs.oregonstate.edu

2

Outline

What is Machine Learning?

Introduction to Supervised Learning: Linear
Methods

Overfitting, Regularization, and the Bias-
Variance Tradeoff

Review and Summary

3

Formal

Setting

Training examples are drawn independently at
random according to unknown probability
distribution 𝑃(𝒙, 𝑦)

The learning algorithm analyzes the examples
and produces a classifier 𝑓

Given a new data point 𝒙, 𝑦 drawn from 𝑃,
the classifier is given 𝒙 and predicts 𝑦 = 𝑓(𝒙)

The loss ℒ(𝑦 , 𝑦) is then measured

Goal of the learning algorithm: Find the 𝑓 that
minimizes the expected loss on new points

𝑃(𝒙, 𝑦) (𝒙, 𝑦)

Training

sample

learning

algorithm
𝑓

test point

𝒙

loss

function

𝑦

𝑦 𝑦

training points

ℒ(𝑦 , 𝑦)

The Problem of Overfitting

Model: Neural Network

Epoch: One batch gradient descent step

After about 180 epochs, error on the test data starts to increase
even though the model continues to become more accurate on the
training data

Lesson:

It is not enough to minimize the

loss on the training data

if our goal is to optimize accuracy

on new data points

5

Another Example

True function:
𝑦 = 𝑓 𝑥1 = − 𝑥1 − 6 2 + 5

Training data:
𝑥1~𝑢𝑛𝑖𝑓 1,6

𝑥2~𝑢𝑛𝑖𝑓 −6,6

𝑦 = 𝑓 𝑥1 + 𝑛𝑜𝑟𝑚 0,10

6

Two models:

Model 1: 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2

Model 2: 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤12𝑥1
2 +𝑤2𝑥2 +𝑤22𝑥2

2

Small, Noisy Training Set

3 training examples

Linear model is much

more accurate even

though

It cannot represent the

true model

The quadratic model

can represent the true

model

7

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

linear quadratic

M
e
a

n
 S

q
u

a
re

d
 E

rr
o

r

The Three-Way Tradeoff

There is a tradeoff between

– amount of data

– complexity of the model fit to the data

– accuracy of the model on new data points

8

Three-way Tradeoff

9

Increasing Model Complexity

L
o
s
s
 o

n
 N

e
w

 P
o
in

ts

𝑁 = 100

𝑁 = 1000

𝑁 = 10000

What is Model Complexity?

Parametric models: Complexity = number

of weights

– Linear model is less complex than a quadratic

model

– Extra features extra complexity

More subtle:

– Weights that are zero don’t contribute to

complexity

– Small weights contribute less complexity that

large weights

 10

Controlling Model Complexity Via

Regularization

Regularization: Penalize the magnitude of

the weights in the model

Example: “square” penalty

𝐽 𝒘 =
1

𝑁
 ℒ(𝑓 𝒙𝑖; 𝒘 , 𝑦𝑖)

𝑖

+ 𝜆 𝑤𝑗
2

𝑗

The severity of the penalty is controlled by 𝜆 > 0

Adds a term of 2𝜆 𝑤𝑗𝑗 to the gradient descent

In neural networks, this is called “weight decay”

11

How to choose 𝜆?

Simple Holdout Method
Subdivide training data 𝑆 into two subsets:
𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑆ℎ𝑜𝑙𝑑𝑜𝑢𝑡.
Choose a set of candidate 𝜆 values =
𝜆0, 𝜆1, … , 𝜆𝑅
Minimize the penalized loss on 𝑆𝑡𝑟𝑎𝑖𝑛,
measure the prediction loss on 𝑆ℎ𝑜𝑙𝑑𝑜𝑢𝑡
Choose the 𝜆 value that gives the smallest
prediction loss

12

Simple Holdout Example

13

Logistic regression
with regularization
penalty

Overfitting was
not too severe in
this problem

𝑘-fold Cross-Validation to

determine 𝜆

To evaluate a value for 𝜆

Randomly divide 𝑆 into 𝑘 equal-
sized subsets

Run learning algorithm 𝑘 times,
each time use one subset for 𝑆𝑒𝑣𝑎𝑙
and the rest for 𝑆𝑡𝑟𝑎𝑖𝑛

Compute the average loss on 𝑆𝑒𝑣𝑎𝑙

Choose the 𝜆 value with minimum
loss

A Bayesian Perspective

A fully-generative Bayesian story:

Generate the weights: 𝒘~𝑃 𝒘

For each data point 𝑖

Generate the class label: 𝑦𝑖~𝑃(𝑦𝑖)

Generate the features: 𝒙𝑖~𝑃(𝒙𝑖|𝑦𝑖 , 𝒘)

Assemble the data set: 𝑆 = 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁

15

Inferring the most likely 𝒘

𝒘 = argmax
𝒘

𝑃(𝒘|𝑆)

𝑃 𝑤 𝑆 = 𝑃 𝒘 𝑃 𝑦𝑖 𝑃 𝒙𝑖 𝑦𝑖 , 𝒘

𝑖

log 𝑃 𝒘 𝑆 = log𝑃 𝒘 + log𝑃 𝑦𝑖 + log 𝑃 𝒙𝑖 𝑦𝑖 , 𝒘

𝑖

𝒘 = argmax
𝒘

ℓ 𝑆,𝒘 + log 𝑃(𝒘)

The regularization penalty is the same as the log prior on
the weights
This provides a way of incorporating different penalties
on different weights in a model, based on prior
knowledge

16

Controlling Complexity by Early

Stopping
Incrementally add complexity

– monitor performance on 𝑆𝑒𝑣𝑎𝑙

– stop when performance drops

Examples:

– incrementally adding variables in regression

– growing a decision tree

– early stopping in stochastic gradient descent

17

Early Stopping

Subdivide 𝑆 into 𝑆𝑡𝑟𝑎𝑖𝑛
and 𝑆𝑒𝑣𝑎𝑙
Initialize weights to 0
Perform gradient descent
on 𝑆𝑡𝑟𝑎𝑖𝑛, which
gradually causes the
weights to grow (in
magnitude)
Measure the loss on 𝑆𝑒𝑣𝑎𝑙
after each gradient step
Stop when the loss starts
to increase

Other Methods for Controlling

Complexity
Model pruning

– over-fit a model, then prune/shrink

Adding noise

– to the inputs or to intermediate quantities

– makes it harder to overfit

Ensembles (see below)

19

Bias-Variance Analysis

An alternative view of over-fitting and complexity
control

Bias: Systematic error in the model
– typically caused by an inability to express the full

complexity of the data

Variance: Variability in the fitted model
– typically caused by having a model that is too complex for

the amount of data

The total error of the model can be partitioned into the
sum of a bias term and a variance term

As we increase 𝜆 we increase bias but reduce variance

20

Bias-Variance Analysis of

Regression
True function: 𝑦 = 𝑓 𝒙 + 𝜖

– where 𝜖~𝑁𝑜𝑟𝑚 0, 𝜎2

We are given a set 𝑆 = 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁

We fit a model ℎ 𝑥 to minimize the square

loss

ℒ 𝑦 , 𝑦 = 𝑦 − 𝑦 2

𝐽 ℎ = 𝑦 𝑖 − 𝑦𝑖
2

𝑖

21

Example: 𝑁 = 20 points

𝑦 = 𝑥 + 2 sin 1.5𝑥 + 𝑁𝑜𝑟𝑚 0,0.2

Bias-Variance Analysis

Given a new data point 𝑥∗, 𝑦∗ (with

predicted value ℎ 𝑥∗), we would like to

decompose our error

𝑦∗ − ℎ 𝑥∗ 2

Classical Statistical Analysis

Imagine that our particular training sample 𝑆
is drawn from some population of possible
training samples according to 𝑃(𝑆).

We fit ℎ to 𝑆 (ℎ is a random quantity)

Compute 𝔼𝑃 𝑦∗ − ℎ 𝑥∗ 2

Decompose this into “bias”, “variance”, and
“noise”

50 fits (20 examples each)

Bias
The difference between the average predicted

value 𝔼𝑃 ℎ 𝑥∗ and the value of the true

function 𝑓 𝑥∗ : 𝔼𝑃 ℎ 𝑥∗ − 𝑓 𝑥∗

26

Variance
The variance of ℎ 𝑥∗ around its average value
𝔼𝑃 ℎ 𝑥∗ : 𝔼𝑃 ℎ 𝑥∗ − 𝔼𝑃 ℎ 𝑥∗ 2

27

Noise

The variation of 𝑦∗ around its true average value

𝑓(𝑥∗): 𝑦∗ − 𝑓 𝑥∗ 2

28

The Bias-Variance

Decomposition
𝔼ℎ 𝑦∗ − ℎ 𝑥∗ 2

= 𝔼ℎ ℎ 𝑥∗ − 𝔼ℎ ℎ 𝑥∗ 2

+ 𝔼ℎ ℎ 𝑥∗ − 𝑓 𝑥∗ 2

+ 𝑦∗ − 𝑓 𝑥∗ 2

29

variance
squared bias
noise

50 fits (20 examples each)

Distribution of predictions at

x=2.0

50 fits (20 examples each)

Distribution of predictions at

x=5.0

Derivation

Let 𝑍 be a random variable with distribution
𝑃(𝑍)

Let 𝑍 = 𝔼[𝑍] be the expected value of 𝑍

Lemma: 𝔼 𝑍 − 𝑍
2
= 𝔼 𝑍2 − 𝑍

2

Corollary: 𝔼 𝑍2 = 𝔼 𝑍 − 𝑍
2
+ 𝑍

2

34

Proof

𝔼 𝑍 − 𝑍
2
= 𝔼 𝑍2 − 2𝑍𝑍 + 𝑍

2

 = 𝔼 𝑍2 − 2𝑍𝔼 𝑍 + 𝑍
2

 = 𝔼 𝑍2 − 2𝑍𝑍 + 𝑍
2

 = 𝔼 𝑍2 − 𝑍
2

35

Derivation of the Decomposition

Expand the quadratic:

𝔼𝑃 ℎ 𝑥∗ − 𝑦∗ 2 = 𝔼𝑃 ℎ 𝑥∗ 2 − 2ℎ 𝑥∗ 𝑦∗ + 𝑦∗2

Push the expectation inside

= 𝔼𝑃 ℎ 𝑥∗ 2 − 2𝔼𝑃 ℎ 𝑥∗ 𝔼𝑃 𝑦∗ + 𝔼𝑃 𝑦∗2

Apply the lemma twice

= 𝔼𝑃 ℎ 𝑥∗ − 𝔼𝑃 ℎ 𝑥∗ 2 + 𝔼𝑃 ℎ 𝑥∗ 2 − 2𝔼𝑃 ℎ 𝑥∗ 𝑓 𝑥∗

+ 𝔼𝑃 𝑦∗ − 𝑓 𝑥∗ 2 + 𝑓 𝑥∗ 2

Collapse the quadratic to get the squared bias term

= 𝔼𝑃 ℎ 𝑥∗ − 𝔼𝑃 ℎ 𝑥∗ 2 + 𝔼𝑃 ℎ 𝑥∗ − 𝑓 𝑥∗ 2

+ 𝔼𝑃 𝑦∗ − 𝑓 𝑥∗ 2

Note that we are also taking expectations wrt the noise 𝜖

36

Measuring Bias and Variance

In practice (unlike in theory), we have only

ONE training set S.

We can simulate multiple training sets by

bootstrap replicates

S’ = {x | x is drawn at random with

 replacement from S} and |S’| = |S|.

Procedure for Measuring Bias

and Variance
Construct B bootstrap replicates of 𝑆 (e.g.,
𝐵 = 200): 𝑆1, … , 𝑆𝐵

Apply learning algorithm to each replicate
𝑆𝑏 to obtain hypothesis ℎ𝑏

Let 𝑇𝑏 = 𝑆 ∖ 𝑆𝑏 be the data points that do
not appear in 𝑆𝑏 (out of bag points)

Compute predicted value ℎ𝑏(𝑥) for each 𝑥
in 𝑇𝑏

Estimating Bias and Variance

(continued)
For each data point 𝑥, we will now have

the observed corresponding value 𝑦 and

several predictions 𝑦1, … , 𝑦𝐾.

Compute the average prediction 𝑦 =
1

𝐾
 𝑦𝑘𝑘 .

Estimate bias as 𝑦 − 𝑦

Estimate variance as
1

𝐾−1
 𝑦𝑘 − 𝑦 2
𝑘

Assume noise is 0

Approximations in this

Procedure
Bootstrap replicates are not real fresh data

We ignore the noise

– If we have multiple data points with the same

𝑥 value, then we can estimate the noise

– We can also estimate noise by pooling 𝑦

values from nearby 𝑥 values

Applying Bias-Variance Analysis

By measuring the bias and variance on a

problem, we can determine how to

improve our model

– If bias is high, we need to allow our model to

be more complex

– If variance is high, we need to reduce the

complexity of the model

Bias-variance analysis also suggests a

way to reduce variance: bagging

41

Ensemble Learning Methods

Given training sample 𝑆

Generate multiple hypotheses, ℎ1, ℎ2, … , ℎ𝐿.

Optionally: determining corresponding

weights 𝛼1, 𝛼2, … , 𝛼𝐿

Classify new points according to

 𝛼ℓℎℓ(𝑥)ℓ > 𝜃

“weighted majority vote”

Bagging: Bootstrap Aggregating

For 𝑏 = 1, … , 𝐵 do

𝑆𝑏 = bootstrap replicate of 𝑆

Apply learning algorithm to 𝑆𝑏 to learn ℎ𝑏

Classify new points by unweighted vote:
1

𝐵
 ℎ𝑏(𝑥)

𝑏

> 0

Estimated Bias and Variance of

Bagging
If we estimate bias and variance using the same
B bootstrap samples, we will have:
– Bias = 𝑦 − 𝑦 [same as before]

– Variance =
1

K−1
 𝑦 − 𝑦 2
𝑘 = 0

Hence, according to this approximate way of
estimating variance, bagging removes the
variance while leaving bias unchanged.

In reality, bagging only reduces variance and
tends to slightly increase bias

Bagging Decision Trees

(Freund & Schapire)

Bayesian Ensembles:

Bayesian Model Averaging

𝑃 𝑦∗ 𝑥∗, 𝑆 = 𝑃 𝒘 𝑃 𝑆 𝒘 𝑃 𝑦∗ 𝑥∗, 𝒘 𝑑𝒘
𝒘

where 𝑃 𝑆 𝑤 = 𝑃 𝑦𝑖 𝒘 𝑃(𝒙𝑖|𝑦𝑖 , 𝒘)𝑖

This is rarely practical to evaluate, but suppose we
could sample some good values for 𝒘: 𝒘1, … ,𝒘𝐶

We could approximate the integral by a sum:

𝑃 𝑦∗ 𝑥∗, 𝑆 = 𝑃 𝒘𝑐|𝑆 𝑃 𝑦∗ 𝑥∗, 𝒘𝑐

𝑐

This is called Bayesian Model Averaging

46

Review of Part 2

Goal: making accurate predictions on new data points
– the problem of Overfitting
– occurs when the model becomes too complex for the amount of data

Complexity can be controlled
– regularization penalty
– early stopping
– choosing 𝜆 by holdout or cross-validation

Bias-variance error decomposition
– Squared loss can be decomposed into bias^2+variance+noise
– bias and variance can be (approximately) measured using bootstrapping
– they provide a diagnostic tool for machine learning

Bagging is an ensemble method that applies bootstrapping to reduce
variance

– Bagging a low-bias, high-variance classifier can produce excellent results

Bayesian analysis provides an alternative view of
– regularization penalty = log prior
– ensemble methods = integrating out the prior

47

Questions?

48

Questions to think about

Most machine learning methods involve complex,
flexible models
– decision trees

– support vector machines

– neural networks (esp. deep ones)

Hence, complexity control (variance management) is a
central challenge

“drop out” is a cool new technique in this area

The bias-variance analysis was done for
regression. Can it be extended to classification?
– Yes, see James (2003) “Variance and bias for

general loss functions” Machine Learning.

49

