Learning Tractable Probabilistic Models

Pedro Domingos

Dept. Computer Science \& Eng.
University of Washington

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Other tractable models

The Hardest Part of Learning Is Inference

Inference is subroutine of:

- Learning undirected graphical models
- Learning discriminative graphical models
- Learning w/ incomplete data, latent variables
- Bayesian learning
- Deep learning
- Statistical relational learning
- Etc.

Goal: Large Joint Models

- Natural language
- Vision
- Social networks
- Activity recognition
- Bioinformatics
- Etc.

Example: Friends \& Smokers

Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family members. As more people quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network

Sources: New England Journal of Mecticine:
Dr. Nicholas A. Chrislakis; dames H. Fower

KEY

- Male smoker
- Male nonsmoker
- Female nonsmoker
- Friendship, marriage or family tie

[^0]

THE NEW YORE TIMES

Inference Is the Bottleneck

- Inference is \#P-complete
- It's tough to have \#P as a subroutine
- Approximate inference and parameter optimization interact badly
- An intractable accurate model is in effect an inaccurate model
- What can we do about this?

One Solution: Learn Only Tractable Models

- Pro: Inference problem is solved
- Con: Insufficiently expressive

Recent development:
Expressive tractable models
(theme of this tutorial)

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Other tractable models

Why Use Probabilistic Models?

- Correctly handle uncertainty and noise
- Learn with missing data
- Jointly infer multiple variables
- Do inference in any direction
- It's the standard
- Powerful, consistent set of techniques

Probabilistic Models

- Bayesian networks
- Markov networks
- Log-linear models
- Mixture models
- Logistic regression
- Hidden Markov models
- Cond. random fields
- Max. entropy models
- Probabilistic grammars
- Exponential family
- Markov random fields
- Gibbs distributions
- Boltzmann machines
- Deep architectures
- Markov logic
- Etc.

Markov Networks

- Undirected graphical models

Cancer

Asthma
Cough

- Potential functions defined over cliques

$$
\begin{gathered}
P(x)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(x_{c}\right) \\
Z=\sum_{x} \prod_{c} \Phi_{c}\left(x_{c}\right)
\end{gathered}
$$

Smoking	Cancer	$\boldsymbol{\Phi (S , C)}$
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Log-Linear Models

$$
\begin{array}{r}
P(x)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} f_{i}(x)\right) \\
\text { Weight of Feature } i \\
\text { Feature } i
\end{array}
$$

$f_{1}($ Smoking, Cancer $)= \begin{cases}1 & \text { if } \neg \text { Smoking } \vee \text { Cancer } \\ 0 & \text { otherwise }\end{cases}$

$$
w_{1}=0.51
$$

Representation and Inference

Bayesian Networks

Markov Networks

Deep Architectures

- Advantage: Compact representation
- Inference: P(Burglar | Alarm) = ??
- Need to sum out Earthquake
- Inference cost exponential in treewidth of graph

Learning Graphical Models

- General idea:

Empirical statistics = Predicted statistics

- Requires inference!
- Approximate inference is very unreliable
- No closed-form solution (except rare cases)
- Hidden variables \rightarrow No global optimum
- Result: Learning is very hard

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Other tractable models

Thin Junction Trees

[Karger \& Srebro, SODA-01; Bach \& Jordan, NIPS-02;
Narasimhan \& Bilmes, UAI-04; Chechetka \& Guestrin, NIPS-07]

- Junction tree: obtained by triangulating the Markov network
- Inference is exponential in treewidth (size of largest clique in junction tree)
- Solution: Learn only low-treewidth models
- Problem: Too restricted (treewidth ≤ 3)

Very Large Mixture Models

[Lowd \& Domingos, ICML-05]

- Just learn a naive Bayes mixture model with lots of components (hundreds or more)
- Inference is linear in model size (no worse than scanning training set)
- Compared to Bayes net structure learning:
- Comparable data likelihood
- Better query likelihood
- Much faster \& more reliable inference
- Problem: Curse of dimensionality

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Other tractable models

Efficiently Summable Functions

A function is efficiently summable iff its sum over any subset of its scope can be computed in time polynomial in the cardinality of the subset.

The Sum-Product Theorem

If a function is:
-A sum of efficiently summable functions with the same scope, or
-A product of efficiently summable functions with disjoint scopes,
Then it is also efficiently summable.

Corollary

> Every low-treewidth distribution is efficiently summable, but not every efficiently summable distribution has low treewidth.

Compactly Representable Probability Distributions

Graphical Models
 Sum-Product Models

Compactly Representable Probability Distributions

Graphical Models
 Sum-Product Models

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Symmetric models
- Other tractable models

Arithmetic Circuits

[Darwiche, JACM, 2003]

- Inference consists of sums and products
- Can be represented as an arithmetic circuit
- Complexity of inference = Size of circuit

Arithmetic Circuit

$\boldsymbol{X}_{\mathbf{1}}$	$\boldsymbol{X}_{\mathbf{2}}$	$\boldsymbol{P}(\boldsymbol{X})$
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

- Rooted DAG of sums and products
- Leaves are indicator variables
- Computes marginals in linear time
- Graphical models can be compiled into ACs

Learning Bounded-Inference Graphical Models [Lowd \& D., UAl-08]

- Use standard Bayes net structure learner (with context-specific independence)
- Key idea: Instead of using representation complexity as regularizer:

$$
\begin{aligned}
\text { score }(M, T)= & \log P(T \mid M)-k_{p} n_{p}(M) \\
& \text { (log-likelihood -\#parameters) }
\end{aligned}
$$

Use inference complexity:

$$
\begin{aligned}
\operatorname{score}(M, T)= & \log P(T \mid M)-k_{c} n_{c}(M) \\
& (\log -\text { likelihood }- \text { circuit size })
\end{aligned}
$$

Learning Bounded-Inference Graphical Models (contd.)

- Incrementally compile circuit as structure added (splits in decision trees)
- Compared to Bayes nets w/ Gibbs sampling:
- Comparable data likelihood
- Better query likelihood
- Much faster \& more reliable inference
- Large treewidth (10's - 100's)

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Symmetric models
- Other tractable models

Feature Trees

[Gogate, Webb \& D., NIPS-10]

- Thin junction tree learners work by repeatedly finding a subset of variables A such that

$$
P(B, C \mid A) \approx P(B \mid A) P(C \mid A)
$$

where A, B, C is a partition of the variables

- LEM algorithm: Instead find a feature F s.t.

$$
P(B, C \mid F) \approx P(B \mid F) P(C \mid F)
$$

and recurse on variables and instances

- Result is a tree of features

A Feature Tree

Feature Trees (contd.)

- High treewidth because of context-specific independence
- More flexible than decision tree CPDs
- PAC-learning guarantees
- Outperforms thin junction trees and other algorithms for learning Markov networks
- More generally: Feature graphs

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Symmetric models
- Other tractable models

A Univariate Distribution Is an SPN

Multinomial

Gaussian

Poisson

A Product of SPNs over Disjoint Variables Is an SPN

A Weighted Sum of SPNs over the Same Variables Is an SPN

All Marginals Are Computable in Linear Time

Evidence
Marginalize
Marginalize

All MAP States Are Computable in Linear Time

$$
\max _{y} P(X=0, Y=y)=0.12
$$

All MAP States Are Computable in Linear Time

$$
\max _{y} P(X=0, Y=y)=0.12
$$

What Does an SPN Mean?

Special Cases of SPNs

- Hierachical mixture models
- Thin junction trees (e.g.: hidden Markov models)
- Non-recursive probabilistic context-free grammars
- Etc.

Discriminative SPNs

[Gens \& D., NIPS-12; Best Student Paper Award]

Discriminative Training

$$
\nabla \log P(\mathbf{y} \mid \mathbf{x})=\nabla \log \frac{P(\mathbf{y}, \mathbf{x})}{P(\mathbf{x})}=
$$

Backpropagation

Backpropagation

Problem: Gradient Diffusion

Solution: Hard Inference

Soft Inference (Marginals)

Hard Inference

 (MAP States)
Hard Gradient

$$
\nabla \log \tilde{P}(\mathbf{y} \mid \mathbf{x})=\nabla \log \frac{\tilde{P}(\mathbf{y}, \mathbf{x})}{\tilde{P}(\mathbf{x})}=
$$

$\max P(\mathbf{y}, \mathbf{h}, \mathbf{x})$
h
$\max _{\mathbf{y}^{\prime}, \mathbf{h}} P\left(\mathbf{y}^{\prime}, \mathbf{h}, \mathbf{x}\right)$
$\mathbf{y}^{\prime}, \mathbf{h}$

Hard Gradient

$$
\nabla \log \tilde{P}(\mathbf{y} \mid \mathbf{x})=\nabla \log \frac{\tilde{P}(\mathbf{y}, \mathbf{x})}{\tilde{P}(\mathbf{x})}=
$$

Empirical Evaluation: Object Recognition

Feature Extraction

[Coates et al., AISTATS 2011]

Architecture

STL-10 Results

Generative Weight Learning
 [Poon \& D., UAl-11; Best Paper Award]

- Model joint distribution of all variables
- Algorithm: Online hard EM
- Sum node maintains counts for each child
- For each example
- Find MAP instantiation with current weights
- Increment count for each chosen child
- Renormalize to set new weights
- Repeat until convergence

Empirical Evaluation: Image Completion

- Datasets: Caltech-101 and Olivetti
- Compared with DBNs, DBMs, PCA and NN
- SPNs reduce MSE by $\sim 1 / 3$
- Orders of magnitude faster than DBNs, DBMs

Architecture

Example Completions

Weight Learning: Summary

Update	Soft Inference (Marginals)	Hard Inference (MAP States)
Generative EM	$\Delta w_{i} \propto w_{i} \frac{\partial S}{\partial S_{k}}$	$\Delta w_{i}=c_{i}$
Generative Gradient	$\Delta w_{i}=\eta \frac{\partial S}{\partial S_{k}} S_{i}$	$\Delta w_{i}=\eta \frac{c_{i}}{w_{i}}$
Discriminative Gradient	$\Delta w_{i}=\eta\left(\stackrel{\stackrel{\text { true label }}{\stackrel{S_{i}}{S}} \frac{\partial S}{\partial S_{k}}}{\stackrel{\text { exp. label }}{\stackrel{S}{S}}}-\frac{\stackrel{S_{i}}{S} \frac{\partial S}{\partial S_{k}}}{}\right)$	$\Delta w_{i}=\frac{\eta}{w_{i}}\left(\stackrel{\text { true test }}{c_{i}}-\stackrel{\stackrel{\rightharpoonup}{c}}{\boldsymbol{c}}\right)$

Structure Learning

[Gens \& D., ICML-13; no best paper award]

Empirical Evaluation

- 20 varied real-world datasets
- 10s-1000s of variables
- 1000s-100,000s of samples
- Compared with state-of-the-art Bayesian network and Markov random field learners
- Likelihood: typically comparable
- Query accuracy: much higher
- Inference: orders of magnitude faster

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov Iogic
- Symmetric models
- Other tractable models

Tractable Markov Logic
 [D. \& Webb, AAAI-12]

- Tractable representation for statistical relational learning
- Three types of weighted rules and facts
- Subclass: Is(Family,SocialUnit) Is(Smiths, Family)
- Subpart: Has(Family,Adult, 2) Has(Smiths, Anna, Adult1)
- Relation: Parent(Family,Adult,Child) Married(Anna, Bob)

Restrictions

- One top class
- One top object (all others are subparts)
- Relations must be among subparts of some object
- Subclasses are mutually exclusive
- Objects do not share subparts

TML Semantics

$$
Z(K B)=Z(\text { TopObject,TopClass })
$$

Tractability

Theorem: The partition function of every TML knowledge base can be computed in time and space polynomial in the size of the knowledge base.
Time = Space = O(\#Rules X \#Objects)

Why TML Is Tractable

KB structure is isomorphic to Z computation: -Parts = Products
-Classes = Sums

Why TML Is Tractable

KB structure is isomorphic to Z computation: -Parts = Products
-Classes = Sums

Why TML Is Tractable

KB structure is isomorphic to Z computation:
-Parts = Products
-Classes = Sums

Expressiveness

The following can be compactly represented in TML:

- Junction trees
- Sum-product networks
- Probabilistic context-free grammars
- Probabilistic inheritance hierarchies
- Etc.

Learning Tractable MLNs

Alternate between:

- Dividing / aggregating the domain into subparts
- Inducing class hierarchies over similar subparts

Other Sum-Product Models

- Relational sum-product networks
- Tractable probabilistic knowledge bases
- Tractable probabilistic programs
- Etc.

What If This Is Not Enough?

Use variational inference, with the most expressive tractable representation available as the approximating family
[Lowd \& D., NIPS-10]

Outline

- Motivation
- Probabilistic models
- Standard tractable models
- The sum-product theorem
- Bounded-inference graphical models
- Feature trees
- Sum-product networks
- Tractable Markov logic
- Other tractable models

Other Tractable Models

- Symmetry
- Liftable models
- Exchangeable models
- Submodularity
- Determinantal point processes
- Etc.
- Several papers at ICML-14
- Workshop on Thursday

Summary

- Intractable inference is the bane of learning
- Tractable models avoid it
- Standard ones are too limited
- We have powerful new tractable classes
- Sum-product theorem
- Symmetry
- Etc.

Summary

Tractability

Graphical Models

Expressiveness

Summary

Expressiveness

[^0]: Circle size is proportional to the number of cigarettes smoked per day

