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The Hardest Part of Learning 
Is Inference
Inference is subroutine of:
 Learning undirected graphical models
 Learning discriminative graphical models
 Learning w/ incomplete data, latent variables
 Bayesian learning
 Deep learning
 Statistical relational learning
 Etc.
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Goal: Large Joint Models
 Natural language
 Vision
 Social networks
 Activity recognition
 Bioinformatics
 Etc.
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Example: Friends & Smokers



Inference Is the Bottleneck
 Inference is #P-complete
 It’s tough to have #P as a subroutine
 Approximate inference and parameter 

optimization interact badly
 An intractable accurate model is

in effect an inaccurate model
 What can we do about this?
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One Solution:
Learn Only Tractable Models
 Pro: Inference problem is solved
 Con: Insufficiently expressive

Recent development:
Expressive tractable models

(theme of this tutorial)
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Why Use Probabilistic Models?

 Correctly handle uncertainty and noise
 Learn with missing data
 Jointly infer multiple variables
 Do inference in any direction
 It’s the standard
 Powerful, consistent set of techniques
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Probabilistic Models
 Bayesian networks
 Markov networks
 Log-linear models
 Mixture models
 Logistic regression
 Hidden Markov models
 Cond. random fields
 Max. entropy models

 Probabilistic grammars
 Exponential family
 Markov random fields
 Gibbs distributions
 Boltzmann machines
 Deep architectures
 Markov logic
 Etc.



Markov Networks
 Undirected graphical models

Cancer

CoughAsthma

Smoking

 Potential functions defined over cliques
Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5
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Representation and Inference
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Earthquake

 Advantage: Compact representation
 Inference:  P(Burglar | Alarm) = ??
 Need to sum out  Earthquake
 Inference cost exponential in treewidth of graph

Bayesian Networks Markov Networks

Burglar

Alarm

Deep Architectures



Learning Graphical Models

 General idea:
Empirical statistics = Predicted statistics

 Requires inference!
 Approximate inference is very unreliable
 No closed-form solution (except rare cases)
 Hidden variables → No global optimum
 Result: Learning is very hard
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Thin Junction Trees
[Karger & Srebro, SODA-01; Bach & Jordan, NIPS-02;
Narasimhan & Bilmes, UAI-04; Chechetka & Guestrin, NIPS-07]

 Junction tree: obtained by triangulating
the Markov network

 Inference is exponential in treewidth
(size of largest clique in junction tree)

 Solution: Learn only low-treewidth models
 Problem: Too restricted (treewidth ≤ 3)
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Very Large Mixture Models
[Lowd & Domingos, ICML-05]

 Just learn a naive Bayes mixture model with 
lots of components (hundreds or more)

 Inference is linear in model size
(no worse than scanning training set)

 Compared to Bayes net structure learning:
 Comparable data likelihood
 Better query likelihood
 Much faster & more reliable inference

 Problem: Curse of dimensionality
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Efficiently Summable Functions

A function is efficiently summable iff its 
sum over any subset of its scope can be 
computed in time polynomial in the 
cardinality of the subset.
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The Sum-Product Theorem

If a function is:
A sum of efficiently summable functions with 
the same scope, or
A product of efficiently summable functions 
with disjoint scopes,
Then it is also efficiently summable.
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Corollary

Every low-treewidth distribution is efficiently 
summable, but not every efficiently 
summable distribution has low treewidth.
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Compactly Representable 
Probability Distributions

Graphical
Models

Sum-Product
Models

Standard
Tractable
Models

Standard
Tractable
Models



Compactly Representable 
Probability Distributions

Graphical
Models

Sum-Product
Models

Standard
Tractable
Models

Standard
Tractable
Models

Linear-time exact inference
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Arithmetic Circuits
[Darwiche, JACM, 2003]

 Inference consists of sums and products
 Can be represented as an arithmetic circuit
 Complexity of inference = Size of circuit
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Arithmetic Circuit
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 Rooted DAG of sums and products
 Leaves are indicator variables
 Computes marginals in linear time
 Graphical models can be compiled into ACs



Learning Bounded-Inference 
Graphical Models [Lowd & D., UAI-08]

 Use standard Bayes net structure learner 
(with context-specific independence)

 Key idea: Instead of using representation 
complexity as regularizer:

Use inference complexity:
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score(M,T) = log P(T|M) – kp np(M)
(log-likelihood – #parameters) 

score(M,T) = log P(T|M) – kc nc(M) 
(log-likelihood – circuit size)



Learning Bounded-Inference 
Graphical Models (contd.)

 Incrementally compile circuit as structure 
added (splits in decision trees)

 Compared to Bayes nets w/ Gibbs sampling:
 Comparable data likelihood
 Better query likelihood
 Much faster & more reliable inference

 Large treewidth (10’s – 100’s)
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Feature Trees
[Gogate, Webb & D., NIPS-10]

 Thin junction tree learners work by repeatedly 
finding a subset of variables A such that 

P(B,C|A) ≈ P(B|A) P(C|A)
where A,B,C is a partition of the variables

 LEM algorithm: Instead find a feature F s.t.
P(B,C|F) ≈P(B|F) P(C|F)

and recurse on variables and instances
 Result is a tree of features
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A Feature Tree
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Feature Trees (contd.)
 High treewidth because of context-specific 

independence
 More flexible than decision tree CPDs
 PAC-learning guarantees
 Outperforms thin junction trees and other 

algorithms for learning Markov networks
 More generally: Feature graphs
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A Univariate Distribution
Is an SPN

X

Gaussian
...

PoissonMultinomial



A Product of SPNs over
Disjoint Variables Is an SPN

X Y



Sums out a mixture 
variable

A Weighted Sum of SPNs over
the Same Variables Is an SPN

X Y X Y

w1 w2



X1 X1 X1X1 X2 X2 X2X2 X3 X3 X3X3 X4 X4 X4X4 X5 X5 X5X5 X6 X6 X6X6

Recurse Freely . . .
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What Does an SPN Mean?

Products = Features
Sums = Clusters



Special Cases of SPNs
 Hierachical mixture models
 Thin junction trees

(e.g.: hidden Markov models)
 Non-recursive probabilistic

context-free grammars
 Etc.



Discriminative SPNs
[Gens & D., NIPS-12; Best Student Paper Award]

Query
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Discriminative Training

Best guessCorrect label

Tractable!



Backpropagation
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Problem: Gradient Diffusion



Solution: Hard Inference

Hard Inference
(MAP States)

Soft Inference
(Marginals)



Hard Gradient

f (X)2
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Empirical Evaluation:
Object Recognition

CIFAR-10
32x32 pixels
50k training exs.
10k test exs.

STL-10
96x96 pixels
5k training exs.
8k test exs.
100k unlabeled exs.



Feature Extraction

32x32 27x27xK

Triangle
encoding

K

GxGxK

Max-pooling

K

K-means

6x6

[Coates et al., AISTATS 2011]



Architecture

GxGxK

Mixture +

xParts
+Classes

Location +

WxWxK



SVM

SPN

Pooling

4x4xK

Autoencoder
RBM

CIFAR-10 Results



STL-10 Results

without 
unlabeled data
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Generative Weight Learning
[Poon & D., UAI-11; Best Paper Award]

 Model joint distribution of all variables
 Algorithm: Online hard EM
 Sum node maintains counts for each child
 For each example
 Find MAP instantiation with current weights
 Increment count for each chosen child
 Renormalize to set new weights

 Repeat until convergence



Empirical Evaluation:
Image Completion

 Datasets: Caltech-101 and Olivetti
 Compared with DBNs, DBMs, PCA and NN
 SPNs reduce MSE by ~1/3
 Orders of magnitude faster than DBNs, DBMs
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Architecture
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Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original



Update Soft Inference
(Marginals)

Hard Inference
(MAP States)

Generative 
EM

Generative 
Gradient

Discriminative 
Gradient

Weight Learning:
Summary



Structure Learning
[Gens & D., ICML-13; no best paper award]



Empirical Evaluation
 20 varied real-world datasets
 10s-1000s of variables
 1000s-100,000s of samples

 Compared with state-of-the-art Bayesian 
network and Markov random field learners

 Likelihood: typically comparable
 Query accuracy: much higher
 Inference: orders of magnitude faster
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Tractable Markov Logic
[D. & Webb, AAAI-12]

 Tractable representation for statistical 
relational learning

 Three types of weighted rules and facts
 Subclass: Is(Family,SocialUnit)

Is(Smiths,Family)

 Subpart: Has(Family,Adult,2)
Has(Smiths,Anna,Adult1) 

 Relation: Parent(Family,Adult,Child)
Married(Anna,Bob)
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Restrictions
 One top class
 One top object (all others are subparts)
 Relations must be among subparts of

some object
 Subclasses are mutually exclusive
 Objects do not share subparts



TML Semantics
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Tractability

Theorem: The partition function of every
TML knowledge base can be computed in 
time and space polynomial in the size of
the knowledge base.

Time = Space = O(#Rules X #Objects)
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KB structure is isomorphic to Z computation:
•Parts = Products
•Classes = Sums

Why TML Is Tractable
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KB structure is isomorphic to Z computation:
•Parts = Products
•Classes = Sums

Why TML Is Tractable



Expressiveness

 Junction trees
 Sum-product networks
 Probabilistic context-free grammars
 Probabilistic inheritance hierarchies
 Etc.
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The following can be compactly represented
in TML:



Learning Tractable MLNs
Alternate between:
 Dividing / aggregating the domain into 

subparts
 Inducing class hierarchies over similar 

subparts
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Other Sum-Product Models

 Relational sum-product networks
 Tractable probabilistic knowledge bases
 Tractable probabilistic programs
 Etc.
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What If This Is Not Enough?
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Use variational inference, with the most 
expressive tractable representation 
available as the approximating family
[Lowd & D., NIPS-10]
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Other Tractable Models

 Symmetry
 Liftable models
 Exchangeable models

 Submodularity
 Determinantal point processes
 Etc.
 Several papers at ICML-14
 Workshop on Thursday
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Summary
 Intractable inference is the bane of learning
 Tractable models avoid it
 Standard ones are too limited
 We have powerful new tractable classes
 Sum-product theorem
 Symmetry
 Etc.
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Graphical Models

New Tractable Classes

Expressiveness


